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Overview
• Today

– Sampling and reconstruction of spatio-temporal functions

– Motion compensation techniques

– Antialiasing techniques in animation

• the amount of blur should be minimized

– Exploting temporal coherence in global illumination

– Motion blur techniques

• blur is intentionally introduced to model controllable shutter speed
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Basic:

• M.Tekalp, Digital Video Processing, Prentice Hall, 

Signal Processing Series, 1995

• K. Sung, A. Pearce, C. Wang, Spatial-Temporal 

Antialiasing, IEEE Transactions on Visualization and 

Computer Graphics, Vol.8, No.2, pp. 144-153, 2002

• M. Shinya, Spatial Antialiasing for Animation Sequences 

with Spatio-temporal Filtering, In Proceedings of ACM 

Siggraph 93, pp. 289-296

Reading Materials
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Spatio-Temporal Fourier Spectrum
• Assumption: the temporal variations in the image 

intensity pattern can be approximated by a simple 

motion model

• Motion trajectory - a curve in the 3D space (x1,x2,t)

which is followed by a given point in image plane
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Spatio-Temporal Fourier Spectrum
• For simplicity let us consider the frame-to-frame 

intensity variations sc(x1,x2,t) only for the case of global 

motion with constant velocity (v1,v2):
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Spatio-Temporal Fourier Spectrum
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Spatio-Temporal Fourier Spectrum
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Sampling on a Spatio-Temporal Lattice

• Sampling frequencies above the Nyquist limit, ie. 

above 2B1, 2B2, and 2Bt

f1

ft

v1 = v2 =0

f1

ft

v1 >0  and  v2 =0
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Sampling on a Spatio-Temporal Lattice

• Sampling frequencies under the Nyquist limit
– v1 = v2 =0: spectral replicas overlap

• aliasing-free reconstruction of sc(x1,x2,t) is not possible

– v1 >0  and  v2 =0: spectral replicas interleaved

• ideal reconstruction possible! (requires special reconstruction filter) 
f1

ft

v1 = v2 =0

f1

ft

v1 >0  and  v2 =0
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Sampling on a Spatio-Temporal Lattice
• Critical velocities: 

– Frequency domain interpretation:

• velocities that for a given spatial bandwidth                                              
of sc(x1,x2,t) and sampling lattice result in                                        
overlapping of the replicas.

– Spatio-temporal domain interpretation

• motion trajectory cannot pass through an existing sample in any of N
consecutive frames used for the reconstruction (otherwise such a 
sample does not provide „new“ information) 

• Example: 

– Assumption: frames are spatially sub-Nyquist sampled by a factor 
of 2.

– Samples collected for four consecutive frames make possible ideal 
reconstruction of frame k under the condition that any motion 
trajectory does not pass through an existing sample for the next 
three frames k+1, k+2, and k+3.

– Velocities v=0, v=1, v=1/2, and v=1/3 (measured in pixels per 
frame) are the critical velocities in this example

f1

ft
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Motion-compensated Filtering
• Optimum filtering strategy for noise removal and 

reconstruction
– samples along motion trajectory contain different noisy realizations 

of the reconstructed value 

• Algorithm: Filtration the input frame at point (x1,x2,t)

– 1-D signal along the motion trajectory traversing (x1,x2,t) is 

convolved with 1-D filter function operating along this trajectory 

within the support of K frames 

– motion-compensated low-pass filter with the cutoff frequencies      

B1, B2, and Bt

the filter spatio-temporal frequency support matches the support of 

the reconstructed animation function which is limited to a plane

otherwise                                                             
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Motion-compensated Filtering
• Filtering without motion compensation leads to blurry 

images for quickly moving objects or camera



Realistic Image Synthesis SS18 – Spatio-temporal Sampling & Reconstruction

Motion-compensated Filtering
• Adaptive filtering algorithm:

– Assumption: Intensity of samples along a precisely computed 
motion trajectory should be similar 

– This assumption may not hold because of

• inaccuracies in the computation of motion trajectory

• occlusions/disocclusions (lead to motion trajectory bifurcations)

• view-dependent changes in shading for glossy and specular 
objects 

• changes in the scene, eg., lighting, object deformations

– If this assumption does not hold then

• stop collecting samples in the temporal domain and normalize the 
reconstruction filter weights due to its narrower support

