


Thank you for the introduction.



This talk consists of two parts. In the first 
part, we will review photon mapping and its 
problem of being biased, which means that 
there is a consistent error in the rendered 
image. This problem has been solved 
recently by progressive photon mapping, 
which is unbiased in the limit. In the second 
part, we propose an alternative, a 
probabilistic approach to progressive photon 
mapping, which is more elegant, easier to 
implement, and also more general.



Realistic rendering is based on Kajiya’s 
rendering equation. The rendering 
equation involves an integral, which is 
usually numerically solved using Monte 
Carlo integration.



Methods using Monte Carlo integration 
sum over randomly sampled light 
paths. The most commonly used 
methods exploiting Monte Carlo 
integration to solve the rendering 
equation are 



path tracing, bi-directional path tracing, 
and metropolis light transport. These 
are unbiased methods.



Unbiased methods have difficulties with 
rendering scenes which include so-
called specular-diffuse-specular light 
paths. Such scenes are typical for 
realistic light settings, where the light 
source is not directly visible, but 
covered behind a refracting surface like 
a lens or reflected by a mirror.



If we were to render such a scene using 
path tracing, we would see almost 
nothing. This is because the specular-
diffuse-specular paths are sampled 
with probability close to 0.



This is the same scene rendered using 
photon mapping. Arguably, there is 
much less noise.



What makes photon mapping so good in rendering such scenes? 
Photon Mapping is a biased method. While unbiased methods 
sample entire paths from sensor to light, photon mapping samples 
partial paths. In a first step, it samples paths emitted from the light 
source and caches them as photons in a spatial data structure, 
the photon map. In the second step it samples paths from the eye 
and connects them to the previously cached light paths. It is this 
caching and reusing of light paths which makes photon mapping 
efficient. 



The partial paths are connected by so called 
radiance estimation. It involves the use of a 
kernel, which has a certain radius.



It is this radius which is the source of to 
the biggest critique of photon mapping, 
that it is biased.
Radiance estimation involves a 
convolution or interpolation, which 
often introduces blurriness, and 
therefore there is a consistent error, 
which is called bias.



It is this radius which is the source of to 
the biggest critique of photon mapping, 
that it is biased.
Radiance estimation involves a 
convolution or interpolation, which 
introduces blurriness, and therefore 
there is a consistent error, which is 
called bias.



Here is another image of the bias, shown as 
the difference between the two previous 
images.



Although photon mapping is biased, it is still a 
consistent method, which means that with an 
infinite number of samples, the bias vanishes and 
the resulting image is the correct. But here lies 
the practical problem of photon mapping: since 
the photons representing the light paths must be 
cached between the two stages, the quality of the 
image is limited by the available memory. 



In 2008, Hachisuka et al. have solved 
this memory bottleneck with 
progressive photon mapping. The idea 
of progressive photon mapping is to 
update incrementally a sequence of 
photon mapping results using a limited 
number of photons at a time.



Progressive photon mapping is an 
iterative method. Before the iteration, 
eye rays are traced and stored in 
locations. Then, for every iteration, new 
(independent) photons are traced. 
Finally, the most important step, is 
when the kernel radius is reduced; and 
then a new iteration begins.



The key of progressive photon mapping 
is to reduce the kernel radius in every 
iteration, such that the bias vanishes.







It does this by using statistics which are 
stored in every location of radiance 
estimation, namely the number of 
collected photons, the flux, and the 
kernel radius.



The exact radius reduction from 
iteration i to i + 1 is calculated using 
this update rule, which involves the use 
of these local statistics, such as the 
number of collected photons.



In 2009, in a follow up work, Hachisuka 
and Jensen have generalized the method 
to stochastic progressive photon mapping.
It includes additional effects like glossy 
reflections, depth of field, and motion blur.



The main change of stochastic progressive 
photon mapping is that instead of tracing 
eye rays once, the rays are traced in every 
iteration.



The main change to progressive photon 
mapping is that instead of tracing eye rays 
once, they are traced in every iteration.



While progressive photon mapping is 
great, we wanted to make a step back 
and look at it from a different 
perspective.



