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Administrative updates

e Please register for the exams (in HISPOS for Computer Science).
 Withdrawal deadline is one week before the main exam (or re-exam).

e For Seminars, withdrawal is allowed within three weeks after topic assignment
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A la Carte

e o-algebra and measure
e Random Variables

e Probability distribution functions (PDFs and PMFs)
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A la Carte

e o-algebra and measure

e Random Variables

e Probability distribution functions (PDFs and PMFs)
e Conditional and Marginal PDFs

e EXxpected value and Variance of a random variable
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Motivation: Ray Tracing
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Ray Tracing
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Ray Tracing
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Path Tracing

10




Path Tracing
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Path Tracing
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Path Tracing
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How can we analyze the noise
present in the images ?
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Probability Theory
and/or
Number Theory
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Probability Theory
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e Discrete Probability Space

e Continuous Probability Space
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Rolling a fair dice @

0 ={1,2,3,4,5,6)

e Finite outcomes: discrete random experiment
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e Finite outcomes: discrete random experiment

e (Can ask the outcome is a number: 1 or 6
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Rolling a fair dice @

0 =1{1,2,3,4,5,6}
 Finite outcomes: discrete random experiment
e Can ask the outcome is a number: 1 or 6

e Can ask the outcome is a subset, e.g. all prime numbers:{2, 3,5}
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Rolling a fair dice @

0 ={1,2,3,4,5,6)

e R1: Apart from elementary values, the focus lies on subsets of ()
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Rolling a fair dice @

0 ={1,2,3,4,5,6)

e R1: Apart from elementary values, the focus lies on subsets of ()

e R2: A probability assigns each element or each subset of {2 a
positive real value
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Rolling a fair dice @
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e R1: Apart from elementary values, the focus lies on subsets of ()

e R2: A probability assigns each element or each subset of {2 a
positive real value

The first requirement leads to the concept of o-algebra
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Rolling a fair dice @

0 ={1,2,3,4,5,6)

e R1: Apart from elementary values, the focus lies on subsets of ()

e R2: A probability assigns each element or each subset of {2 a
positive real value

The first requirement leads to the concept of o-algebra

The second to the mathematical construct of a measure
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Random number in [0,1]

(2

0 1
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Random number in [0,1]

—O—0-0-0—C0-0—»
Q - 1
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Random number in [0,1]

—O0—0O0O0-O0—C00——r
{2 0 1

 Uncountably infinite outcomes: continuous random experiment
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Random number in [0,1]

—O0—0O0O0-O0—C00——r
{2 0 1

 Uncountably infinite outcomes: continuous random experiment

e Does not make sense to ask for one number as output, e.g. 0.245
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Random number in [0,1]

—O0—0O0O0-O0—C00——r
{2 0 1

 Uncountably infinite outcomes: continuous random experiment

e Does not make sense to ask for one number as output, e.g. 0.245

e We need to ask for the probability of a region, e.g. [0.2,0.4] or [0.36,0.89]
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Random number in [0,1]

—O0—0O0O0-O0—C00——r
{2 0 1

e R1: As in discrete case, focus lies on subsets of (2, also called events

O s



Random number in [0,1]
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e R1: As in discrete case, focus lies on subsets of (2, also called events

* R2: A probability assigns each subset of () a positive real value.
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Random number in [0,1]

—O0—0O0O0-O0—C00——r
{2 0 1

e R1: As in discrete case, focus lies on subsets of (2, also called events

* R2: A probability assigns each subset of () a positive real value.

The first requirement leads to the concept of Borel o-algebra

22
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Random number in [0,1]

—O0—0O0O0-O0—C00——r
{2 0 1

e R1: As in discrete case, focus lies on subsets of {2, also called events

* R2: A probability assigns each subset of () a positive real value.