– result: increase of noise

• or instead of collecting samples in the temporal domain, collect 
samples of similar intensity in the spatial domain and process 
them using the reconstruction filter

– result: increase of blur
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Motion-compensated Filtering
• Occlusion problem



Realistic Image Synthesis SS18 – Spatio-temporal Sampling & Reconstruction

Motion-compensated Filtering
• All derivations so far were performed under the assumption 

of constant velocity for the whole image plane
– in practice these derivations remain valid for any coherent 

block of pixels when applied over a short period of time

• The critical issue is the accuracy of motion trajectories
– for natural image sequences difficult to acquire

• optical flow computation

– for synthetic images easy to compute even with subpixel 

accuracy

• camera motion compensation

• object motion compensation
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Natural Image Sequences
• The optical flow derivation

– mathematical model: „intensity does not change along motion 

trajectory“

• Problems
– image gradients are required 

• surfaces with textures or complex shading are desirable

– changes in shading can be confusing 

– lack of coherence due to occlusions/dissoclusions

– aperture problem
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• Camera motion compensation using Image-Based 

Rendering techniques
– Can be performed in backward and forward directions

– Efficiency: McMillan‘s occlusion coherent ordering algorithm

• depth comparisons not required

– Required input data

• Camera parameters 

• Depth data for every pixel

– Very precise

Synthetic Image Sequences
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McMillan‘s Occlusion Coherent Ordering

The projection of  the output 

image view position onto 

the reference-image plane

The scanning order as for 

the negative epipole –

the viewer moves away 

from the reference view 

position and the rendered 

scene
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• Rigid object motion 

compensation 
– Required input data

• Camera parameters 

• Depth data for every pixel

• Transformations 

describing rigid object 

motion

– Very precise

Synthetic Image Sequences
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• Handling critical velocities (in particular v=0)
– jittered sampling in the image plane eliminates correlations 

between object motion (including periodic motions) and sampling

• Handling dynamic lighting 
(including moving shadows and highlights)
– find motion compensated surface samples with computed textures 

but without shading computation (deferred lighting computation)

– perform shading computation for all those samples for a given 
frame (time t) 

 this may lead to significant cost increase due to repeating lighting 
computation for multiple samples per pixel for each frame

• Handling non-rigid objects 
(parametric deformations are assumed)
– store surface parameter value s for each pixel in frame k

– find surface points corresponding to s for neighboring frames

– perform shading computation for all those points for frame k

Synthetic Image Sequences
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Motivation: Temporal Coherence 
GI algorithms designed for dynamic environments

– Exploiting temporal coherence (reuse information from previous 

frames):

+ Avoid redundant computation

+ Reduce temporal aliasing

– Lack of generality 

• May require different processing depending on interactive changes 

in the scene

– Brute force (compute each frame from scratch):

+ Very general

• Can immediately handle all types of scene changes

– Global illumination is costly so many processors might be required

– Temporal aliasing might be an issue
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Interactive Requirements
• Everything may change in the scene

– Geometry, lighting, material properties, camera parameters, …

– Changes are not known a priori

• Aiming at fast feedback to user change:
– A minimum frame rate should be ensured

• Some applications may require constant frame rate

– Image quality/precision can be traded for faster response time

– Sudden/unexpected changes distracting the user should be 

avoided, e.g., 

• popping, 

• changing frame rate, 

• reducing image quality.
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Exploiting Temporal Coherence
• Different coherence levels can be considered

– Reusing complete global illumination samples

• Image space (pixels): Render Cache algorithm

– Reusing photons

– Reusing visibility information

– Reusing seeds of random generator

• All photon paths are computed from scratch

• Seeds should be stored for each photon paths

• Does not work well for paths originating at the eye position when 

camera parameters are changing
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Exploiting Temporal Coherence
• The higher level at which the coherence is exploited 

the more computational savings can be expected, but  

chances of reusing information may get lower, e.g.:
– Samples for glossy surfaces cannot be re-used for moving camera 

but a photon path contribution can be potentially reweighted by the 

current BRDF value

– When a light source is changed then only those photon paths that 

are linked to this light source need to be updated

– and so on …

• Using the coherence at the lower levels requires 

specialized data structures and functions to handle 

each type of changes in the scene.
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Render-Cache : Principles [Walter’99]