We found a new derivation of progressive 
photon mapping which does not require 
local statistics and is trivial to parallelize. 
We also provide convergence analysis. 
Furthermore, our reformulation of 
progressive photon mapping generalizes to 
arbitrary radiance estimation kernels. And 
finally, it is easy to generalize to other 
radiance estimates like volumetric photon 
mapping and the recent work of beam 
radiance estimates.



Let us start with a probabilistic analysis 
of the radiance estimation. A radiance 
estimate is a Monte Carlo integral. N_e 
is the number of emitted photons. N_s 
is the number of stored photons. k_r is 
a kernel with radius r. x_i is the position 
of the photon and gamma_i is the 
power of the photon, already pre-
multiplied with the BRDF, which 
amounts to the reflected radiance. 
Since a Monte Carlo integral is a 



stochastic method, we can look at the 
statistics of radiance estimation.



Namely, the noise and the bias. It turns out 
that the noise of the radiance estimate is 
inverse proportional to the squared radius.
Intuitively, it is clear that increasing the 
radius has the effect of averaging over 
more photons, and will therefore reduce 
the noise.
The bias, on the other hand, is proportional 
to the squared radius. In this case, 
increasing the radius will include more 
features like caustics, and therefore will 
increase the bias. Note that the bias only 



vanishes if the radius is 0. For any fixed 
radius, there is this classic trade-off where 
we can only achieve smoothness or 
unbiasedness but not both at the same 
time.



Following the idea of the original progressive photon 
mapping, we would like to split up the rendering  into 
multiple iterations in order to remove the memory 
bottleneck. The easiest way to combine the iterations 
is to average the images. We show in the paper that 
the averaged image converges if the averaged 
radiance estimates converge. Let’s see what happens 
if we average the radiance estimate over many 
iterations.



While the noise per iteration remains 
constant, the noise of the average will 
vanish with 1/N and the averaged 
image becomes smoother. This is great 
-- but how about the bias? The bias per 
iteration remains constant, and 
unfortunately, the bias of the averaged 
radiance estimate remains constant as 
well. This is not surprising, because we 
are simply averaging images, and this 
will reduce the noise, but not the bias.



The only way to reduce the bias of the 
average is by reducing the kernel 
radius. If the radius is continuously 
reduced, not only the bias per iteration, 
but also the the bias of the average 
vanishes. But, if we reduce the radius, 
as we have seen before, the noise per 
iteration will increase. The trick of 
progressive photon mapping is to let 
the radius decrease slow enough such 
that the noise of the averaged radiance 



estimate still vanishes in the limit. To 
summarize: we look for a radius 
sequence which reduces slow enough 
for both the noise and bias of the 
average to vanish in the limit.



The radius sequence which allows us to 
walk this fine line where both noise and 
bias of averaged radiance estimates 
vanish in the limit is given by this 
formula. A detailed proof can be found 
in our paper. Our proposed radius 
sequence is defined recursively. i is the 
iteration number, and alpha is a 
parameter which must be between 0 
and 1.



The parameter alpha controls how fast 
the radius is reduced with the number 
of iterations.



Using our proposed radius sequence, 
we found the following asymptotic 
convergence. The noise of the 
averaged radiance estimate vanishes 
proportionally to 1/N^alpha, where N is 
the number of iterations. The bias of 
the averaged radiance estimate 
vanishes proportionally to 1/N^(1-
alpha). We can see here how alpha 
controls the convergence speed of 
noise and bias. A small alpha value like 



the blue curve reduces the noise slowly, 
but the bias will vanish quickly. A large 
alpha on the other hand, the brown 
curve, reduces the noise quickly, but the 
bias will go down slowly.



We have also empirically verified this 
asymptotic convergence. We see the 
convergence for a sequence of 
radiance estimates taken in the 
previous scene. Here the solid lines are 
the measured noise and bias for two 
different alpha values. The dotted lines 
are the asymptotic curves.



Our radius sequence is similar to the 
radius update rule proposed by 
Hachisuka et al., but with the important 
difference that it is entirely independent 
of local statistics such as collected 
number of photons, or local photon 
density. In fact, we show in the paper 
that, for locally constant photon 
density, the radius sequence is the 
same as the one from Hachisuka et al.