The first requirement leads to the concept of Borel o-algebra

The second to the mathematical construct of a Lebesgue measure

22
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o-Algebra

e Mathematical construct used in probability and measure theory
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o-Algebra

e Mathematical construct used in probability and measure theory

1. Take on the role of system of events in probability theory
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o-Algebra

e Mathematical construct used in probability and measure theory
1. Take on the role of system of events in probability theory

e Simply spoken: Collection of subsets of a given set ()

DES

T



o-Algebra

e Mathematical construct used in probability and measure theory
1. Take on the role of system of events in probability theory

e Simply spoken: Collection of subsets of a given set ()

A. A non-empty collection of subsets of {) that is closed under the set
theoretical operations of: countable unions, countable intersections,
and complement
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o-Algebra

e For discrete set {2 :
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o-Algebra

e For discrete set () :

1. The sigma-algebra corresponds to the power set of omega (set of all
subsets)
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o-Algebra

e For discrete set () :

1. The sigma-algebra corresponds to the power set of omega (set of all
subsets)

Q) =4{0,1}
Y = {{#},{0},{1},{0,1}}

25
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o-Algebra

e For discrete set () :

1. The sigma-algebra corresponds to the power set of omega (set of all
subsets)

2 =1{0,1} () ={a,b,c,d}
Y ={{¢},{0},{1},{0,1}} Y ={{o},{a, b}, {c,d},{a,b,c,d}}
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o-Algebra

e For continuous set ():
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o-Algebra

e For continuous set ():

A. The associated sigma algebras are the Borel sets over (), i.e., the collection
of all open sets over omega that can be generated via countable unions,
countable intersections, and complement of open sets
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o-Algebra

e For continuous set ():

A. The associated sigma algebras are the Borel sets over (), i.e., the collection
of all open sets over omega that can be generated via countable unions,
countable intersections, and complement of open sets

I =1p,q),p,q € R Fixed half-interval
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o-Algebra

e For continuous set ():

A. The associated sigma algebras are the Borel sets over (), i.e., the collection
of all open sets over omega that can be generated via countable unions,
countable intersections, and complement of open sets

I =1p,q),p,q € R Fixed half-interval
T =l|a,8) C |p,q) Collection of all half-intervals
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o-Algebra

e For continuous set ():

A. The associated sigma algebras are the Borel sets over (), i.e., the collection
of all open sets over omega that can be generated via countable unions,
countable intersections, and complement of open sets

I =1p,q),p,q € R Fixed half-interval
T =l|a,8) C |p,q) Collection of all half-intervals

Here, 1'is not a o-algebra because, generally speaking, neither the union
nor the difference of two half-intervals is a half-interval.

30

©® UNIVERSITAT
M| oes Il )ii
V SAARLANDES




o-Algebra

It is the mathematical construct that allows defining a measure
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Measure

e |n probability theory, it plays the role of a probability distribution
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Measure

e |n probability theory, it plays the role of a probability distribution

e A real-valued set function defined on a sigma-algebra that assigns each
subset of a sigma-algebra a non-negative real number.
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Measure

e |n probability theory, it plays the role of a probability distribution

e A real-valued set function defined on a sigma-algebra that assigns each
subset of a sigma-algebra a non-negative real number.

e A sigma-additive set function: i.e., the measure of the union of disjoint
sets is equal to the sum of the measures of the individual sets
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Lebesgue Measure

e Standard way of assigning measure to subsets of n-dimensional
Euclidean space.
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Lebesgue Measure

e Standard way of assigning measure to subsets of n-dimensional
Euclidean space.

e Forn=1,2 or 3, it coincides with the standard measure of length, area or
volume, respectively.

Length Area Volume
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Random Variable

e (Central concept in probability theory
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Random Variable

e (Central concept in probability theory

e Enables to construct a simpler probability space from a rather complex
one
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Random Variable

e (Central concept in probability theory

e Enables to construct a simpler probabillity space from a rather complex
one

e Correspond to a measurable function defined on a o-algebra that
assigns each element to a real number

DES

T



Random Variable

 Arandom variable X is a value chosen by some random process
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Random Variable

 Arandom variable X is a value chosen by some random process

e Random variables are always drawn from a domain: discrete (e.g., a fixed
set of probabilities) or continuous (e.g., real numbers)
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Random Variable

