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Numerical Integration

/a b f(x)da

e Analytic evaluation: accurate and fast

INE)ue



Numerical Integration

/a ' fla)da

e Numerical evaluations:

INE)ue



Numerical Integration

/a b f(x)da

e Numerical evaluations:

e Provide only approximate solutions,

DDD
AAAAAAAAAA

INE)ue



Numerical Integration

/a ' fla)da

e Numerical evaluations:

e Provide only approximate solutions,

e Rate of convergence is important

DDD
AAAAAAAAAA

INE)ue



Numerical Integration

/a ' fla)da

e Numerical evaluations:

e Provide only approximate solutions,

e Rate of convergence is important
S O O O O S

e (Often involves evaluations only at selected locations
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Numerical Integration

/a b f(x)da

e Numerical quadrature: designed for 1D integrals
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Numerical Integration

/a b f(x)da

e Numerical quadrature: designed for 1D integrals

e Cubature/Quadratures: for higher dimensions

INE)ue



Numerical Integration

* Hybrid methods: First transform the integral analytically for simpler numerical handling

Advance Sampling Strategies: June 7, 2018
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Numerical Integration

e A number of solutions are developed for the numeric solution of integrals

e Most prominent are the Quadrature rules, where the weights w; and the sample
positions x; are determined in advance
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Quadrature rules

e Newton-Cots formula:

e Midpoint rule (1 sample), Trapezoid rule (2 samples), Simpson rule (3 samples)...
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Midpoint formula Composite midpoint Trapezoidal formula Cavalieri-Simpson
formula formula
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https://link.springer.com/content/pdf/10.1007/978-3-540-49809-4_9.pdf

Quadrature rules

e Newton-Cots formula:
e Midpoint rule (1 sample), Trapezoid rule (2 samples), Simpson rule (3 samples)...
e Samples are nesting (for powers of 2)

e Approximates the integral as sum of weighted, equidistant samples
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Quadrature rules

e (Gauss quadratures:
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Quadrature rules

e (Gauss quadratures:

e An n-point Gauss quadrature is
constructed to yield exact results for
polynomials of degree 2n-1 or less.
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Quadrature rules

e (Gauss quadratures:

e An n-point Gauss quadrature is
constructed to yield exact results for
polynomials of degree 2n-1 or less.

e Extends freedom by allowing choice of
sample locations

e |t doesn't nest (but nesting alternatives
do exist)
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Quadrature rules
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e (Gauss quadratures:
2+
e An n-point Gauss quadrature is
constructed to yield exact results for OF
polynomials of degree 2n-1 or less. ,
e Extends freedom by allowing choice of .4}
sample locations
6L
e |t doesn't nest (but nesting alternatives

do exist)
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https://en.wikipedia.org/wiki/Gaussian_quadrature

Quadrature rules

Newton-Cots formula®

Gauss quadratures”®

Both approaches achieve convergence of the order O(N "), given N samples and a
smooth integrand that has r-continuous derivatives

*Interested students may refer to this link for more details.
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https://link.springer.com/content/pdf/10.1007/978-3-540-49809-4_9.pdf

Numerical Integration: sD case

N N
/ / f L1y dl’l dﬁCs — Z Z wil"'wisf(xi17 ""xis)

11=1 1s=1

e Curse of dimensionality: requires N° samples for s-dimensional integral
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Numerical Integration: sD case

N N
/ / f L1y dﬂ’)l dCCS — Z Z w’il"'wisf(xﬁ’ ""xis)

11=1 1s=1

e Curse of dimensionality: requires N° samples for s-dimensional integral
e Convergence drops to O(N~"/#)

e Rules must be adapted to non-square domains (typical in rendering)
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Monte Carlo Integration

e |ndependent of the dimensions
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Monte Carlo Integration

e |ndependent of the dimensions
e |ndependent of the underlying topology of the domain

e Variance converges atO(N ') irrespective of the dimensions (N is the sample count)
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Integral as Expected Value
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Integral as Expected Value

x)dr = f(x) x)dx
/[0,1)8 fla)d /[0,1)8 p(x)p( )d

p(x) : is an arbitrary probability density function over the domain
— / (f(x)>p(x)dat
0,1)% p(x)
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Integral as Expected Value

)
/[0,1)8 flayds =B p(z) -

p(x) : is an arbitrary probability density function over the domain
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Integral as Expected Value
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Integral as Expected Value

