


Using recent global illumination techniques, it is possible to 
render realistic images as shown here. 



Global illumination techniques are typically based on 
Monte Carlo method, which are further classified into 
unbiased methods and biased methods. Biased methods 
are often faster than unbiased methods, and widely used 
in many rendering systems. However, images rendered by 
biased methods contain systematic errors associated with 
each algorithm. 



Unbiased methods can compute correct images, in the 
sense that, it gives the correct solution to the rendering 
equation on average. If we need a very accurate image, 
we usually choose an unbiased method because the result 
can be arbitrarily accurate just by increasing the number of 
samples. Given all the algorithms, it is natural to think that 
global illumination is a solved problem. We claim that this 
is not true.



Let’s consider this scene to highlight why we claim global 
illumination is not solved. This path is called LDE path, 
where L is a light source, D is a diffuse reflection, and E is 
the viewer. If we see a diffuse object directly illuminated by 
a point light source, it is easy to construct a path of light. 



However, just by adding a refractive object on top of the 
diffuse object, it is no longer easy to construct a light path. 
The path which connects between the light source and the 
viewer refracts at the boundary of the refractive object, 
which is now called LSDSE path where S is a specular 
refraction. In order to construct a path, we need to find a 
point on the diffuse object that connects the viewer and the 
light source after refractions. If the light is a point light 
source, then it is in fact impossible to compute this path 
with any unbiased method.



You might think it is a rare case, but we see this type of 
illumination very often in our daily life. For example, let’s 
take a look at this simple photograph of a store window. 
Since the window causes specular refractions and the 
sunlight is coming through the window, everything you see 
through the window contains an SDS path.



The bottom of a swimming pool is another example of SDS 
paths, where it is illuminated by light coming through the 
water surface, and we see that above the water surface.



This is a picture of an ordinary bathroom. Almost 
everything you see in the mirror is a SDS path. The reason 
is that a glass casing of light bulb causes specular 
refraction before illuminating any diffuse surface. 
Therefore, what we see in the mirror is dominated by SDS 
paths.



If you want to be extremely precise, you would need to 
consider that the lens of our eyes or camera and the glass 
casing around a light bulb, which ultimately create SDS 
paths everywhere. I hope you are convinced that it is 
important to handle SDS paths in global illumination.



Our progressive photon mapping is the first method for 
computing all types of light transport, including SDS paths, 
with arbitrary accuracy.



To be more precise, our progressive photon mapping is a 
new formulation of photon mapping. Our method is robust 
for any light path including SDS path. We can compute 
images with arbitrary accuracy just by increasing the 
number of photons without storing all the photons. To do 
this, we introduce a new progressive radiance estimation 
algorithm, which is easy to implement.



Since our method is based on photon mapping, let’s for a 
moment look at the standard photon mapping.



Photon mapping is a two pass method. In the first pass, 
photons are emitted from light sources and interactions of 
photons with surfaces are stored as a photon map. In the 
second pass, an image is rendered using the photon map 
from the first pass.



Let’s look at this example scene, where there is a glass 
ball, diffuse walls, and the light source at the top.



In the first pass of photon mapping, we trace photons from 
the light source, and store the intersections with diffuse 
surfaces as a photon map.



In the second pass, we trace rays from the eyes,



In the second pass, we trace rays from the eyes,



and estimate the resulting radiance by finding nearby 
photons around each intersection point of eye ray.



We use this equation to estimate radiance, where K is the 
number of nearby photons around x, f_r is a BRDF, phi_p 
is flux (or power) of each photon, and r is the search radius 
of all the nearby photons.  Note that this equation is an 
approximation of the correct radiance using K photons.



Although photon mapping is a biased method, it is a 
consistent method. It means is that the image rendered by 
photon mapping converges to the correct solution by 
increasing the number of photons.



To be more precise, radiance computed from nearby 
photons converges to the correct solution of the rendering 
equation, if we use an infinite number of photons within an 
infinitely small search radius. Unfortunately this is not 
practical since it would require an infinite amount of 
memory.