• Decouples global illumination computations from 

image rendering (frameless rendering)

• Reconstructs the illumination from a sparse set of 

samples in image space

• Purely software approach based on point reprojection 

and adaptive sampling

• Each sample point is stored with additional 

information:
– 3D position (located on surfaces)

– Color

– Age 

– Object identifier
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Render Cache: Reprojection

• Reproject points into current frame
– Occlusion errors

– Holes in data

Initial view After reprojection

Bruce Walter, Siggraph’03, Course #27
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Render Cache: Image Reconstruction

• After reprojection, occluded points are removed by a 

depth-culling heuristic

• Holes filled by interpolation and filtering
– Fixed size kernels, 3x3 and 7x7

Reprojection Occlusion cull Interpolation
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Render Cache: Sample Update
• Priority image for sampling

– High priority for sparse regions

– High priority for old points

• Convert priority image to sparse set of locations to be 

rendered
– Uses error-diffusion dither

• Also uses predictive sampling
– Try to sample new regions just before they become visible

Bruce Walter, Siggraph’03, Course #27
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Render Cache: Sample Update

Displayed image Priority image Requested pixels

Bruce Walter, Siggraph’03, Course #27
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Render Cache: Sample Update
• Recomputes old samples to detect changes

– Nearby points are aged to raise priority and cause point invalidation

• Object motion
– Associated points can be transformed along with the object

Bruce Walter, Siggraph’03, Course #27
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Render Cache: Discussion

• Designed for ray tracing but can also be used with 

path tracers

• Scalable with high image resolution if carefully 

implemented [Walter’02]

• Rapid movements may cause distracting artifacts

• Downloadable version
– http://www.graphics.cornell.edu/research/interactive/rendercache/
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Spatio-Temporal Density Estimation

• View-independent light source photon tracing
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• View-independent light source photon tracing

Spatio-Temporal Density Estimation
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Spatio-Temporal Density Estimation

• View-independent light source photon tracing
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Spatio-Temporal Density Estimation

• Extending photon processing into the temporal domain 
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Temporal Photon Processing 

• Contradictory Requirements:
– Maximize the number of photons collected in the temporal domain 

to reduce the stochastic noise.

– Minimize the time interval in which the photons were traced to avoid 

collecting invalid photons.

Static object

Moving object
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Temporal Photon Processing

• Energy-based stochastic error metric
– Steers the photon collection in the temporal domain

– Computed for each mesh element and for all frames

• Perception-based animation quality metric 
– Decides upon the stopping condition

– Computed once per animation segment
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• Problem: 
– How to distinguish the actual changes in lighting from the 

stochastic noise?

• We assume that hitting a mesh element by photons 

can be modeled by the Poisson distribution.
– For the mean number μ of hit points the standard deviation                

for  μ = 0 we assume σ = 1

– If the number of photons x hitting  a mesh element does not satisfy 

the condition                                   

the photon collection for this mesh element is disabled (e.g., k =2).

Energy-based Εrror Μetric

 

 kxk 
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Animation Quality Metric (AQM)

• Computes the map of visible differences      

between two input animation frames

• Human Vision System modeling:
– Weber law 

– Spatio-velocity Contrast Sensitivity Function

– Visual masking 
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Animation 

Quality 

Metric

Are the differences 

acceptable ?

YESNO– Shoot more                      

photons

– Recurse

Generate 

inbetween 

frames

Perception-Based Guidance

odd photons even photons

• AQM: Decides upon the computation 
stopping condition

– Computed once per animation segment for a central 
frame K
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AQM Processing

1. Select the central frame K for a given animation 

segment.

2. Split all photons collected in the temporal domain 

for this frame into two halves and compute two 

corresponding images.

3. Use the AQM to predict the perceivable differences 

between these two images.

4. If the noise is perceived for more pixels than a 

certain threshold value the number of photons is 

increased.
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Space-time Density Estimation Algorithm

1. Initialization: determine the initial number of 

photons per frame.

2. Adjust the animation segment length depending on 

temporal variations of indirect lighting which are 

measured using energy-based criteria.