/[0,1)8 fla)ds =B p(2) -

We are interested in the numerical computation of this expected value, leading to
The highly important concept of Monte Carlo Estimator
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in 1D
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Monte Carlo Estimator

in 1D
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Monte Carlo Estimator

in 1D
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Monte Carlo Estimator

in 1D
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Monte Carlo Estimator

in 2D

p(x): is the probability density function from which
samples are drawn
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Monte Carlo Estimator

in 2D
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Monte Carlo Estimator

PG
Secondary Estimator: Iy = — :
N & o

p(x): is the probability density function from which
samples are drawn @
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Monte Carlo Estimator

PG
Secondary Estimator: Iy = — :
N & o
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1=1

p(x): is the probability density function from which
samples are drawn @
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Monte Carlo Estimator

PG
Secondary Estimator: Iy = — :
N & o

1
IN: NZI%
i=1

f(l'z) @ @ .
p(x;)

Primary Estimator: Ii =

p(x): is the probability density function from which
samples are drawn @
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Monte Carlo Estimator

Primary Estimator: I} =
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Monte Carlo Estimator

Primary Estimator: I} =
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Monte Carlo Estimator

Primary Estimator: Ii - i((?i
Lo f(i)
W=y ; p(zi)
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Monte Carlo Estimator

Due to the Strong law of large numbers, the arithmetic mean will converge
to the expected value with probability 1 given enough samples:
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Monte Carlo Estimator

Due to the Strong law of large numbers, the arithmetic mean will converge
to the expected value with probability 1 given enough samples:

| _iNf(wi)_ _f($)_: N b
Prob{ lim 1y _N;p(xi) E_p(az)_ /Qf( )d } 1
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Error In Monte Carlo Estimation

.9 :
Error = Bias® + Variance
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Error In Monte Carlo Estimation
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e Monte Carlo estimation is unbiased due to it's "purely” stochastic nature

e We are left with variance, which is visible as stochastic unstructured noise in the
rendered images
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Unbiased: Monte Carlo Estimator

Error =1y — 1
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@
Bias by definition is the expected error:

Bias = E|Error| = E _IN — / f(x)dx
_ 0 _
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Unbiased: Monte Carlo Estimator

Error = Iy — / f(x)dx
@
Bias by definition is the expected error:

Bias = E|Error| = IN — / f(x

Bias = E|Iy| — /f
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Unbiased: Monte Carlo Estimator

Error = Iy — /Q f(x)dx

Bias by definition is the expected error:

Bias = E|Error| = E _IN — f(x)dx
- Q -
Bias = E _IN_ .| f(x)d:v_
- - - Q -
Bias = E _IN_ — | f(x)dx
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Unbiased: Monte Carlo Estimator

Bias = E:IN: —/Qf(a:)da:
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Unbiased: Monte Carlo Estimator

Bias = E:IN: —/Qf(a:)da:
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Unbiased: Monte Carlo Estimator

Bias = E:IN: —/Qf(a:)da:
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Unbiased: Monte Carlo Estimator

Bias = E:IN: —/Qf(a:)da:
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Unbiased: Monte Carlo Estimator

Bias = E_IN_ — | f(x)dx
- Q
1 on f2)] L[ f@)] 1 [ fla)
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Unbiased: Monte Carlo Estimator
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Unbiased: Monte Carlo Estimator

Bias = E:IN: —/Qf(a:)da:

E:IN: =/Qf(a;)da;

Bias =0
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Variance: Monte Carlo Estimator

For the variance of secondary Monte Carlo Estimator, the following holds:

Var(In) = N3 Z\/ar (T)
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Variance: Monte Carlo Estimator
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Variance: Monte Carlo Estimator

Var(In) = N3 Z\/ar (T)
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Variance: Monte Carlo Estimator

Var(In) = N3 Z\/ar (T)

— ] = - i _ 2 :
Varlng) = Ver (ﬁ 2 i, ) e ( 2 e ) (Ver(aX) = a?Var(X)|

= 7o Z Var /(i) t Independent samples  }
I= - - -
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Convergence rate: MC Estimator

Var(In) = N2 }{:‘var
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Convergence rate: MC Estimator

Var(In) = N3 Z\/ar (T)

Error = o(Iy) = \/3\72 \/ Var(I})
. o(X) = \/Var(X)
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nvergence rate: MC Estimator

Variance
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Sampling Methods

e |nversion methods
e Acceptance-rejection methods

e Metropolis sampling (later)

e Transforming distributions
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Inversion Method

e Compute the CDF
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Inversion Method

