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What about soft shadows?

• Point, spot, and directional lights provide hard shadows only

• For soft shadows, we need, e.g., area lights

• Light arrives from all points on the area (infinitely many)

➔ No simple analytic solution for the integral
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𝐿o 𝑥, 𝜔o = 𝐿e 𝑥, 𝜔o +න
Ω

𝐿i 𝑥, 𝜔i 𝑓r 𝑥, 𝜔i, 𝜔o cos 𝜃i 𝑑𝜔i



Monte Carlo integration
The favored numerical integration method for rendering
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Formalizing: First, lets recall the Riemann sum

න
𝑋

𝑓 𝑥 𝑑𝑥 ≔ lim
Δ𝑥→0

෍

𝑖

𝑓 𝑥𝑖 Δ𝑥

Computer Graphics - Materials and Sampling 6



Why not use a Riemann sum?

• Rigid structure:

• Sample count and sample placement are linked

• Adaptive sample placement is tricky

• Exacerbated in higher dimensions:

• If we take 4 samples along each dimension

➔ Need to compute 4𝑑 samples with prescribed positions that need careful tracking
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Monte Carlo is like a randomized Riemann sum

න
𝑋

𝑓 𝑥 𝑑𝑥 ≈
1

𝑁
෍

𝑖=1

𝑁
𝑓 𝑥𝑖
𝑝 𝑥𝑖

probability density (PDF) of the sample

1

𝑝 𝑥
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Why does it work? Law of large numbers

• The expected value of the Monte Carlo estimator is the desired integral

𝐸
1

𝑁
෍

𝑖=1

𝑁
𝑓 𝑥𝑖
𝑝 𝑥𝑖

= 𝐸
𝑓 𝑥

𝑝 𝑥
= න

𝑋

𝑓 𝑥

𝑝 𝑥
𝑝 𝑥 𝑑𝑥

• The more samples we use, the more accurate the estimate (law of large numbers)

Individual sample values Average after N samples
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Monte Carlo integration is flexible, scalable, and simple

• Can add arbitrary numbers of samples at arbitrary times

• No bookkeeping:

• Samples are independent

• Samples processed one at a time

➔ Trivial to parallelize

➔ Trivially extends to arbitrary number of dimensions
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I got some MC 
samples

Great! Let’s 
merge them!

I also computed a 
Riemann sum!

Good for you...

𝐴 + 𝐵

2

A trivial average of the results

A waste of time. 
(Without excessive coordination)



Error manifests as noise, reduces at 𝑂
1

𝑛
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1 sample per pixel 8 samples per pixel 100 samples per pixel



If our samples are not focused on important paths, we’ll need more
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100 samples per pixel 1000 samples per pixel 4000 samples per pixel

Here, the caustics are “hard to find” and remain noisy for a long time



How to sample

• Given: uniform random numbers from RNG

• Design a transformation 𝑥 = 𝑡 𝑢

• Surjective mapping to points in desired domain

• To achieve the desired probability density:

• Find 𝑡 𝑢 such that 
𝑑

𝑑𝑢
𝑡 𝑢 =

1

𝑝 𝑥

• Multiple methods exist, e.g.,

• CDF inversion

• Rejection sampling

• Box-Muller transform
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Pseudo RNG

uniform random 
𝑢 ∈ 0,1 𝑑

Sample point 𝑥

𝑡 𝑢



Example: uniformly sampling a triangle

• Input: uniform random numbers 𝑢, 𝑣

1. Map to barycentric coordinates

• 𝑠 = 1 − 𝑢

• 𝑡 = 𝑣 𝑢

2. Compute position from triangle vertices 𝑣1, 𝑣2, 𝑣3

• 𝑥 = 𝑠𝑣1 + 𝑡𝑣2 + 1 − 𝑠 − 𝑡 𝑣3

• Output: random point 𝑥 on triangle with PDF 𝑝 𝑥 =
1

𝐴
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Example: sampling the cosine hemisphere

• Input: uniform random numbers 𝑢, 𝑣

1. Map to spherical coordinates

• 𝜃 = cos−1 𝑣

• 𝜙 = 2𝜋 𝑢

2. Map to cartesian coordinates

• 𝜔 =
sin 𝜃 cos𝜙
sin 𝜃 sin𝜙
cos 𝜃

• If you’re clever: use cos 𝜃 = 𝑣 and sin 𝜃 = 1 − 𝑣

• Output: random direction 𝜔 with PDF 𝑝 𝜔 =
cos 𝜃

𝜋
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For more on Monte Carlo: Realistic Image Synthesis lecture

• How to derive these sample transformations

• Improving efficiency, e.g., by

• Combining multiple PDFs via Multiple Importance Sampling

• Adapting PDFs on-the-fly while rendering to focus sampling on important parts

• Adapting sample counts on-the-fly

• Control variates
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Reading materials

• Chapter 2 of: Eric Veach. Robust Monte Carlo methods for light transport simulation. PhD thesis. 

