Realistic Image Synthesis

- Perception: Image Quality Metrics -

Philipp Slusallek
Karol Myszkowski
Gurprit Singh
Outline

- Questions of Appearance Preservation
- Basic characteristics of Human Visual System in image perception
- Daly’s Visible Differences Predictor (VDP)
- Metric for rendering artifacts
 - Full-reference CNN-based metric
Image Quality Metrics

• Application examples which require metrics of the image quality as perceived by the human observer
 – Lossy image compression and broadcasting
 – Design of image input/output devices
 • scanners, cameras, monitors, printers, and so on
 – Watermarking
 – Computer graphics, medical visualization
Questions of Appearance Preservation

- The concern is not whether images are the same
- Rather the concern is whether images appear the same.

How much computation is enough?

How much reduction is too much?
Subjective Methods

• The best results can be obtained when human observers are involved
 – Carefully controlled observation conditions
 – Representative number of participants
 • Averaging individual visual characteristics
 • Limiting the influence of emotional reactions

• Very costly

• Limited use in practical routine applications
Objective Methods

- Usually rely on the comparison of images against the reference image
 - Measure perceivable differences between images, but an absolute measure of the image quality is difficult to obtain
 - Not always in good agreement with the subjective measures
 + Good repeatability of results
 + Easy to use
 + Low costs
Classification of Objective Quality Metrics

- Full-reference
 - Perceptually Weighted Metrics
 - Near-threshold
 - VDP
 - HDR-VDP
 - Supra-threshold
 - Sarnoff JND
 - Structural Similarity Metrics
 - SSIM
- Limited-reference
- No-reference
 - Arithmetic Metrics
 - PSNR
 - MSE
Classification of Objective Quality Metrics

- **Full-reference (FR)** where the reference image is available as it is typical in image compression, restoration, enhancement and reproduction applications.

- **Limited-reference (RR)** where a certain number of features characteristic for the image is extracted and made available as reference through a back-channel with reduced distortion. To avoid the back-channel transmission, known in advance and low magnitude signals, such that their visibility is prevented (as in watermarking), are directly encoded into an image and then the distortion of these signals is measured after the image transmission on the client side.

- **No-reference (NR)** which are focused mostly on detecting distortions which are application specific and predefined in advance such as blockiness (typical for DCT encoding in JPEG and MPEG), and ringing and blurring (typical for wavelet encoding in JPEG2000).
Full-reference Quality Metrics (1)

- **Pixel-based Metrics** with the mean square error (MSE) and the peak signal-to-noise ratio (PSNR) difference metrics as the prominent examples. In such a simple framework the HVS considerations are usually limited to the choice of a perceptually uniform color space such as CIELAB and CIELUV, which is used to represent the reference and distorted image pixels.

- **Structure-based Metrics** with the *Structural SIMilarity (SSIM) index* one of the most popular and influential quality metric in recent years. Since the HVS is strongly specialized in learning about the scenes through extracting structural information, it can be expected that the perceived image quality can be well approximated by measuring structural similarity between images.
Full-reference Quality Metrics (2)

- **Perception-based Fidelity Metrics** the *visible difference predictor* (VDP) and the *Sarnoff visual discrimination model* (VDM) as the prominent examples. These contrast-based metrics are based on advanced models of early vision in the HVS and are capable of capturing just visible (near threshold) differences or even measuring the magnitude of such (supra-threshold) differences and scale them in JND (just noticeable difference) units.
Pixel–based Metrics: Mean Square Error

$$\text{RMSE} = \sqrt{\text{MSE}} = \frac{1}{n} \sum_{i,j} (P_{ij} - Q_{ij})^2$$

$$\text{PSNR} = 20 \log_{10} \frac{\text{Pixel}_{\text{Max}}}{\text{MSE}}$$

Reference image (P)

Compared images (Q)
Pixel-based Metrics: Mean Square Error

\[\text{RMSE} = \sqrt{\text{MSE}} = \frac{1}{n} \sum_{i,j} (P_{ij} - Q_{ij})^2 \]

\[\text{PSNR} = 20 \log_{10} \frac{\text{Max}_{\text{Pixel}}}{\text{MSE}} \]

Reference image \((P)\)

Compared images \((Q)\)

RMSE: 5.28
RMSE: 9.54
Pixel–based Metrics: Mean Square Error

Einstein image altered with different types of distortions:
(a) “original image”;
(b) mean luminance shift;
(c) a contrast stretch;
(d) impulsive noise contamination;
(e) white Gaussian noise contamination;
(f) blurring;
(g) JPEG compression;
(h) a spatial shift (to the left);
(i) spatial scaling (zooming out);
(j) a rotation.