—ax
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Inversion Method
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p(x) oce™
p(z) = ce™
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Inversion Method

ax

p(x) X e_CLCE /‘OO Ce_axdm _ E — 1
p(x) — Ce_ ,'i 0 ?.
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Inversion Method

o (m‘éé.\”-,-\”,é
p(CC) X € ce 0T dy — E — 1
p(z) = e o o

P(CE‘) — / Ce_aajdaj‘ — 1 — e—a,a’; — f
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Inversion Method

x) ox e >0
p(z) = ce”*" L a {

P(x) = / ce “Ydr=1—e %" =¢
0
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Inversion Method

o -_ o R AT S
p(CC) X € / ce 0T dy — E — 1
p(z) = e o o
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Inversion Method

o -_ o R AT S
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Rejection Sampling Method
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Rejection Sampling Method

? ‘  Many samples are wasted
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Rejection Sampling Method

? ‘  Many samples are wasted

e \Very costly

. 4
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Rejection Sampling Method

? ‘  Many samples are wasted

e \Very costly

e Not possible for arbitrary
domains
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Transformation Method

e (General question: which distributions results when we transform
samples from an arbitrary distributions to some other distribution
with a function f .

INE)ue



Transformation Method

e (General question: which distributions results when we transform
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with a function f .

Xz' ~ Px (33)
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Transformation Method
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Transformation Method

e (General question: which distributions results when we transform
samples from an arbitrary distributions to some other distribution
with a function f .

X’i pr(aj)
Y; = y(Xi)

What is the distribution of Y; ?

INE)ue



Transformation Method

e The function y(x) must be a one-to-one transformation
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Transformation Method

e The function y(x) must be a one-to-one transformation

e |t's derivative must either be strictly > 0 or strictly < O

prob{Y < y(x)} = prob{X < x}
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Transformation Method

prob{Y < y(x)} = prob{X < x}
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Transformation Method

prob{Y < y(x)} = prob{X < x}

Py(y) = Py(y(z)) = Py(x)

This relationship between CDFs directly leads to the relationship between their PDFs:
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Transformation Method

prob{Y < y(x)} = prob{X < x}

Py(y) = Py(y(z)) = Py(x)

This relationship between CDFs directly leads to the relationship between their PDFs:

INE)ue



Transformation Method

In general, the derivative is strictly positive or negative, and the relationship between the densities is:

—1

p(w) = || pel@
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Transformation Method

1

py(y) = % Pz ()

How can we use this formula ?

INE)ue



Transformation Method

1
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How can we use this formula ?

pe(x) =2 x€]0,1]
Y =sin X
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Transformation Method

—1

py(y) = Z—i Pz ()

How can we use this formula ?

pe(x) =2 x€]0,1]

Y =sin X
dy
—~ = COSZ
dx
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Transformation Method

—1

dy
py(v) = | 52| pa(@)
How can we use this formula ?
pe(x)=2x x€|0,1]
Y =sin X
dy () = pz(x)  2x  2arcsiny
%:cosx Py\Y " |cosz| cosw \/1—3/2
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Transformation Method

e Usually we have some PDF that we want to sample from, not a
given transformation
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Transformation Method

e Usually we have some PDF that we want to sample from, not a
given transformation

e For example, we might have given: X ~ p, (x)and we would
like to compute Y ~ p,(y)

e This is a generalization of the inversion method.
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Transformation in Multiple dimensions

e Suppose we have an s-dimensional X with density function px

» Now letY = T'(X) where T is a bijection.
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Polar Coordinates

T = 1 cosf

y = rsinf

Suppose we draw samples from some density p(r, 9)
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Polar Coordinates

T = 1 cosf

y = rsinf
Suppose we draw samples from some density p(r, 9)

What is the corresponding density p(z,y)?

ox 0

X _
I ar 90 \ [ cost —rsinf
= dy _;/) - \sinf rcosf
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Polar Coordinates

T = 1 cosf

y = rsinf
Suppose we draw samples from some density p(r, 9)

What is the corresponding density p(z,y)?

ox 0

7 _(a_r ‘%)_(cos@ —rsin@) p(z,y) = p(r,0)/JT
T = v | =
v

L
-
QL

sin® rcosé

¢

=
Il
Qo
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Polar Coordinates

T = 1 cosf

y = rsinf
Suppose we draw samples from some density p(r, 9)

What is the corresponding density p(z,y)?

ox 0

7 _(a_r ‘%)_(cos@ —rsin@) p(z,y) = p(r,0)/JT
T = v | =
v

L
-
QL

sin rcos@

¢

Q>
el
Q>

p(z,y) = p(r,0)/r
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Spherical Coordinates