 Arandom variable X is a value chosen by some random process

e Random variables are always drawn from a domain: discrete (e.g., a fixed
set of probabilities) or continuous (e.g., real numbers)

e Applying a function J/ to a random variable X results in a new random
variable Y = f(X)
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Discrete Probability Space
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Discrete Random Variable

Random variable (RV):

X:Q— F Q=A{x1,29, ... , 2}
Probabilities:
{pl,pz, ;Pn}

N
> pi-1
1=1

37
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Discrete Random Variable

Example: Rolling a Die

L1 — 1,£E2 :2,2133 :3,$4:4,$5 :5,21’)6 =0

Probability of each event:

pi=1/6 ftfori=1,...,6
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Discrete Random Variable

Example: Rolling a Die
L1 — 1,£E2 — 2,2133 — 3,(1?4 — 4,%5 — 5,21’)6 =0
Probability of each event:

pi=16 fori=1,...,6 P(X =1i) =

1
6
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Discrete Random Variable

P2< X <4)=)» P(X =1
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Discrete Random Variable

P2< X <4)=)» P(X =1

4

B 11
- 6 2

1=2
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Probability mass function

e PMF is a function that gives the probability that a discrete
RV is exactly equal to some value.
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Probability mass function

e PMF is a function that gives the probability that a discrete
RV is exactly equal to some value.

e PMF is different from PDF (probability density function)
which is for continuous RVs.
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Probability mass function

Constant PMF Non-uniform PMF

0.4
0.3

I 1 1 1 1 1
6 6 6 6 6 O
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Continuous Probability Space
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Continuous Random Variable

e |n rendering, discrete random variables are less common than continuous
random variables
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Continuous Random Variable

e |n rendering, discrete random variables are less common than continuous
random variables

e Continuous random variables take on values that ranges of continuous
domains (e.g. real numbers or directions on the unit sphere)
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Continuous Random Variable

e |n rendering, discrete random variables are less common than continuous
random variables

e Continuous random variables take on values that ranges of continuous
domains (e.g. real numbers or directions on the unit sphere)

e A particularly important random variable is the canonical uniform random
variable, which we write as &
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Continuous Random Variable

£ €|0,1)
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Continuous Random Variable

£ €|0,1)
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Continuous Random Variable

—O0—0-O0-0—0C0-O0—»
0 1

e We can take a continuous, uniformly distributed random variable £ € [0, 1)
and map to a discrete random variable, choosing X Iif:
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Continuous Random Variable

0 1

e We can take a continuous, uniformly distributed random variable £ € [0, 1)
and map to a discrete random variable, choosing X Iif:

i—1 i
> pi<E<D p
=1 =1

&

X; ={1,2,3,4,5,6)

T












Continuous Random Variable

e For lighting application, we might want to define probability of sampling
illumination from each light source in the scene based on its power P,

Here, the probabillity Is relative to the total power
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Probability Density Functions
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Probability density function

—0—00-0—C0-0—

0 7 2

* Consider a continuous RV that ranges over real numbers: |0, 2), where

the probability of taking on any particular value x is proportional to the
value 2 — x

T



Probability density function

—0—00-0—C0-0—

0 7 2

* Consider a continuous RV that ranges over real numbers: |0, 2), where
the probability of taking on any particular value x is proportional to the
value 2 — x

e |tis twice as likely for this random variable to take on a value around O as
it IS to take around 1, and so forth.

51
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Probability density function

e The probability density function (PDF) formalizes this idea: it describes
the relative probability of a RV taking on a particular value.
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Probability density function

e The probability density function (PDF) formalizes this idea: it describes
the relative probability of a RV taking on a particular value.

e Unlike PMF, the values of the PDFs are not the probabilities as such: a
PDF must be integrated over an interval to yield a probability
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Probability density function

For uniform random variables: For non-uniform random variables:
1 xe€]0,1) |
p(x) = | p(x) could be any function
0 otherwise
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Probability density function

Uniform distribution Non-uniform distribution

constant pdf
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Probability density function

Uniform distribution Non-uniform distribution

constant pdf
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Probability density function