Instead of using single photon map with a large number of 
photons, one can think of combining results from several 
photon maps with a small number of photons, to increase 
the total number of photons. The simplest method would 
be to take the average of images rendered by different 
photon maps. Christensen presented a more sophisticated 
method to combine several photon maps. These methods 
give a smoother result, but details of lighting would be 
missing if they are not captured by individual photon map. 
In other words, the result does not converge to the correct 
solution even if an infinite number of photons is used. 



In contrast, progressive photon mapping converges to the 
correct solution, and I will now describe how this is 
achieved.



Progressive photon mapping is a multi-pass method. In the 
initial pass, we generate points where we want to estimate 
radiance, which is usually done by ray tracing. In the 
succeeding refinement passes, we trace photons exactly in 
the same way as the standard photon mapping. We then 
apply a new progressive radiance estimate to compute 
radiance at each point. 



The key idea of progressive photon mapping is in 
progressive radiance estimation. It is based on a new 
density estimation algorithm where the result converges to 
the correct value after an infinite number of refinement 
passes.



In progressive radiance estimate, we estimate radiance at 
a specific point using an iterative approach. 

In the first pass, we have N_0 photons within a disc of 
radius R_0, and we compute radiance using this equation. 

In the second pass, we accumulate more photons and 
refine the estimated radiance. 

We keep repeating this process to obtain more accurate 
radiance estimates.



In order to achieve convergence to the correct value after 
an infinite number of refinement passes, we refine the 
estimate of radiance iteratively. After each iteration, the 
search radius should decrease and the number of nearby 
photons should increase to ensure convergence. I will now 
describe how this can be done.



Assume we have a point with N_i photons and we would 
like to add the contribution from M_i new nearby photons. 
Our goal is to obtain N_i+1 photons within a disc of radius 
R_i+1 under the conditions I showed before. If we assume 
that the density of photons within the disc is uniform, we 
can express the density before and after the iteration as 
shown in this slide.



To ensure that the number of photons is increasing, we 
accumulate a fraction alpha of the new nearby photons.



We then combine these two equations to obtain a 
quadratic equation of the new radius, 



and solve this equation to get the new radius R_i+1. We 
use a similar approach to accumulate the flux associated 
with a point.



In summary, we store the number of nearby photons, the 
search radius, the accumulated flux at each point, and 
simply update the values using these equations after each 
iteration.



To summarize the overall algorithm, let’s go back to the 
same example as we have seen in the standard photon 
mapping. 



In the initial pass of progressive photon mapping, we 
generate points where we want to estimate radiance by 
tracing rays from the viewer. This process is very similar to 
the second pass of the standard photon mapping except 
we now store information of each point.



After the first iteration, each point is assigned an initial 
search radius.



In each refinement pass, we first trace photons in the 
same way as the standard photon mapping. We then find 
photons within the radius of each point.



Based on the nearby photons we update the statistics of 
each point. This includes reducing the radius as shown on 
the slide.



We then discard all photons and prepare for the next 
iteration.



The succeeding refinement passes proceed exactly in the 
same way, 



but we use updated radii and statistics.



Finally, we can render the image at any iteration by 
estimating the radiance at each point.



Now, I am going to talk about our results. 



First I will show how images rendered by our method 
converges to the correct solution. This image is rendered 
using one hundred thousand photons. 



as you increase the number of photons, thereby adding 
more refinement passes, 



we can obtain more details and smoother result. Note that 
even with a relatively low number of photons, 



the image already gives us an idea of the illumination in 
the scene. 



and finally this image is rendered using about twenty-five 
million photons in total. Note the absence of bright noisy 
pixels in the image sequence just shown. 



The reason for this is that progressive photon mapping 
avoids the singularity in the geometry term of the rendering 
equation by not sampling the light sources explicitly.