X =r sin 6 cos @
y =rsin 6 sin ¢

Zz=17r CcosH,

2

|Jr| =r“sin 6

p(r,0, @)= r* sin 6 p(x, vy, z)
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Spherical Coordinates

Spherical coordinates
X =r sin 6 cos @

y =rsin 6 sin ¢

Zz=17r CcosH,

|J7| = r? sin @ dw = sin 6 d6 d¢

Pr {a)EQ} :[ p(w) dw

p(r,0,¢)=r"sin6 p(x, y, 2) o

p(6, ¢) do d¢ = p(w) dw

60
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Uniformly sampling a hemisphere

Here, the task is to choose a direction on the hemisphere uniformly w.r.t. solid angle.
Using the fact that, PDF must integrate to one over its domain:
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Using the fact that, PDF must integrate to one over its domain:

/ P(w)dw=1=>Cj da):1=>6=i
9‘(2 3{2
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Uniformly sampling a hemisphere

Here, the task is to choose a direction on the hemisphere uniformly w.r.t. solid angle.
Using the fact that, PDF must integrate to one over its domain:

/ p(a))da):1=>Cj da)=1:>C=i p(w)=1/2m)
9‘(2 3{2 27.[

p(0, ¢) =sin6/(2m)
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Uniformly sampling a hemisphere

Here, the task is to choose a direction on the hemisphere uniformly w.r.t. solid angle.
Using the fact that, PDF must integrate to one over its domain:

/ p(a))dw=1=>6/ da)=1:>C=i p(w)=1/2m)
9‘(2 3{2 27.[

p(0, ¢) =sin6/(2m)

Marginal density function:
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Using the fact that, PDF must integrate to one over its domain:
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| | j o °T sin 6
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Uniformly sampling a hemisphere

Here, the task is to choose a direction on the hemisphere uniformly w.r.t. solid angle.
Using the fact that, PDF must integrate to one over its domain:

/ p(a))dw=1=>6/ da)=1:>C=i plw)=1/(2m)
H2 2 27T
p@, @) =sinb/(2m)
| | j o °T sin 6
Marginal density function: p(0) = / p@@, ¢) dp = / : dé — sin 0
0 0 s

Conditional density function:
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Uniformly sampling a hemisphere

Here, the task is to choose a direction on the hemisphere uniformly w.r.t. solid angle.
Using the fact that, PDF must integrate to one over its domain:

/ P(a))da)=1=>c/ da)=1=>c=L plw) =1/Qm)
H? H2 27
pO, ¢) =sin0/(2m)
o °T sin 6
Marginal density function: p(0) = / p(O, p) dp = / . dep = sin O
0 0 T
0, 1
Conditional density function: p(@|0) = P, 9) = —
p6) 21
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Uniformly sampling a hemisphere

Corresponding CDFs:
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Uniformly sampling a hemisphere

0
PO) = f sinf’ df’ =1— cos 6
Corresponding CDFs: 0

¢
P@lo)= [ —dp' =2

0 27 27T
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Uniformly sampling a hemisphere

0
PO) = f sinf’ df’ =1— cos 6
Corresponding CDFs: 0

21T 27T

¢
P(@10) =/O Lag =2

Inverting these functions is straightforward, and here we can safely write:
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Uniformly sampling a hemisphere

0
PO) = f sinf’ df’ =1— cos 6
Corresponding CDFs: 0

¢
P(@10) =/O Lag =2

21T 27T

Inverting these functions is straightforward, and here we can safely write:

0 = cos | 1

¢ =21 ¢;.
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Uniformly sampling a hemisphere

0
PO) = f sinf’ df’ =1— cos 6
Corresponding CDFs: 0

¢
P(@10) =/O Lag =2

21T 27T

Inverting these functions is straightforward, and here we can safely write:

x = sin 0 cos ¢ = cos (271&;) \/1_512

0 = cos | 1

y — o1 . . 9
¢ — 27[52. V = s1n ¢ smqb—sm (27’[62) \/1_€l

z =cos 6 =¢.
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Uniformly sampling a disk

r==¢&,60 =2k, Correct PDF ?7?7?
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Uniformly sampling a disk

p(xa y) — 1/7[
p(r,0)=r/m

Marginal density function:

Conditional density function:
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Uniformly sampling a disk

p(xa y) — 1/7[
p(r,0)=r/m

21T
Marginal density function: p(r) = / p(r,0)do =2r
0

p(r,0) 1

Conditional density function: pOr) = —.
p(r)  2n
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Uniformly sampling a disk

p(x> y)ZI/JT
p(r,0)=r/m
27T
Marginal density function: r) = r,0)do =2r
arginal density function p(r) /0 p(r,0) . \/5—1
p(l",@) - 1 9:277:52