Uniform distribution Non-uniform distribution

constant pdf
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Probability density function

Uniform distribution Non-uniform distribution

constant pdf
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Probability density function

Some properties of PDFs: p(z) > 0
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Probability density function

/ p(x)dr =1 =z € |a,b)

constant pdf
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Probability density function

/ p(x)dr =1 =z € |a,b)

constant pdf
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Probability density function

/ p(x)dr =1 =z € |a,b)

constant pdf

b
Cdx =1
p(x) =C /a
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Probability density function

/ p(x)dr =1 =z € |a,b)

constant pdf

b
Cdx =1
p(x) =C /a

b
C/ dr =1
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Probability density function

/ p(x)dr =1 =z € |a,b)

constant pdf

b
Cdx =1
p(x) =C /a

b
C/ dr =1

2 P Cb—a)=1
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Probability density function

/ p(x)dr =1 =z € |a,b)

constant pdf

b
/Cd:vzl

p(z) =C a

b
C/ dr =1
: ° Cb—a)=1
1
C

:b—a

T



Probability density function

/ p(x)dr =1 =z € |a,b)

constant pdf

b
/ Cdr=1
p(z) =C a
’ 1
C'/ dr =1 p(x) =
. b—a
2 D Cb—a)=1
1
C

:b—a
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Cumulative distribution function

e The PDF p(x) is the derivative of the random variable's CDF:
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Cumulative distribution function

e The PDF p(x) is the derivative of the random variable's CDF:

_ dP(x)
- dx

p(x)

P(x) : cumulative distribution function (CDF),
also called cumulative density function

o1
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Cumulative distribution function

e The PDF p(x) is the derivative of the random variable's CDF:

_ dP(x)

dx oo

p(x)

P(x) : cumulative distribution function (CDF),
also called cumulative density function

62
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Cumulative distribution function

T p—
p(z) 0 otherwise

{1 z € [0,1)

constant pdf

T



Cumulative distribution function

p(x) = {1 v €10, 1) Pa)= [ plyds

0 otherwise

constant pdf
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Cumulative distribution function

p(x)

Non-constant pdf

T



Cumulative distribution function

p(z) Po)= [  pla)de

Non-constant pdf

T









Probability: Integral of PDF

e Given the arbitrary interval |a, b| in the domain, integrating the PDF gives
the probabillity that a RV lies inside that interval:

P(x € |a, b|) :/ p(x)dx

O s



Probability: Integral of PDF

e Given the arbitrary interval |a, b| in the domain, integrating the PDF gives
the probabillity that a RV lies inside that interval:

P(x € |a, b|) :/ p(x)dx
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Examples: Sampling PDFs
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Constant Sampling PDFs

, Random 2D 1 Jittered 2D
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Constant Sampling PDFs

, Random 2D 1 Jittered 2D
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Constant Sampling PDFs

, Random 2D 1 Jittered 2D
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Constant Sampling PDFs

Random 1D
—>
0 1
£el0,1)

Sampling a unit domain with uniform random samples

69
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Constant Sampling PDFs

Random 1D
— (e OO === O
0 1
£el0,1)

Sampling a unit domain with uniform random samples
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Constant Sampling PDFs

Random 1D
— O—0-O=-O—00D-O—>
0 1
§el0,1)

Sampling a unit domain with uniform random samples
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Constant Sampling PDFs

Random 1D

0 otherwise

o(z) = {C r e |0,1)

§el0,1)

Sampling a unit domain with uniform random samples

[a

O s



Constant Sampling PDFs

Jittered 1D

Sampling each stratum with uniform random samples

(2
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Constant Sampling PDFs

Jittered 1D

Sampling each stratum with uniform random samples

(2
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Constant Sampling PDFs

Jittered 1D

Sampling each stratum with uniform random samples
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Constant Sampling PDFs

Jittered 1D

Sampling each stratum with uniform random samples
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Constant Sampling PDFs

Jittered 1D - | |
Probability density of generating a sample
; in an 2-th stratum is given by:
| 1 plxz;) =777
LA =
N