Let’s look at how the radius and the number photons 
change at different points on the scene. We plot graphs of 
the radius, the number of nearby photon, and the 
estimated radiance on the different point shown in here.



This graph shows the change of the number of photons 
within the radius of each point. As can be seen, the 
number of photons increases monotonically as we 
increase the number of iterations.



This graph shows the change of the radius. Note that the 
radius is monotonically decreasing as the number of 
iterations increase.



This graph shows the error of the radiance estimate. As 
can be seen, the radiance estimate converges to the 
correct solution.



To compare our method with existing methods, we 
implemented these algorithms using the same ray tracing 
core. 



First we rendered a torus embedded in a transparent cube 
illuminated by sunlight. Note that all illumination on the 
torus is caustic and we see the torus though specular 
transmission of the cube, which is a SDS path. This is the 
reference solution with 91 hours of rendering using path 
tracing. 



If we just use 2 hours with path tracing, the image looks 
very noisy.



Bidirectional path tracing gives less noisy results especially 
for the caustics caused by the transparent cube, but the 
torus is still significantly noisy.



Metropolis Light Transport does not really work well either 
in this scene, but it just gives us a different type of artifact.



In the same rendering time, our method can handle 
illumination on the torus very robustly as well as caustics 
by the cube.



This bathroom scene shows an example of realistic lighting 
design. In this scene, there are two spherical light sources 
enclosed by glass casing, which is similar to a typical 
lighting fixture. Note that reflection on the mirror causes 
SDS paths. Path tracing results in noisy image because 
almost everything is illuminated by caustics in this scene.



Bidirectional path tracing gives you much better result in 
the same rendering time. However, note that the reflection 
of the light on the mirror is missing. 



Metropolis Light Transport can capture some of reflections 
on the mirror, but the results looks still very noisy.



Here we used standard photon mapping. The number of 
photons is as large as we can use in 1GB of memory. 
Since the number of photons is limited by the amount of 
memory, the rendering time is actually faster. However the 
image looks blotchy because the number of photons is not 
enough to get rid of the noise. This means that the quality 
of the image is bounded by the available amount of 
memory.



With Progressive Photon Mapping, we can use 612 million 
photons, which is equivalent to 30GB of photons without 
consuming that amount of memory. The image accurately 
captures the reflection in the mirror, as well as all other fine 
scale illumination details.



Finally, we rendered a glass desk lamp to show the 
robustness of our method. The results using existing 
methods are either too noisy, or they cannot handle the 
refraction through the lamp. Only progressive photon 
mapping is able to render this scene without noise.



In conclusion, we have presented a new formulation of 
photon mapping, called progressive photon mapping. Our 
algorithm is robust and it can compute all types of light 
transport with arbitrary accuracy using a finite amount of 
memory. To achieve this, we have introduced a new 
progressive density estimation algorithm, which is easy to 
implement. We believe that our method has a lot of 
interesting future work, 



but the most significant question we hope to answer is 
‘how many photons are enough for a given error criterion?’ 
. 



Here are acknowledgments, and thank you for your 
attention.



Our method is the only method that can robustly handle 
this difficult, yet simple illumination setting. We believe that 
our method is a robust alternative to render accurate 
images over existing unbiased Monte Carlo method.

m 



The goal of progressive photon mapping is to compute 
radiance at a given point with arbitrary accuracy. We 
achieve this by progressively accumulating photon 
statistics at



Measurement points generated in the first pass are places 
to measure radiance. Generating measurement points is 
typically done by ray tracing for rendering images. Each 
measurement point stores radius to search nearby 
photons, the number of nearby photons, accumulated flux 
of nearby photons and its pixel position.



To be more concrete, radiance computed from neighboring 
photons converges to the correct value based on the 
rendering equation if we use an infinite number of photons. 
Of course, directly utilizing this property is not practical 
because an infinite number of photons requires infinite 
amount of memory to store.





Since flux and radius is available in every refinement, we 
can estimate radiance to show intermediate images to 
user. The equation to compute is exactly the same as 
standard photon mapping, except it uses accumulated, but 
unnormalized photon flux, which needs to be divided by 
the number of emitted photons so far over all refinement 
passes.