Conditional density function: pOr) = —.
p(r)  2n
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Variance Reduction Techniques

e Importance Sampling
e Multiple Importance Sampling

e Control Variates

e Stratified Sampling
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Variance reduction: Importance sampling

)

B T;
N p(27;)

e Importance Sampling doesn't always reduce variance.
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Variance reduction: Importance sampling

)

1
N p(27;)

e Importance Sampling doesn't always reduce variance.

e The pdf p(Z£) must be carefully chosen to gain improvements
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Variance reduction: Importance sampling

)

B T;
N p(27;)
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Variance reduction: Importance sampling
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Variance reduction: Importance sampling

1 f(z7)
= N p(z;)
p(T) o f(Z)
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Variance reduction: Importance sampling

Iy— 1 (%)
N p(zi) e
p(¥) o< f(Z) p(f)da? =
p(Z) = cf(Z)
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Variance reduction: Importance sampling

Iy— 1 (%)
N p(zi) e
p(¥) o< f(Z) p(f)da? =
P =l / ) cf (Z)dz = 1
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Variance reduction: Importance sampling

o LI@
N p(zi) e
p(¥) o< f(Z) p(f)da? =
p(%) = cf(T) o
cf(Z)dx =1
S S /_OO
Jo £(@)
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Variance reduction: Importance sampling

Iy — 1 f(z3)
N p(zi) e
p(¥) o< f(Z) p(f)d:f =
p(Z) = cf () o
cf(Z)dx =1
S S /_OO
|7 (@)

this seems like a no-op since the PDF computation requires the integral of the function
that we are interested in estimating.
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Variance reduction: Importance sampling

1 f(x)
= N p(z;)
() f@ -
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Variance reduction: Importance sampling
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Variance reduction: Importance sampling
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Variance reduction: Importance sampling

L7
NN pla)
L@

M@

Iy = _OO £(7)di

e However, this Is a very special case that we are encountering here.

e This is referred to as Perfect Importance Sampling, for which the variance is zero.
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Variance reduction: Importance sampling

f(Z)

Examples of perfect importance sampling for which the variance is zero
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Variance reduction: Importance sampling

Examples of perfect importance sampling for which the variance is zero
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Variance reduction: Importance sampling

g9()

Examples of perfect importance sampling for which the variance is zero
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Variance reduction: Importance sampling
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Examples of perfect importance sampling for which the variance is zero

UNIVERSITAT
DES
SAARLANDES

INE)ue



Variance reduction: Importance sampling

Scattering equation: Y

L0 00) = [ | £(0r 000 00) Ly(p, @) lcos ] do
S

Image from PBRT 2016
T
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Variance reduction: Importance sampling

Scattering equation:

L, (p,wo) = | [f(p>wy @) L;(p, ) [cosb;| do;

o

f (P, @y, @) Li(p, @) |cos 6]

1 N
N 1221 P(CU*,')

Cosine weighted spherical/hemispherical sampling
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Variance reduction: Importance sampling

Scattering equation:

L. 00) = [ | 1. 000 00) Ly(p, @) Icos ] do
S

f (P, @y, @) Li(p, @) |cos 6]

1 N
N ]ZZI P(CU*,')

p(w) o cos

Cosine weighted spherical/hemispherical sampling
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Variance reduction: Importance sampling

Reference image BSDF importance sampling Light importance sampling
= 1024 spp =4 spp N =4 spp
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Variance reduction: Importance sampling

Reference image BSDF importance sampling Light importance sampling
N = 1024 spp N =4 spp N =4 spp

BSDF sampling is better in some regions
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Variance reduction: Importance sampling

Reference image BSDF importance sampling Light importance sampling
N = 1024 spp N =4 spp N =4 spp

Light sampling is better in other regions
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Variance reduction: Importance sampling

Reference image BSDF importance sampling Light importance sampling

Can we combine the benefits of different PDFs ?
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Variance reduction: Importance sampling

DF importance sampling Light importance samplin

an we combine the benefits of different PDFs ?
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Variance reduction: Importance sampling

DF importance sampling Light importance samplin

an we combine the benefits of different PDFs ? Yes!
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Variance reduction: Importance sampling

BSDF importance sampling Light importance sampling Multiple Importance Sampling

Can we combine the benefits of different PDFs ? Yes!