Instead of using a recursive formula, our radius 
sequence can also be written explicitly. r_1 is the 
initial reference radius which anchors the sequence. 
And B stands for the the Euler Beta function which 
is related the binomial coefficients.



Using this formula, we propose the following 
algorithm. Our algorithm is a simple loop 
over a number of photon mapping iterations. 
The only specialty here is how we determine 
the kernel radius. In every iteration, just as in 
standard photon mapping, we perform the 
first pass by tracing photons and storing 
them in a photon map. Then in the second 
pass, for every traced eye ray, we determine 
a reference radius, and compute the radius 
of the current iteration using the explicit 
formula just shown before. This radius is 



then used to estimate the radiance with a 
range query.



There are different strategies to define 
the reference radius. The simplest 
solution is to define this reference 
radius globally. In this case, the 
implementation becomes much 
simpler; we can factor out the entire 
radius sequence and pass it as a 
parameter to the photon mapper, 
effectively treating it as a black box. 
Simultaneously, our progressive photon 
mapping algorithm collapses to a 



script.



In the original progressive photon 
mapping, the iterations were dependent 
on each other, because local statistics 
had to be carried over from one 
iteration to the next. Our iterations, on 
the other hand, are independent of any 
statistics and can therefore be 
executed in parallel.





As a proof of concept, we have written 
a script to drive PBRT as a black box 
and to execute on a cluster. Every 
PBRT instance was fed with a radius 
from our radius sequence. The resulting 
images were then averaged on a single 
machine.



Here we see the results. As expected, 
the rendered images are noisier when 
the kernel radius is smaller.



But let’s see what happens when we 
average over the images. Here, we see 
just the first image. Now, the first 10 
images averaged; already much less 
noise. Now, averaged over first 100 
images. And finally, over 1000 images 
without visible noise or bias.



Quality-wise, our method stands on 
equal foot with traditional progressive 
photon mapping. Here we used a 
global reference radius for both 
methods. The difference between using 
traditional progressive photon mapping 
and our method is only in the noise.



Performance is also the same. We 
compare three reference radius 
strategies, global radius, k-nearest-
neighbors, and ray differentials. In all 
cases, the difference in rendering time 
is negligible. This is not so surprising 
since the overhead for both methods is 
minimal.



Our reformulation of progressive 
photon mapping is more general. We 
can use arbitrary kernels for radiance 
estimation. Let’s see what happens if 
we use the right most kernel. 



Here, we use only one thousand 
photons per iteration to show the 
kernel. Well, even in this case, after 
many iterations, we observe that the 
image sequence converges.



Just like stochastic PPM, our method 
includes stochastic effects as well. We 
demonstrate here depth of field and 
glossy surfaces.



Last not least, our derivation of radius 
sequence and analysis extends to 
participating media as well. In 
volumetric photon mapping, the 
radiance is not defined on surfaces, but 
in volume. The kernel used for radiance 
estimate becomes therefore three 
dimensional.



Following our analysis, we only have to 
replace in the radius sequence the 
exponents of the radii with 3, allowing 
us to integrate over a three dimensional 
domain.



Here is a an example. This is a cornell 
box filled with water. At the beginning, 
with only 2 million photons, we only see 
noise.



But if we shoot enough photons



we start seeing god rays.



And eventually, after 1000 iterations 
and 2 billion photons, sharp caustics 
appear and the noise is gone.



Let me review our results. We provided 
a probabilistic analysis and asymptotic 
convergence of progressive photon 
mapping. Most importantly, it leads to 
simpler implementations, which in the 
simplest case amounts to writing a 
script and using  a standard photon 
mapper as a black box. Our method 
has the advantage of being 
parallelizable allowing the use of 
clusters. Furthermore, our reformulation 



generalizes progressive photon 
mapping to arbitrary kernels.
And finally, our method trivially extends 
to other radiance estimates like 
volumetric radiance estimates and beam 
radiance estimates.



Lastly, I would like to thank the 
reviewers for providing valuable 
feedback. I would also like to mention 
that all this work would not have been 
possible without the preceding work by 
Hachisuka et al. who developed the 
ingenious progressive photon mapping. 
Thank you for your attention!