Note that images (b)–(g) have almost the same MSE values but drastically different visual quality. Also, note that the MSE is highly sensitive to spatial translation, scaling, and rotation [Images (h)–(j)].
Color Appearance Spaces

- CIE 1976 L∗u∗v* and L∗a∗b*
 - Color \((X, Y, Z)\) reflected by a surface under known illuminant \((X_n, Y_n, Z_n)\) (“white point”)
 - \(f(r) = \begin{cases} r^{1/3} & \text{if } r > 0.008856 \\ 7.787r + 16/116 & \text{otherwise} \end{cases}\) (log-like)
 - \(L^* = 116 \ f(Y/Y_n) - 16\)
 - \(u' = 4X / (X+15Y+3Z)\)
 \(v' = 9Y / (X+15Y+3Z)\)
 - \(u^* = 13\ L^* (u'-u_n')\)
 \(v^* = 13\ L^* (v'-v_n')\)
 - \(a^* = 500 \ [f(X/X_n) - f(Y/Y_n)]\)
 \(b^* = 200 \ [f(Y/Y_n) - f(Z/Z_n)]\)
 - Euclidean distances \(\Delta E^*_uv\) and \(\Delta E^*_ab\)
Color Appearance Spaces

- $u'v'$ chromaticity diagram
 - Deformed ellipses

- CIELUV and CIELAB
 - Close to uniform
 - Useful for practical color differences
 - Not perfect
Full-reference Quality Metrics

- **Structure-based Metrics** with the *Structural SIMilarity (SSIM) index* one of the most popular and influential quality metric in recent years.

- Since the HVS is strongly specialized in learning about the scenes through extracting structural information, it can be expected that the perceived image quality can be well approximated by measuring structural similarity between images.
Structural SIMilarity (SSIM) index

- The SSIM index decomposes similarity estimation into three independent comparison functions: **luminance**, **contrast**, and **structure**.
- The **luminance** comparison function \(l(x, y) \) for an image pair \(x \) and \(y \) is specified as:
 \[
 l(x, y) = l(\mu_x, \mu_y) = \frac{2\mu_x\mu_y + C_1}{\mu_x^2 + \mu_y^2 + C_1}
 \]
 where \(\mu_x = \frac{1}{N} \sum_{i=1}^{N} x_i \)
- The **contrast** comparison function \(c(x, y) \) is specified as:
 \[
 c(x, y) = c(\sigma_x, \sigma_y) = \frac{2\sigma_x\sigma_y + C_2}{\sigma_x^2 + \sigma_y^2 + C_2}
 \]
 where \(\sigma_x = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \mu_x)^2} \)
- The **structure** comparison function \(s(x, y) \) is specified as:
 \[
 s(x, y) = s\left(\frac{x - \mu_x}{\sigma_x}, \frac{y - \mu_y}{\sigma_y}\right) = \frac{\sigma_{xy} + C_3}{\sigma_x\sigma_y + C_3}
 \]
 where \(\sigma_{xy} = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \mu_x)(y_i - \mu_y)} \)
- The three comparison functions are combined in the SSIM index:
 \[
 SSIM(x, y) = \left[l(x, y)\right]^\alpha \cdot \left[c(x, y)\right]^\beta \cdot \left[s(x, y)\right]^\gamma
 \]
- To obtain a local measure of structure similarity all statistics \(\mu, \sigma \) are computed within a local 8 × 8 window which slides over the whole image.
Structural SIMilarity (SSIM) index

Einstein image altered with different types of distortions:
(a) “original image”;
(b) mean luminance shift;
(c) a contrast stretch;
(d) impulsive noise contamination;
(e) white Gaussian noise contamination;
(f) blurring;
(g) JPEG compression;
(h) a spatial shift (to the left);
(i) spatial scaling (zooming out);
(j) a rotation.

