
Realistic Image Synthesis SS2018

Reconstruction I
Philipp Slusallek    Karol Myszkowski 

Gurprit Singh

�1



Realistic Image Synthesis SS2018

À la Carte
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• Reconstruction vs Integration


• Multi-dimensional Sampling and Reconstruction


• Temporal Light Field Reconstruction


• Random Parameter Filtering of Monte Carlo Noise
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Reconstruction vs Integration
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Slides courtesy: Kartic Subr
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Multi-dimensional Adaptive Sampling and 
Reconstruction
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Hachisuka et al. [2008]

Slides courtesy: Toshiya Hachisuka
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Temporal Light-Field Reconstruction for 
Rendering Distribution Effects
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Lehtinen et al. [2011]
Slides courtesy: Jakko Lehtinen



Pinhole image !17



With motion blur and depth of field !18

Requires dense sampling of 5D function: 

  Pixel area (2D) 
  Lens aperture (2D) 
  Time (1D)



Motion blur and depth of field 1 sample per pixel !19



Our reconstruction !20



Pinhole camera model

!21
sensor

pinhole

object

background



Thin lens camera model

sensor

lens

object

background
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Depth of field



Depth of field
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1 scanline 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Screen x

Lens u
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1 pixel

Screen x

Lens u
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Lens u

Screen x!28



Light field [Levoy 1996]

∫

Lens u

Screen x!29

Output: 
integration over lens



1 pixelMonte Carlo sampling

Screen x

Le
ns

 u

Low sample density leads to noise
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Screen x
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Need many samples to capture the signal: 

computationally expensive

Monte Carlo sampling 1 pixel
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Temporal light fields

x

y

v

u

Traditional light field is 4D [Levoy 1996] 

x,y over sensor (2D) 
u,v over lens (2D) 

Add time dimension for 
moving geometry (5D)
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The Integrand is Anisotropic

Screen x
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[Chai00, Durand05, Hachisuka08, Soler09, Egan09, ...]
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Multi-dimensional Adaptive Sampling [Hachisuka 08]
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Screen x
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Frequency Analysis and Sheared Reconstruction [Egan 09]
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Screen x

Le
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Our approach

Start with sparse input sampling
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Screen x

Le
ns

 u
Our approach

Start with sparse input sampling

Perform dense reconstruction 
using sparse input samples

Standard Monte-Carlo integration 
using dense reconstruction

!39



Screen x

Le
ns

 u
Our input has slope information

For defocus, 
proportional to 
inverse depth 1/z [Chai00]  

For motion, 
proportional to 
inverse velocity 1/v [Egan09] 

Easy to output from 
any renderer.
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What is the  
radiance at the 
red location?

Use slope to reproject radiance
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?
Use slope to reproject radiance  

Must account for occlusion

What is the  
radiance at the 
red location?
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Recap: our approach

Start with sparse input sampling

Perform dense reconstruction 
using sparse input samples

Standard Monte-Carlo integration 
using dense reconstruction

Use slopes to reproject

Account for visibility

!43



Reprojection and filtering

Simplify visibility by reprojecting 
into screen space. 

Reproject to u, v, t of 
reconstruction location.

Pixel filter over visible samples.
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Visibility

?

Cluster samples into apparent 
surfaces to resolve z-order 

SameSurface algorithm

Determining coverage: 
Does the apparent surface 
cover my reconstruction location?
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?

Input: 

sparse points with slopes

Visibility: SameSurface
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The trajectories of  
samples originating 
from a single 
apparent surface 
never intersect.  

Visibility: SameSurface
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Visibility: SameSurface
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Visibility events  
show up as intersections  



background
surface

Visibility: Coverage

Does foreground apparent surface cover reconstruction location? 