UNIVERSITAT
DES
SAARLANDES

INE)ue




Variance reduction: Multiple Importance sampling

Multiple Importance Sampling
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Variance reduction: Multiple Importance sampling

Multiple Importance Sampling
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Variance reduction: Multiple Importance sampling

Multiple Importance Sampling

p(z) o< 2272

Iy — 1 % f(XDg(XpDwp(X;) 1 i JY)g(Y)we(Y)
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Variance reduction: Multiple Importance sampling

Multiple Importance Sampling

T Zf FXDEXPwp(Xy) 1 Z FYDg(Y Hwy(Y))

nf i=1 pf(Xi) I ng j=1 Pg(Yj)
Balance heuristic: w.(x) = s Py (X)
T Yininw)
)P
Power heuristic: w,(x) = (15 ps (X)) B =2
> i(np;i(x))P
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Variance reduction: Control Variate
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Variance reduction: Control Variate

e Jo reduce variance, an easily evaluated approximation to the
integrand is sought
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e |nstead sampling all points independently, control variates
make use of correlated points in the sampling
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Variance reduction: Control Variate

e Jo reduce variance, an easily evaluated approximation to the
integrand is sought

e |nstead sampling all points independently, control variates
make use of correlated points in the sampling

e The mathematical basis of control variates is the linearity
property of the Lebesgue integral, i.e., one try to find an
analytically Lebesgue-integrable function g that is similar to the
integral under study.
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Variance reduction: Control Variate
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Variance reduction: Control Variate
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Variance reduction: Control Variate

/Qf(a:')dx:/Qg(x)der/Q(f(x) — g(z))da

@

INRg)un



Variance reduction: Control Variate
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Variance reduction: Control Variate

e | @) —g(@)
/Q f()dz = /Q gla)dr + B

Since we don't know the analytic integral solution of f(x)
the corresponding estimator can be written as:
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Variance reduction: Control Variate

e | @) —g(@)
/Q f()dz = /Q gla)dr + B

Since we don't know the analytic integral solution of f(x)
the corresponding estimator can be written as:

I%V:/Qg(:c)daj | ]172 (f (23) _09(5’37;))
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Variance reduction: Control Variate

I%V:/Qg(a?)da; | ;IZ (f (23) _09(5[37;))
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Variance reduction: Control Variate

I%V:/Qg(a?)da; | ;IZ (f (23) _.9(557;))

The integral on the right hand side can be evaluated exactly,
where as the variance of the estimator is given by:

4| oes
AAAAAAAAAA

INE)ue



Variance reduction: Control Variate

I%V:/Qg(a?)da; | ;IZ (f (23) _.9(557;))

The integral on the right hand side can be evaluated exactly,
where as the variance of the estimator is given by:

Var ICV N2 Z Var( g(%)))

" UNIVERSITAT

INE)ue

AAAAAAAAAA



Variance reduction: Control Variate

I%V:/Qg(a?)da; | ;IZ (f (23) _.9(557;))

The integral on the right hand side can be evaluated exactly,
where as the variance of the estimator is given by:

) 3o =)

Variance can be reduced if:
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Variance reduction: Control Variate

I%V:/ng(m)d;p | ;IZ (f (23) —.g(xi))

The integral on the right hand side can be evaluated exactly,
where as the variance of the estimator is given by:

) 3o =)

Variance can be reduced if:

SClM  UNIVERSITAT

INE)ue

AAAAAAAAAA



Variance reduction: Stratified Sampling

Jittered Sampling
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Variance reduction: Stratified Sampling

, Random 2D 1 Jittered 2D
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Variance reduction: Stratified sampling

Random Samples
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Variance reduction: Stratified sampling

Random Samples Jittered Samples

Stratified sampling suffers from the curse of dimensionality
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Variance reduction: Stratified Sampling

Latin Hypercube Sampling
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Latin Hypercube Sampler (N-rooks)
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Latin Hypercube Sampler (N-rooks)
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Latin Hypercube Sampler (N-rooks)

Initialize

T



Latin Hypercube Sampler (N-rooks)

Shuffle rows
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Latin Hypercube Sampler (N-rooks)

Shuffle rows
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Latin Hypercube Sampler (N-rooks)
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Latin Hypercube Sampler (N-rooks)

Shuffle columns
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Latin Hypercube Sampler (N-rooks)

Shuffle columns
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Latin Hypercube Sampler (N-rooks)
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Latin Hypercube Sampler (N-rooks)
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Variants of stratified sampling

......................

Figure 2.25: Stratification of I* with Voronoi diagrams. (a) 64-element Ham-
mersley point set; (b) Voronoi diagram implied through (a); (c) 64-element
hexagonal grid; (d) Voronoi diagram implied through (c).