Sampling each stratum with uniform random samples

74
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Constant Sampling PDFs

Jittered 1D

Probability density of generating a sample
in an 2-th stratum is given by:

N c 1 1+1
L pa) =0 ¢ C N
0 otherwise

Sampling each stratum with uniform random samples

lgs)
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Joint PDFs

Jittered 1D

First, we divide the domain into equal strata.
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Joint PDFs

Jittered 1D
— ] ’ First, we divide the domain into equal strata.
O—O—0-0—0-0—0O—>
A 1 1 Second, we sample the domain.
TN
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Jittered 1D

Joint PDFs

First, we divide the domain into equal strata.
Second, we sample the domain.

This implies that two samples are correlated to each other.
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Joint PDFs

Jittered 1D
— ] ’ First, we divide the domain into equal strata.
O—O—0-0—0-0—0O—>
A 1 1 Second, we sample the domain.
TN

This implies that two samples are correlated to each other.

For two different strata? and 7, what is the joint PDF for jittered sampling ?

p(xi,xj) =777

T



Conditional and Marginal PDFs
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Joint PDF

For two random variables X and X5, the joint PDF p(x1, x2) is given by:
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Joint PDF

For two random variables X and X5, the joint PDF p(x1, x2) is given by:

p(x1,z2) = p(w2|z1)p(21)
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Joint PDF

For two random variables X and X5, the joint PDF p(x1, x2) is given by:
P(5171>332) — P($2|$1)p($1)

where, - | |
X =x p(x2|x1) : conditional density function

Xo = x5 p(x1) : marginal density function

31
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Joint PDF

For two random variables X and X5, the joint PDF p(x1, x2) is given by:

p(x1,z2) = p(w2|z1)p(21)

where, - | |
X =x p(xz2|x1) : conditional density function

Xo = x5 p(x1) : marginal density function

32
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Joint PDF

For two random variables X and X5, the joint PDF p(x1, x2) is given by:

p(z1,z2) = p(z1|22)p(22)

X =x p(x1|x2) : conditional density function

Xo = x5 p(x2)| : marginal density function

DES
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Marginal PDF

p(r1) = /Rp(xl, T2)dx2

p(x2) = /Rp(xl,iliz)dim

We integrate out one of the variable.

34
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Conditional PDF

o _ p(mlvan)
p( 1| 2) P(fz)

P __ p(mlaxQ)
p( 2\ 1) p(x1)

The conditional density function is the density function for x; given that
some particular x; has been chosen.

35
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Conditional PDF

If both 1 and x> are independent then:

p(r1|r2) = p(T1)

p(r2|r1) = p(T2)

T S,



Conditional PDF

If both 1 and x> are independent then:

p(r1|r2) = p(T1)

p(r2|r1) = p(T2)

That gives:
p(z1,r2) = p(x1)p(T2)

87
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Joint PDF of
Jittered 1D Sampling

J (/

o—0—00—000—
0 1

For two different strata? and 7, what is the joint PDF for jittered sampling ?

p(xi,xj) =777

33
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Joint PDF of
Jittered 1D Sampling

J (/

o—0—00—000—
0 1

p(z1,z2) = p(z1|22)p(22)

T



Joint PDF of
Jittered 1D Sampling
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Joint PDF of
Jittered 1D Sampling

/ (i

H-..‘-...-.-’
: 1

p(Ti, Tj) = {P(xi)p(%) 17 ]

0 otherwise

91
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Joint PDF of
Jittered 1D Sampling

/ (i

H-..‘-...-.-’
: 1

p(Ti, Tj) = {P(xi)p(%) 17 ]

0 otherwaise
N2 i

p(xiaxj) — , Since, p(azz) =\
0 otherwaise

92
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Expected Value
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Expected value

» Expected value: average value of the variable

N
E[X] — Z LiPs
i=1

» example: rolling a die

E[X] =

DES
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Expected value

» Expected value: average value of the variable

N
E[X] — Z LiPs
i=1

» example: rolling a die

1 1 1 1 1 1
EX]=1-242-243-244-—+5--+6-~ =35
X R T T T Y
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Expected value