In order to describe how we update statistics on each 
measurement point, let me recap the consistency of the 
standard photon mapping. This equation basically says, 
photon mapping will give us correct radiance if the number 
of nearby photons is infinitely large and the radius that 
contains nearby photons is infinitely small.



In order to understand how this can be achieved, let’s look 
a single measurement point in more details. Suppose that 
you already have N0 photons within the radius of R0 with 
tau0 as flux.



Now, say we find M0 new photons by shooting photons in 
this iteration. 



Since every photon is in the radius, we can simply 
accumulate flux and the number of local photons.



What we really want to do is to determine new radius R1, 
which is smaller than R0. R1 also needs to keep the 
number of photons N increasing as well as flux. In other 
words, we need to have non-zero gain in the number of 
photons and flux even after the reduction of radius.



However, there is a type of path which is problematic. In 
order to see such example, let’s look at this simple scene, 
where a point light is illuminating a diffuse object. To 
compute the contribution from the light source to the eyes,



we shoot a ray from the eyes,



Let’s modify the scene slightly by adding a refractive object 
on top of the diffuse object. In order to compute the 
contribution from the light source to the eyes,



we first shoot a ray from the eyes as before. The only 
difference is that we need to take into account the specular 
refraction, which is denoted by S. So far, the computation 
is still as easy as before.



However, if we try to connect D with the light source by 
shooting a ray toward the light source, it could miss the 
light source because of the specular refraction.







Let’s see if we can use this kind of realistic light sources in 
rendering. In this test scene, there is two small spherical 
light enclosed by a metal tube capped with lens which is 
similar to a real world light sourceI have shown before. 
Note that everything will be illuminated light coming 
through lens, which is caustic



If you render this scene with path tracing, this is what you 
get. Image is very noisy because everything is illuminated 
by caustics and path tracing is not especially robust for 
rendering caustics.



If you use bidirectional path tracing, it looks much better 
than path tracing. However, note that reflection on the 
mirror balls and refraction through the glass ball is very 
dark. This is because they are specular reflection or 
refraction of caustics, which is extremely difficult handle 
with any unbiased Monte Carlo  ray tracing algorithm.



This is also the case even with Metropolis Light Transport 
which is considered to be the most robust algorithm to 
handle difficult lighting. Path in Metropolis Light Transport 
stacks reflection and refraction on the balls which caused 
bright spot noise.



If we allow some bias in rendering, Photon Mapping can 
robustly render this type of illumination. However, Photon 
Mapping runs out all memory before obtaining noise-free 
results because we need to store all the photons. Note that 
we have to directly visualize photon map in this scene 
because everything is caustic.



If you use our method, you can finally render this simple, 
yet difficult scene accurately and robustly. I will describe 
how this can be done in this talk.



Since flux and radius is available in every refinement, we 
can estimate radiance to show intermediate results to user. 
The equation to compute is exactly the same as standard 
photon mapping, except it uses accumulated, but 
unnormalized photon flux, which needs to be divided by 
the number of emitted photons so far over all refinement 
passes.



I will not describe the derivation in this talk, but it turns out 
that we just need to use these relatively simple equation to 
update statistics on each measurement point. Alpha here 
is the parameter chosen by user. All we need to do is to 
update the number of photons, radius and flux using these 
equations in each iteration. 



I will not describe the derivation in this talk, but it turns out 
that we just need to use these relatively simple equation to 
update statistics on each measurement point. Alpha here 
is the parameter chosen by user. All we need to do is to 
update the number of photons, radius and flux using these 
equations in each iteration. 



I will not describe the derivation in this talk, but it turns out 
that we just need to use these relatively simple equation to 
update statistics on each measurement point. Alpha here 
is the parameter chosen by user. All we need to do is to 
update the number of photons, radius and flux using these 
equations in each iteration. 