Slide from Philipp Slusallek
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Quasi-Monte Carlo Integration
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Quasi-Monte Carlo Integration

e Monte Carlo integration suffers, apart from the slow convergence rate, from the
disadvantages that only probabilistic statements on convergence and error boundaries
are possible
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Quasi-Monte Carlo Integration

e Monte Carlo integration suffers, apart from the slow convergence rate, from the
disadvantages that only probabilistic statements on convergence and error boundaries

are possible

e The success of any Monte Carlo procedure stands or falls with the quality of these
random samples
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Quasi-Monte Carlo Integration

e Monte Carlo integration suffers, apart from the slow convergence rate, from the
disadvantages that only probabilistic statements on convergence and error boundaries

are possible

e The success of any Monte Carlo procedure stands or falls with the quality of these
random samples

e |f the distribution of the sample points is not uniform then there are large regions where
there are no samples at all, which can increases the error
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Quasi-Monte Carlo Integration

Monte Carlo integration suffers, apart from the slow convergence rate, from the
disadvantages that only probabilistic statements on convergence and error boundaries

are possible

The success of any Monte Carlo procedure stands or falls with the quality of these
random samples

If the distribution of the sample points is not uniform then there are large regions where
there are no samples at all, which can increases the error

Closely related to this is the fact that a smooth function is evaluated at unnecessary
many locations if samples are clumped
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Quasi-Monte Carlo Integration

e Deterministic generation of samples, while making sure uniform distributions
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Quasi-Monte Carlo Integration

e Deterministic generation of samples, while making sure uniform distributions
e Based on number-theoretic approaches

e Samples with good uniform properties can be generated in very high dimensions.
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Quasi-Monte Carlo Integration

e Deterministic generation of samples, while making sure uniform distributions
e Based on number-theoretic approaches
e Samples with good uniform properties can be generated in very high dimensions.

e Sample generation is pretty fast: (almost) no pre-processing
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Quasi-Monte Carlo Integration

e | ow discrepancy sequences
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Quasi-Monte Carlo Integration

e | ow discrepancy sequences

e Halton and Hammerslay sequences
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Quasi-Monte Carlo Integration

e | ow discrepancy seguences
e Halton and Hammerslay sequences

e Scrambled sequences
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Quasi-Monte Carlo Integration

e | ow discrepancy seguences
e Halton and Hammerslay sequences
e Scrambled sequences

e Discrepancy
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Quasi-Monte Carlo Integration

e | ow discrepancy seguences
e Halton and Hammerslay sequences
e Scrambled sequences

e Discrepancy

e Koksma-Hlawka Inequality (later)

103
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Discrepancy: Basic idea

e The concept of discrepancy can be viewed as a quantitative
measure for the deviation of a given point set from a uniform
distribution
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Discrepancy: Basic idea

e The concept of discrepancy can be viewed as a quantitative
measure for the deviation of a given point set from a uniform
distribution

(1,1)
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e The concept of discrepancy can be viewed as a quantitative
measure for the deviation of a given point set from a uniform
distribution

(1,1)

Area of the blue box:
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Discrepancy: Basic idea

e The concept of discrepancy can be viewed as a quantitative
measure for the deviation of a given point set from a uniform
distribution

(1,1)
Area of the blue box: 0.09

Area assoclated to each sample: 0.25
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Discrepancy: Basic idea

e The concept of discrepancy can be viewed as a quantitative
measure for the deviation of a given point set from a uniform
distribution

(1,1)
Area of the blue box: 0.09

Area assoclated to each sample: 0.25

Discrepancy:
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Discrepancy: Basic idea

e The concept of discrepancy can be viewed as a quantitative
measure for the deviation of a given point set from a uniform
distribution

(1,1)
Area of the blue box: 0.09

Area assoclated to each sample: 0.25

Discrepancy: 0.25- 0.09 =0.16
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Radical Inverse

Technigues based on a construction called as radical inverse

n Binary (I)b (n)

Any integer can be represented in the form: 1 1

O
) — 2 01
n=> dib"
=1 3 11
4 001

5 101

100

CIC) UNIVERSITAT
“I""‘lu DES
U] SAARLANDES

INE)ue



Radical Inverse

Technigues based on a construction called as radical inverse

n Binary <I>b(n)
Any integer can be represented in the form: 1 1 0 -

O
n — E :dibz—l 2 01 0.01
=1 3 11 0.11

Radical inverse:
4 001 0.001
<I>b(n) — O.dldg...dm

) 101 0.101

107
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Radical Inverse

Technigues based on a construction called as radical inverse

Radical inverse: n Binay  Py(n)
by(n) = 0.d1ds...d,, 1 1 0.1=1/2
2 01 0.01 = 1/4
—>
3 11 0.11 = 3/4
o 1 1 1 5 3 1
8 4 2 8 4 4 001 0.001 = 1/8
5 101 0.101 = 5/8
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Radical Inverse