Search foreground samples for spanning triangle.

foreground
surface R

reconstruction 
location



Recap: our approach

Start with sparse input sampling

Perform dense reconstruction 
using sparse input samples

Standard Monte-Carlo integration 
using dense reconstruction

Use slopes to reproject

Account for visibility
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Observations

We only need sample radiance, depth, and velocity (i.e., slopes). 
Reconstruction is independent of the original renderer. 

We can discard the scene.  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Observations

We only need sample radiance, depth, and velocity (i.e., slopes). 
Reconstruction is independent of the original renderer. 

We can discard the scene.

Need efficient sample search: 

Fast motion and large defocus can lead to a single 
sample contributing to hundreds of pixels.  

Build a hierarchy over input samples.
!52



Extension to soft shadows

An area light is very much like a lens. 

lens ~ light, sensor ~ virtual plane 
Reconstruct z instead of radiance 

Egan et al. [2010] reconstruct 
far field binary visibility only.

light source
lu coordinate

light source
lx coordinate plane Π

view rays

lig
ht

 ra
ys

object 1

object 2

z

7D path-tracing style reconstruction 
avoiding combinatorial explosion

Reconstruct scene point (5D) 
Reconstruct shadow z  shade (2D) !53



Results
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Implementation

Multithreaded CPU  
GPU, excluding hierarchy construction  
 

Common sample buffer format accepts outputs from:  
    PBRT 
    Pixie (Open source RenderMan)  
    Custom ray tracer 

Code will be made available  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Input: 16 spp 
1072 sec (PBRT) !56



Our result: 16 spp + reconstruction at 128spp 
1072 sec (PBRT) + 10 sec (reconstruction) !57



Our result: 16 spp + reconstruction at 128spp 
1072 sec (PBRT) + 10 sec (reconstruction)

Input: 16 spp  Our result at 128 spp 
using same input 

Reference: 256 spp 
(16x time) 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Input: 16 spp 
771 sec (PBRT)
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Our result: 16 spp + reconstruction at 128spp 
771 sec (PBRT) + 10 sec (reconstruction)
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Our result: 16 spp + reconstruction at 128spp 
771 sec (PBRT) + 10 sec (reconstruction)

Input: 16 spp  Our result at 128 spp 
using same input 

Reference: 256 spp 
(16x time) 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Comparison to reference
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Motion blur and depth of field 
1 sample per pixel !63



Our reconstruction !64



Our reconstruction !65

Input: 1 spp  Our result: 1 spp -> 128 spp   Reference 256 spp 
(256x time) 



Comparison to Egan et al. [2009]
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Egan et al. [2009] 
8 samples / pixel

Our method 
4 samples / pixel

Reference 
256 samples / pixel



Comparison to Egan et al. [2009]
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Egan et al. [2009] 
8 samples / pixel

Our method 
4 samples / pixel

Reference 
256 samples / pixel



Soft shadows, 4 spp
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7D soft shadows with motion and defocus, 4 spp
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Filtering Monte Carlo Noise From  
Random Parameters
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Sen and Darabi [2012]
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High-dimensional Monte Carlo Integration

!72



Realistic Image Synthesis SS2018

!73



Realistic Image Synthesis SS2018

Parameters in Monte Carlo estimator
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Random parameters:

Color:
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Random Parameters Classification
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Random parameter

for each pixel :
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Gaussian Filtering
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Bilateral Filtering

!77



Realistic Image Synthesis SS2018

Bilateral vs Gaussian Filtering
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Bilateral Filtering of Features
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Bilateral Weights
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Dependency on Random Parameters
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Pixels,Random Params,Features
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Pixels,Random Params,Features
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Pixels,Random Params,Features

The algorithm computes the statistical dependency of (c-f) on the random parameters in (b)
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Random Parameter Filtering
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Random Parameter Filtering
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Statistical Dependency
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Mutual information between two random variables: 

where, these probabilities are computed over 

the neighborhood of samples around a given pixel
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Functional dependency of the k-th scene parameter:

Statistical Dependency
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Statistical Dependency
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Weighted Average Bilateral Filtering
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Results
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Results