Images (b)–(g) drastically different visual quality and SSIM captures well such quality degradation. Also, note that the SSIM is highly sensitive to spatial translation, scaling, and rotation [Images (h)–(j)].
Human Visual System (HVS) vs. Image Quality Metrics

- Anatomy and physiology of visual pathway determine its sensitivity on various image elements.
- Basic HVS characteristics must be taken into account to estimate perceivable differences between images.
- Complete model of image perception has not been elaborated so far.
Visual Pathway

- Functionality of visual pathway from retina to the visual cortex are relatively well understood.
- Modeling on the physiological level too complex.
- Behavioral models acquired through psychophysical experiments are easy to use.
Important Characteristics of the HVS

- **Visual adaptation**
- **Temporal and spatial mechanisms** (channels) which are used to represent the visual information at various scales and orientations as it is believed that primary visual cortex does.
- **Contrast Sensitivity Function** which specifies the detection threshold for a stimulus as a function of its spatial and temporal frequencies.
- **Visual masking** affecting the detection threshold of a stimulus as a function of the interfering background stimulus which is closely coupled in space and time.
Visual Adaptation

- Adaptation of visual system to various levels of background luminance

\[\frac{\Delta L}{L} = \text{const} \]

- Weber’s law:

Ernst Heinrich Weber
[From wikipedia]
Filter bank examples: Gabor functions (Marcelja80), steerable pyramid transform (Simoncelli92), Discrete Cosine Transform (DCT), difference of Gaussians (Laplacian) pyramids (Burt83, Wilson91), Cortex transform (Watson87, Daly93).
Cortex Transform: Frequency and Orientation Bands

Original Image

Realistic Image Synthesis SS19– Perception: Image Quality Metrics
Contrast Sensitivity Function

J.G. Robson CSF chart
Contrast Sensitivity Function

J.G. Robson CSF chart
Contrast Sensitivity Function (CSF)

J.G. Robson CSF chart
• Spatial frequencies projected on the retina increase proportionally to the observation distance.

• Image elements represented by low (high) spatial frequencies might become visible (invisible) with the increase of the observation distance.

To estimate conservatively the image quality for variable observer positions the envelope of CSFs for the extreme observer locations can be used.
Lincoln illusion
Hybrid Images
Hybrid Images
Realistic Image Synthesis SS19 – Perception: Image Quality Metrics

Contrast Sensitivity \textit{versus} Detection Threshold $\Delta L/L$

\begin{equation}
\text{CSF} = \frac{L}{\Delta L} \Leftrightarrow \frac{\Delta L}{L} = \frac{1}{\text{CSF}}
\end{equation}

![Graphs showing Contrast Sensitivity (CSF) versus spatial frequency in cycles per degree (cpd)]

Pattanaik et al.
Visual Masking

- Strong masking: similar spatial frequencies

- Weak masking: different orientations

- Weak masking: different spatial frequencies
Visual Masking Example
Visual Masking Model

- Masking is strongest between stimuli located in the same perceptual channel, and many vision models are limited to this intra-channel masking.
- The following threshold elevation model is commonly used:

\[
\text{log threshold elevation} = \log \left(\frac{\text{mask contrast} \times \text{CSF}}{1} \right)
\]
Detection of perceivable differences between images strongly depends on the following characteristics of the human visual system:

- **Luminance adaptation**
- **Contrast sensitivity**
- **Visual masking**

Increase of the detection threshold:
- With increase of adaptation luminance
- With increase of spatial frequencies
- With contrast increase
Perceivable Differences Predictor

Physical domain

Perceptual domain

HVS model

Perceptual representation of image #1

Perceptual representation of image #2

$>$ detection threshold

Perceivable difference map

Pattanaik et al.
Perceivable Differences Predictor

Physical domain

Perceptual domain

Perceptual representation of image #1

Perceptual representation of image #2

> detection threshold

Perceivable difference map
Daly’s Visible Differences Predictor

![Diagram of Daly’s Visible Differences Predictor](image)
Evaluation of Image Quality Metrics