Technigues based on a construction called as radical inverse

Radical inverse: n Binay  Py(n)
by(n) = 0.d1ds...d,, 1 1 0.1=1/2
2 01 0.01 = 1/4
— O—O—O—O—O—>
3 11 0.11 = 3/4
o 1 1 1 5 3 1
8 4 2 8 4 4 001 0.001 = 1/8
5 101 0.101 = 5/8
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Halton and Hammerslay Sequence

Technigues based on a construction called as radical inverse

Radical inverse: ®,(n) = 0.d1ds...d,,
Halton Sequence: For n-dimensional sequence, we use different base b for each dimension

xi — ((DZ(I)a (I)3(l)> (135(1), ¢ s e ) Cbpn(l.))
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Halton and Hammerslay Sequence

Technigues based on a construction called as radical inverse

Radical inverse: ®,(n) = 0.d1ds...d,,
Halton Sequence: For n-dimensional sequence, we use different base b for each dimension

X = ((DZ(I)a (D3(l)> (DS(Z)> ¢ s e Cbpn(l.))
Hammerslay Sequence: All except the first dimension has co-prime bases

X = (’; By, (i), Bp, (D), - - . <I>b,,<i>)
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Halton and Hammerslay Sequence

Technigues based on a construction called as radical inverse

Radical inverse: ®y,(n) = 0.d1ds...d,

Halton Sequence: Hammerslay Sequence:
X = (@(0), B3(0), Bs(i)s ..., D, () = (0 @, B0, 04,0

Hammerslay has slightly lower discrepancy than Halton
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Visualizing samples

Figure 2.7: Hammersley Point Set on the 2D Plane. Three 2-dimensional Ham-
mersley point sets Plz-lAM = (ﬁ,d)z(i))ie(o NAT) of sizes N = 64-element,
N = 256-element and N = 512-element.

Slide from Philipp Slusallek
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Visualizing samples

Figure 2.5: Halton sequence. The first 64, 256, and 512 points of the
2-dimensional Halton Sequence P%{AL = (D3(1), (D3(i))ieNo-

Slide from Philipp Slusallek
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Visualizing samples

Projection: (9,10) Projection: (19,20) Projection: (29,30)

Halton Sequence

Slide from Philipp Slusallek
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Faure's permutation

Figure 2.12: Halton Sequence and Scrambled Halton Sequence, Dimensions 7 and
8. (a) The first 256 elements of the 2-dimensional Halton sequence P%,,; =

((Dy(i),(Dg(i)) and the scrambled versions of dimension 7 and 8 generated
according to procedure of Faure.

Slide from Philipp Slusallek

120

UNIVERSITAT
‘o PeaisticlmageSynthesisSS20t8 | LIE[)L




Quasi-Monte Carlo Integration

e | ow discrepancy sequences
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Quasi-Monte Carlo Integration

e | ow discrepancy sequences

e \Van der Corpus, Sobol sequences
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Quasi-Monte Carlo Integration

e | ow discrepancy seguences
e \Van der Corpus, Sobol sequences

e (t,m,s)-nets & (t-s)-sequences
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Discrepancy

Figure 2.2: Star Discrepancy and Extreme Discrepancy. Visualization of the dis-
crepancy concepts—case s=2—introduced in Definition 2.2. The star discrep-

ancy based on axis-aligned 2-dimensional subareas of I attached at the origin,
and the extreme discrepancy based on the choice of arbitrary 2-dimensional

subvolumes of I2..

Slide from Philipp Slusallek
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Discrepancy

DerFINITION 2.1 (Discrepancy) Let P = {x;1,X2,...,xnt withx; € B,i=1,..., N
be a point set. The discrepancy of P, denoted as Dn(P), 1s a measure for
the deviation of a point set from its 1deal distribution. The discrepancy

of P 1s defined as

DN(P) DN(P>B)

e PNB
d:fsup#( N B)

BcB N

w(B)|,

where B corresponds to a Lebesgue measurable family of subsets of I°,
# corresponds to the counting measure over B with respect to P, 1° 1s,
as usual, the Lebesque measure and B refers to a non empty subset of

B.

Slide from Philipp Slusallek
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Fourier Analysis: Quality Measure

Advance Sampling Strategies: June 7, 2018
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