
UNIVERSITÄT DES SAARLANDES
Lehrstuhl für Computer Graphik
Prof. Dr. Philipp Slusallek
Prof. Dr. Karol Myszkowski (MPII),
and Dr. Gurprit Singh
Assistants: Julius Kilger and
Pascal Grittmann

June 21, 2019

 

Realistic Image Synthesis (SS 2019)
Assignment 6

Submission deadline for the exercises: July 5, 2019

Introduction

In this assignment, you are going to extend the framework from the previous assignment by implementing
progressive photon mapping.

Source Code

You are going to implement the algorithm itself inside src/algorithms/render_ppm.cpp. We again
provided you with the basic structure. Use the following commands to render the provided test scenes
with progressive photon mapping:

arty −a 2 c o r n e l l b o x . yml −−width=512 −−he ight =512
arty −a 2 c o r n e l l b o x s p e c u l a r . yml −−width=512 −−he ight =412
arty −a 2 c o r n e l l b o x w a t e r . yml −−width=512 −−he ight =412
arty −a 2 c o r n e l l b o x g l o s s y . yml −−width=512 −−he ight =512

6.1 Photon Shooting (40)

The first step for photon mapping is tracing particle paths from the light sources through the scene.
The particles are stored in a photon map and used for the density estimation later on. Implement the
trace photons() function that does this.

You need to make random walks and store all paths (or hits) until the photon is absorbed based on a
random decision (Russian Roulette). This part of the exercise is not much different from a path tracer.
Every time you bounce a photon from a surface you need to re-scale its energy to take into account the
surface reflectivity and your sampling strategy.

To initialize a photon path, you have to randomly choose one light source and sample a position and
direction form that light. The Light interface provides the function sample emission() for this. Make
sure that you account for the PDFs of all random decisions that you made.

6.2 Density Estimation (30)

We provided you with code that builds an acceleration data structure (hash grid) over the photons. You
can use this to efficiently perform density estimation.
The function eye trace is supposed to shoot a given camera ray into the scene and perform photon density
estimation at the hit point. You can use the query() method of the PhotonMap to execute a lambda
function for every photon within the radius.
Use the Epanechnikov filter as your density estimation kernel:

K(xq) =

2
N∑
i=1

(
1 −

(
xi−xq

R

)2)
∆Φi

πR2
(1)



with xq being the query point, x1, . . . , xN the positions of the found photons, N the number of found
photons, ∆Φi the power of the i-th photon, and R the search radius.

Keep in mind that performing a density estimation on a specular surface makes no sense, as the probability
of a photon having the reflected direction as its incoming direction is zero. Also, you have to handle hitting
emissive surfaces, i.e. lights, correctly as well.
If you implement the density estimation correctly, your results should look like the images in Figure 1.

Figure 1: Images for the three Cornell Box scenes rendered with PPM. From left to right: diffuse Cornell
Box with 10 iterations (samples per pixel), specular version (10 spp), and filled with water (10 spp).

Hints The trace photons() function traces the photons of one light path. The photons created by one
such path can be seen as a Monte Carlo estimate of the distribution of light in the scene. Because you
are tracing multiple paths, you will have to take the number of light paths into account in your density
estimation.

For those of you unfamiliar with C++, here is what using the query() method looks like.

photon_map.query(surf.point , [&] (const Photon& p, float d) {

// Do something with the photon p and its distance from the hit point d

});

The [&] creates an anonymous function that captures all variables in the scope by reference. That is,
you can read and modify all variables from inside the function.

6.3 Comparison to Path Tracing (10)

Take a look at the images from progressive photon mapping (Figure 1) and path tracing (Figure 2). Each
of the two techniques handles some effects significantly better than the other. Find at least two of those
effects and explain why (progressive) photon mapping is better/worse in those cases.

Figure 2: Comparison images from the path tracer, for the same scene as in Figure 1. The number of
samples per pixel from left to right are: 100, 500.

2



6.4 A Simple Improvement for Glossy Materials (30)

A simple trick to improve efficiency of progressive photon mapping in the presence of glossy materials is
to not do density estimation on glossy materials either.

Instead, compute the direct illumination at a glossy hit point, and bounce, as you would do in path
tracing. Keep in mind that you will have to either ignore hitting the light source after a glossy bounce,
or use MIS to combine direct illumination with randomly hitting the light.

Extend your photon mapper with this trick. If you did this correctly, your images will now look similar
to the images in Figure 3.

Figure 3: Results for the two scenes with glossy materials, after the optimization from the last exercise.
Using 10 (left) and 100 (right) iterations.

Procedure of Submitting

Submit your source code per e-mail to grittmann@cg.uni-saarland.de. In case you fail to implement
everything correctly, make sure to comment well your code. This will help your tutor when grading your
work.
The deadline is 23:59 on July 5, 2019. Submissions late by less than two hours will be penalized with a
factor of 0.8, later submissions will not be accepted. If you upload the submission, e.g., to Google Drive,
you have to provide an MD5 checksum in your email, to verify that the file was uploaded before the
deadline. If you are on a slow connection, you can also send an MD5 to ensure that the mail arrives
before the deadline, and send the matching file(s) within twelve hours at no penalty.

3


