Computer Graphics

- Introduction -

Philipp Slusallek Pascal Grittmann

Overview

Today

- Administrative stuff
- History of Computer Graphics (CG)

General Information

Core Lecture (Stammvorlesung)

- Applied Computer Science (Praktische Informatik)
- Lectures in English

Time and Location (in presence)

```
– Mon10-12h c.t. (E1.3, HS03)
```

- (Thu 8:30h-10h s.t. (E1.3, HS03))

• ECTS:

9 credit points

Web-Page

- http://graphics.cg.uni-saarland.de/courses/
- Schedule, slides as PDF, etc.
- Literature, assignments, other information

Sign up for the course on our Web and in LSF!!!

[Do not forget to sign-out in time before the exams, if you need to]

People

Lecturers

- Philipp Slusallek, <u>slusallek@cg.uni-saarland.de</u>
- Pascal Grittmann, <u>grittmann@cg.uni-saarland.de</u>

Teaching Assistant

Philippe Weier, <u>philippe.weier@dfki.de</u>

Tutors (see web page for contact details)

- Lukas Auer
- Ben Samuel Dierks
- Leonard Butz
- Arsenii Dremin
- Philipp Ziegler

Tutorials

- Available slots are
 - Wednesday 10:00 12:00
 - Wednesday 16:00 18:00
 - Thursday 14:00 16:00
 - Friday 14:00 16:00
 - Friday 16:00 18:00
- Mandatory poll in Teams to assign your group a slot
 - (Optional but encouraged) Indicate your partner (groups of 2 max)
 - Hard deadline: 21.10. 23:59

Partially-Inverted Classroom Format

- For the first part of the lecture (until the winter break)
 - Overview lecture on every 2nd Monday
 - Summarizes all key parts, provides reading materials for details
- QA session on every other Monday
 - In the lecture hall
 - Starts with a mini-test, then you can ask anything
- No lecture on Thursdays (until January)

Regular Mini-Tests

- Exam prerequisite, mandatory, but not graded
- When?
 - At the beginning of each QA session
- What?
 - One or two exam-like exercises based on the topics from the current block
- Solutions are discussed right afterwards in the QA session

First 3 last for 2 weeks each; purely practical Weekly Assignments

Weekly assignment sheets

- Theoretical & programming assignments
- You will incrementally build your own ray tracing system
- This will be the basis for the → Rendering Competition

Grading

- Results of the exercises will contribute to the final grade
- Bonus points (towards the exam) are possible

Handing in assignments

- Theoretical: At beginning of lecture
- Code: See exercise sheet (usually by email to tutor)

Tutorials

Push tagged commit to GitLab, submit tag on Teams

Discuss lectures and any issues you might have with TAs

Groups of max. 2 students allowed

- Each one must be able to present and explain his/her results!
- Please state who did what!!!

Grading

Weekly Assignments

exact amount TBD

- Counts 26% towards final grade (with ±20% bonus points)
- Rendering Competition (exam prereq.)
 - Counts 10% towards final grade
 - Grading: Artistic quality (jury)
 - Groups of max. 2 students (but higher requirements then)

Exams

- Mid-term (exam prereq.), counts 20% towards final grade
- Final exam counts towards final grade
- Minimum: 50% to pass (in each of the above)

Cheating

- 0% of assignment grade on first attempt
- Possibility to fail the entire course if repeated

Chance for Repeated Exam

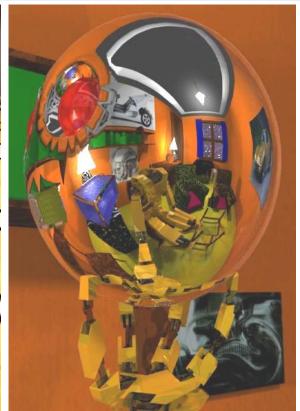
— Oral exam (if pessible) at the end of the semester break

Rendering Competition

Task

- Create a realistic image of a virtual environment
- Incorporate additional technical features into your ray tracer
- Bonus points count towards exam
- Creative design of a realistic and/or aesthetic 3D scene
- Modeling and shading

Hand-out in course


- You can work on it parallel to the course
- Deadline will be announced (see Web page)

Results:

- One rendered image
- Web page with technical detail info

Rendering Competition

lllek

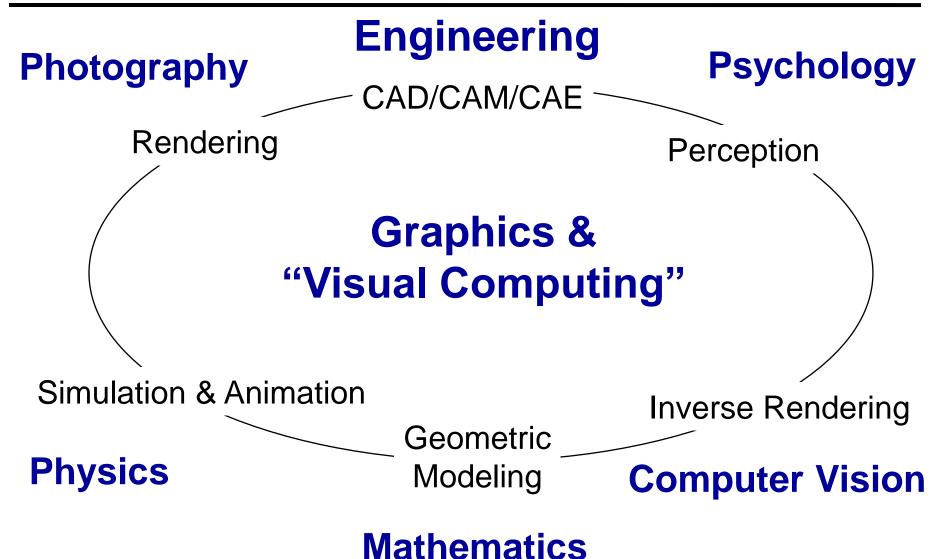
Rendering Competition

Text Books

Suggested Readings:

- Peter Shirley: Fundamentals in CG, 4. Ed, AK Peters, 2016
 5th edition now out
- Matt Pharr, Wenzel Jakob, Greg Humphreys: Physically Based Rendering: From Theory to Implementation, Morgan Kaufmann Series, 3. Ed., 2016, now freely available: http://www.pbr-book.org/
- John Hughes, et al.: Computer Graphics Principles and Practice, Addison-Wesley, 3. Ed, 2013
- Eric Haines and Tomas Akenine-Möller: Ray-Tracing Gems, http://www.realtimerendering.com/raytracinggems
- Thomas Akenine-Möller, Eric Haines, et al., Real-Time Rendering,
 AK Peters, 4th Ed., 2018

Older


- A. Glassner: An Introduction to Ray-Tracing, Academic Press, '89
- D. Ebert: Texturing & Modeling A procedural approach, MK, '03

Course Syllabus (Tentative)


- Overview of Ray Tracing
- Geometry Intersections
- Spatial Index / Acceleration Structures
- Vector Algebra Review
- Geometric Transformations
- Light Transport / Rendering Equation
- Material Models
- Shading
- Texturing
- Spectral Analysis / Sampling Theory
- Anti-Aliasing
- Distribution Ray Tracing
- Human Vision
- Color

- Splines
- Clipping
- Rasterization
- OpenGL & Shading Language
- Volumes

What is Computer Graphics?

What is Computer Graphics?

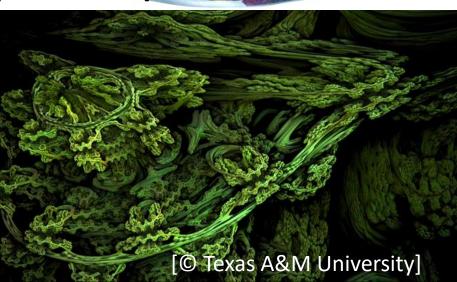


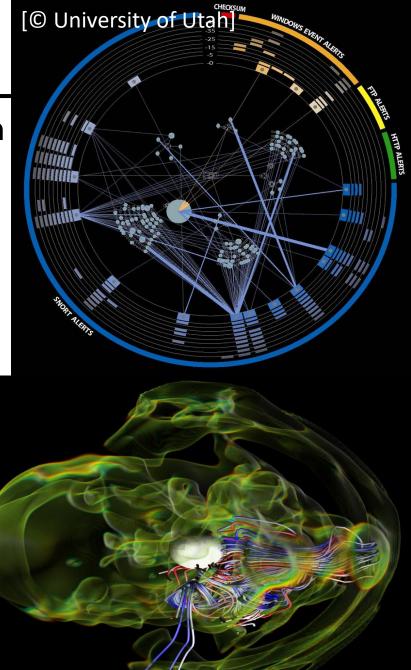
Entertainment Industry: Special effects for motion pictures

Entertainment Industry: Animated films

Applications Simulation & Augmented Reality [© NASA] [© Renault] [© ENIB] [© University of North Carolina]

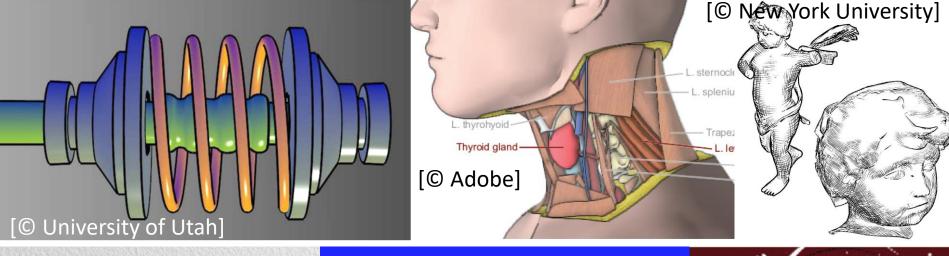
Industrial Design & Engineering: Automotive / Aerospace





[© Saarland University]

Scientific/Information Visualization



[© Oak Ridge National Laboratory]

- Non-photorealistic rendering: art/stylized/pen&ink illustration
- Painterly/Toon Shading, Computational Aesthetics

Wrap-Up

Computer Graphics

Rendering, Modeling, Visualization, Animation, Imaging, ...

Young, dynamic area

- "Everything is possible" mentality
- Progress driven by research & technology
- Flexible transfer between research and industry

Big industry!

- Intel, Nvidia, AMD, Imagination, ARM, ...
- Automotive, aerospace, engineering, ...
- Entertainment: games, film, TV, animations, ...

Innovation areas

Digital Reality, Visualization, Industrie-4.0, Big Data, Smart Cities, ...

Interdisciplinary field

 Relations to mathematics, physics, engineering, psychology, art, entertainment, ...