3. Adjust the number of photons per frame based on 

the AQM response to limit the perceivable noise.

4. Spatio-temporal reconstruction of indirect lighting.

5. Spatial filtering step.
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Video: Scene Room

Temporal processing: Off Temporal processing: On
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Video: Scene Atrium

Temporal processing: Off Temporal processing: On
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Discussion

+ Significantly reduced the number of 

photons to be shot per frame

+ Drastically reduced temporal aliasing

– Limited spatial resolution of mesh 

reconstructed lighting

– For quickly changing indirect lighting 

temporal processing can be limited

 Spatial filtering can be performed at the 

expense of loosing spatial lighting details 

 More photons can be shot at the expense of 

performance loss

Temporal processing: On

Temporal processing: Off

10,000 photons

25,000 photons
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Space-time Architecture:Principle

• Compute samples using a variant of Path-Tracing

• Pixels color = mean of sample values

• 2 types of samples:

– Native samples:

• Expensive, computed from scratch

– Recycled samples: 

• Cheap, based on previous computations (using reprojections)

• Algorithm outline:
for each pixel                              // spatial domain

while sample variance criterion is met

compute shaded sample;      // a sample point in the object space

for each frame                      // temporal domain

if possible re-use shaded sample // check visibility and change

// sample weight
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Motion Compensation

• Camera and object motion compensation

• Memory access coherence …..
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Space-time Architecture: Reprojection
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The Animation Buffer
• Iterates over all pixels in S consecutive frames

• If more samples are required
– Compute a native sample for frame fi
– Reproject it and recycle it for all frames in [f(i-R)’ f(i+R)]

• S+2R frames are kept in the buffer

SR R
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The Animation Buffer
• Iterates over all pixels in S consecutive frames

• If more samples are required
– Compute a native sample for frame fi
– Reproject it and recycle it for all frames in [f(i-R)’ f(i+R)]

• S+2R frames are kept in the buffer

SR RS
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Bi-directional Path Tracing
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Camera Motion
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Occluded Connection
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Path Change
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Shading Computation
• A simplified version of RenderMan Shading Language

• Each shader decomposed into 
– View-independent component

• re-usable, shared between frames

– View-dependent component

• recomputed for each frame
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Motion Blur

• Accuracy & quality 
– The same sample point is considered for multiple frames

• In other frame-by-frame architectures the motion of objects must be 

computed explicitly by additional samples.

– Temporal changes in shading are properly accounted for

• Difficult in other architectures

• Efficiency

– 2D computation
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Motion Blur Examples
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Video: Motion Blur
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Video: Traditional Approach
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Video: Spatio-temporal Approach
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Results

• Speedup
– Moving camera, moving objects:   7.7
– Moving objects only:                      8.8
– Moving camera only:                    13.3

• Proportion of native samples        2.4 - 4.7 %

• Cost of native samples (profiler)   44 - 64 % of the 
whole computation time.
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Discussion
+ An efficient architecture for rendering of high-quality animations 

tailored for path tracing algorithms

 Makes those costly and unbiased algorithms usable for animation at all

+ Temporal flickering substantially suppressed

 Even noise inherent for path tracing algorithms appears as a static texture 

assigned to object surfaces

+ Texturing and shading, motion blur can be efficiently handled

+ The memory overhead involved in storing multiple images is negligible 

due to efficient buffering

– Data structures handling dynamic objects require additional memory

 Still acceptable on modern computers

– Efficiency may drop significantly for scenes involving too many 

dynamic objects
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Summary

• Off-line global illumination for animations
– Reduction of the rendering cost per frame very important

– Can be achieved by better exploiting temporal coherence

• Better performance

• Better quality - reduced temporal aliasing

• Successful solutions exist, 

but … still many things to do
– Affordable techniques supporting glossy effects

– Design of an efficient renderer architecture performing the 

computation directly in the spatio-temporal domain
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Motion Blur
• Important to combat spatio-temporal aliasing