* Properties:

E[X +Y] = E[X]|+ E]Y]
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Expected value

* Properties:

E[X +Y] = E|
E[X +d = E]

>
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Expected value

* Properties:

EX+Y|=FEX|+ E|Y]
ElX +c=F|X|+c
ElcX]| = cF | X]
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Estimating expected values

To estimate the expected value of a variable

10C
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Estimating expected values

To estimate the expected value of a variable

choose a set of random values based on the probability
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Estimating expected values

To estimate the expected value of a variable
choose a set of random values based on the probabillity

average their results

10C
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Estimating expected values

To estimate the expected value of a variable
choose a set of random values based on the probabillity
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Estimating expected values

To estimate the expected value of a variable
choose a set of random values based on the probabillity

average their results

1 N
1=1

example: rolling a die
roll 3 times: {3, 1,6} — E[x]=3+1+6)/3=3.33
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Estimating expected values

To estimate the expected value of a variable
choose a set of random values based on the probabillity

average their results

1 N
1=1

example: rolling a die
roll 3 times: {3, 1,6} — E[x]=3+1+6)/3=3.33
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Estimating expected values

To estimate the expected value of a variable
choose a set of random values based on the probabillity

average their results

1 N
1=1

example: rolling a die
roll 3 times: {3, 1,6} — E[x]=3+1+6)/3=3.33
roll 9 times: {3,1,6,2,5,3,4,6,2} — E[x]
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Estimating expected values

To estimate the expected value of a variable
choose a set of random values based on the probabillity

average their results

1 N
1=1

example: rolling a die
roll 3 times: {3, 1,6} — E[x]=3+1+6)/3=3.33
roll 9 times: {3,1,6,2,5,3,4,6,2} — E[x]
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Estimating expected values

To estimate the expected value of a variable
choose a set of random values based on the probabillity

average their results

1 N
1=1

example: rolling a die
roll 3 times: {3, 1,6} — E[x]=3+1+6)/3=3.33
roll 9 times: {3,1,6,2,5,3,4,6,2} — E[x]=3.51
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Law of large numbers

By taking infinitely many samples, the error between the
estimate and the expected value is statistically zero

the estimate will converge to the right value

| N
probability | E|z| = lim —sz =1
i=1
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Variance
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Variance

» Variance: how much different from the average

o”[X] = E[(X — E[X])"]
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Variance

» Variance: how much different from the average

0*[X] = E[(X — E[X])?]
= F[X? + E[X]? — 2X E[X]]
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Variance

» Variance: how much different from the average

o’[X] = E[(X — E[X])”
= ﬁXQ E[X]* - 2X [XH
= E[X?] + E[E[X]?] - 2E[X]|E[E[X]]
= F[X?] + E[X]? — 2E[X]?

111

DES

T



Variance

» Variance: how much different from the average

0°[X] = E[(X — E[X])"]
= F[X? + E[X]? — 2X E[X]]
= E[X?] + E[E[X]*] - 2E[X]|E[E[X]]
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Variance

» Variance: how much different from the average

0°[X] = E[(X — E[X])"]
= F[X? + E[X]? — 2X E[X]]
= E[X?] + E[E[X]*] - 2E[X]|E[E[X]]
= F[X?] + E[X]? — 2E[X]?
= E[X7] - E[X]’
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Variance

» Variance: how much different from the average
(X - E[X])?

= FE[X* + F[X]* — 2XE[X]]

= E[X*] + E[E[X]"] - 2E[X]|E[E[X]]
= E[X?] + E[X])? - 2E[X])?
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Variance

- example: Rolling a die

e variance:
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Variance

- example: Rolling a die

e variance:
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Variance

- example: Rolling a die

e variance:
o?[X] =
1 1
EFlX| =1-—4+2-—+3
X] 2 ot
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Variance

- example: Rolling a die

e variance:

0*[X] = E[X"] - BIX]7

o’ X]=...=20917 \
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Monte Carlo Integration

Slide after Wojciech Jarosz
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