• Input images + Subjective responses = dataset

• Datasets
 – Simpler evaluations
 – Reproducible evaluations
 – Should comprise typical artifacts
 – Should be publicly available

• IMAGES
 – Modelfest [Watson 99]
 – LIVE image db [Sheikh et al. 06]
 – TID (Tampere Image Database) [Ponomarenko et al. 09]

• VIDEOS
 – VQEG FRTV Phase 1 [VQEG ‘00]
 – LIVE video db [Seshadrinathan et al. 09]
Evaluation of Image Quality Metrics

- Mostly only photos/real videos
- Focus on compression/transmission related artifacts
- Subjective responses: only overall quality (MOS)

<table>
<thead>
<tr>
<th>MOS</th>
<th>Quality</th>
<th>Impairment</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Excellent</td>
<td>Imperceptible</td>
</tr>
<tr>
<td>4</td>
<td>Good</td>
<td>Perceptible but not annoying</td>
</tr>
<tr>
<td>3</td>
<td>Fair</td>
<td>Slightly annoying</td>
</tr>
<tr>
<td>2</td>
<td>Poor</td>
<td>Annoying</td>
</tr>
<tr>
<td>1</td>
<td>Bad</td>
<td>Very annoying</td>
</tr>
</tbody>
</table>
Application Example –

Lossy Image Compression

Image representation obtained as the result of DCT transformation should approximate the image representation in the Visual Cortex.

Perceivability of image distortions resulting from the quantization should be measured and controlled by a perceptual error metric.
a, b – original image,
c – standard JPEG 2000 algorithm controlled by a metric minimizing the MSE. The missing skin texture appears blurred and unnatural to the human observer. Exact reproduction of spatial detail, e.g., hair of the woman is less important due to visual masking by strong textures.
d – JPEG 2000 controlled by a perceptual image quality metric.
Image Quality Metrics

- Common quality metrics were designed for predicting visibility of typical distortions in photographs: blur, sharpening, noise, JPEG/ MPEG compression, ...

What about synthetic CG-images?

JPEG/ MPEG distortions

Contouring, banding
Rendering Artifacts

• e.g., low-freq. noise from glossy instant radiosity or photon density estimation
Rendering Artifacts

- Clamping Bias (darkening in corners)
Rendering Artifacts

• Shadow Mapping
easy to generate large sample set
Rendering Artifacts

- Progressive photon mapping: when to stop iterating?

1 iteration 2 iterations 8 iterations

1 iteration 2 iterations 8 iterations

60 iterations 150 iterations 1500 iterations
CNN-based FR local visibility metric

Motivation:

- No reference metrics typically work only for some particular distortion types.
- No reference metrics tend to mark non-distorted areas.
- As state-of-the-art research shows that learn-based methods outperform the hand-crafted ones.
- Existing visibility metrics (e.g. HDR-VDP) still have many flaws.
- Creating a versatile metric taking into account many type of distortions.
Imperfections of existing visibility metrics
Dataset of visible distortions

Dataset covers some standard distortions (i.e. noise, blur, compression artifact) and specialized computer graphics artifacts (e.g. Peter panning, shadow acne, z-fighting, etc.).
Data collection

For data collection purpose custom painting software was used.
Data collection

Efficient data gathering:

• For each scene from up to 3 levels of distortion magnitude
• Each level had stronger distortions and the users painted only newly visible distortions
Shall we trust the observers?
Modelling the data

Observer can detect
the difference

Observer attends
the difference

Observer makes a mistake

Random marking

\[
P(data) = p_{mis} + (1 - p_{mis}) \binom{N}{k} (p_{att} \cdot p_{det})^k (1 - p_{att} \cdot p_{det})^{n-k}
\]

\[
= p_{mis} + (1 - p_{mis}) \text{Binomial}(k, N, p_{att} \cdot p_{det})
\]
Neural network architecture