– Visibility (geometric) aliasing

– Shading aliasing

• Relatively little attention focused on the motion blur in the context of 

global illumination 

• Desirable to simulate optical systems with controllable 

shutter speed
– Viewer expects to see this effect

– Required to seamlessly composite virtual and real world shots

• Main problem
– Handling scenes that contain high temporal 

frequencies 

• Fast moving objects 

• Fast shading changes in time
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Brute force solution: supersampling
Spatial domain:

Render a higher resolution 

image and resample it through 

averaging neighboring pixels

Motion Blur

Supersampling in temporal 

domain: strobing artifacts

Integrating over the exposure 

interval: proper motion blur
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• Represent the pixel intensity as a multidimensional Monte Carlo 

integral and use the distribution ray tracing to approximate it:

• Use bidirectional path tracing for motion blur and global illumination 

computation [Lafortune’96]

        
j k

kj

l

lkjlkj

kj

tLtgtr
NN

ti ,,,
11

,

can handle general Ll(ω, t) and complex g(ω,t)

time-consuming to eliminate visible noise

Advantage:

Disadvantage:

Film

plane

Sample

point

Light

Surface

Transmitted rayLens

Focal

point

Reflected

ray

Monte Carlo Integration
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It is the only method that is able to simultaneously simulate 

both motion blur and global illumination 

Gives noisy results and requires extensive computations to 

reduce the noise below its visibility level

Acceleration techniques: irradiance caching, photon mapping

These techniques require extensions to make them working 

for dynamic scenes and handling time dependent effects

Solution:

Extend photon  mapping technique with time dependent 

radiance estimate

Monte Carlo Integration
Monte Carlo ray tracing
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Time Dependent Photon Mapping
• Trace photons distributed in time and space

– Include time information to the photon data structure

• Lighting reconstruction

– For localizing spatially adjacent photons use 3D kd-tree search

– Select the nearest of those photons in time using a randomized 

quicksort

• This requires locating 50% more photons than in the 

standard technique

• Localizing photons using a 4D kd-tree

– More complicated and less elegant

• Only motion blur of L(ω,t) is directly handled

– Distribution ray tracing is required to handle temporal changes 

in visibility g(ω,t)
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dynamic

moving

downward

Method

Path tracing

Accumulation buffer

Standard radiance estimate

Time dependent radiance estimate

Consis-

tent ?

Yes

Yes

No

Yes

Render times*

This scene Next slide

9+hrs. n/a

47 sec 316 sec

37 sec 74 sec

43 sec 72 sec

path tracing (10,000 paths per pixel random in time) accumulation buffer (20 frames)

standard radiance estimate time dependent radiance estimate

Time Dependent Photon Mapping
static
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Sheared Reconstruction for Motion Blur

W() is the frequency spectrum of the low-pass shutter filtering

Fourier transform for an image g(x,y) moving with a constant velocity a

Egan et al. [Siggraph 2009]
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Sheared Reconstruction for Motion Blur

Egan et al. [Siggraph 2009]
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Sheared Reconstruction for Motion Blur

Egan et al. [Siggraph 2009]
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Sheared Reconstruction for Motion Blur

Egan et al. [Siggraph 2009]

The shear corresponds to the direction of average motion in the 

space-time domain, with motion compensating filtering (the filter 

“following the motion”).

The scale depends on the complexity of motion – the filter is 

larger the closer the maximum and minimum velocities amax

and amin are.
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Sheared Reconstruction: Algorithm

1. Compute bounds for signal speeds and 

spatial frequency

2. Locally decide on the filter shape and 

sampling density

3. Compute samples and reconstruct 

image
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#1: Bounds for Signal Speeds and Spatial Frequency

Egan et al. [Siggraph 2009]

s
ta

ti
c

m
o
ti
o
n
 b

lu
rr

e
d



Realistic Image Synthesis SS18 – Spatio-temporal Sampling & Reconstruction Egan et al. [Siggraph 2009]

#2: Filter Shape and Sampling Density
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#3: Final Reconstruction

Background A: Uniform velocities, wide 

filter, low samples
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Car B: static region, small filter, low 

sample density
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#3: Final Reconstruction
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Shadow C: Varying velocities, small 

filter, high sample density
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#3: Final Reconstruction
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Final Reconstruction: Summary

Egan et al. [Siggraph 2009]

• Filters stretched along direction of motion

• Preserve frequencies orthogonal to motion