1997. https://graphics.stanford.edu/papers/veach_thesis/thesis-bw.pdf

• Section 2.2 of: Pascal Grittmann. Rethinking multiple importance sampling for general and 

efficient Monte Carlo rendering. PhD thesis. 2023. 

https://randomrays.eu/content/publications/phd/thesis.pdf
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https://graphics.stanford.edu/papers/veach_thesis/thesis-bw.pdf
https://randomrays.eu/content/publications/phd/thesis.pdf


Rendering direct illumination with 
Monte Carlo
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Environment maps query incoming radiance from an image

• 𝐿𝑖 𝜔, 𝑥 = 𝐼
𝜃

𝜋
ℎ,

𝜙

2𝜋
𝑤 for all points 𝑥 in the scene

• 𝐼 is an image with height ℎ and width 𝑤
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𝜔

𝜙

𝜃

2𝜋0
𝜋

0

𝜙

2𝜋
𝑤

𝜃

𝜋
ℎ

(other mappings are possible, too, like cube maps)



A simple environment map estimator

• Goal: compute the reflected radiance from the rendering equation:

𝐿r = න
Ω

𝑓𝑟𝐿𝑖 cos 𝜃𝑖 𝑑𝜔𝑖

• where 𝐿𝑖 is given by the environment map value for direction 𝜔𝑖

1. Sample a direction 𝜔𝑖 (e.g., cosine hemisphere or uniform sphere sampling)

2. Compute the Monte Carlo estimate

𝐿r =
𝑓𝑟𝐿𝑖 cos 𝜃𝑖
𝑝 𝜔𝑖

3. Repeat 𝑛 times and average

𝐿𝑟 ≈
1

𝑛
෍

𝑘=1

𝑛

𝐿r 𝑘
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Area lights can be handled the same way

1. Sample a direction 𝜔𝑖

2. Trace a ray and compute

𝐿r = ൞

0, if no light hit

𝐿𝑒 𝑦 𝑓𝑟 cos 𝜃𝑖
𝑝 𝜔𝑖

, if 𝑦 is on a light
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𝐿𝑒𝑓𝑟 cos 𝜃

𝑝 𝜔

0
0



Can we sample only directions towards a light?
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wasted



Area integral version of the rendering equation

• We can do a change of variables

• Integral over directions ➔ Integral over visible area

• Substitute 𝜔 = 𝑥𝑦 =
𝑦−𝑥

𝑦−𝑥

න
Ω

𝑓 𝜔 𝑑𝜔 = න
𝐴

𝑓 𝑥𝑦 𝑉 𝑦
𝑑𝜔

𝑑𝑦
𝑑𝑦

• Introduces a Jacobian determinant

𝑑𝜔

𝑑𝑦
=
cos 𝜃 𝑦 → 𝑥

𝑥 − 𝑦 2

• Applied to the rendering equation

𝐿𝑟 𝑥, 𝜔𝑜 = න
𝐴

𝐿𝑖 𝑥, 𝑥𝑦 𝑓𝑟 𝑥, 𝜔𝑜, 𝑥𝑦 cos 𝜃 𝑥 → 𝑦 𝑉 𝑦
cos 𝜃 𝑦 → 𝑥

𝑥 − 𝑦 2
𝑑𝑦
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𝜃 𝑥 → 𝑦

𝜃 𝑦 → 𝑥

𝑥

𝑦



Applying Monte Carlo integration to area lights

1. Uniformly sample point on the light

• 𝑝 𝑦 =
1

𝐴

• (Because PDFs must integrate to one just like discrete probabilities must sum to one)

2. Trace a shadow ray to evaluate 𝑉 𝑥, 𝑦

3. Compute the remaining terms in the integrand

4. Divide the result by the PDF

5. Repeat 𝑛 times to obtain the Monte Carlo estimate

෍

𝑘=1

𝑛

𝐿𝑒 𝑓𝑟 cos 𝜃 𝑥 → 𝑦𝑘 𝑉 𝑥, 𝑦𝑘
cos 𝜃 𝑦𝑘 → 𝑥

𝑥 − 𝑦𝑘
2

𝐴

𝑛
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Area sampling is often more effective
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Direction sampling Area sampling



Direction sampling is more effective for large lights and glossy 
surfaces
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Direction sampling Area sampling



𝐿

Handling many light sources

1. Select a random light with discrete probability 𝑃 𝐿

• e.g., uniform, or proportional to flux of the light

2. Sample point 𝑦 ∈ 𝐿

3. Compute estimate as with a single light

4. Divide by 𝑃 𝐿

• Many ways to improve on this... But not during this course 
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𝑥

𝑦



Path tracing
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What about indirect (“global”) illumination?
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The rendering equation is recursive

𝐿o 𝑥, 𝜔o = 𝐿e 𝑥, 𝜔o +න
Ω

𝐿i 𝑥, 𝜔𝑖 𝑓r 𝑥, 𝜔i, 𝜔o cos 𝜃𝑖 𝑑𝜔i

= 𝐿𝑜 𝑦,−𝜔𝑖
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න
Ω

න
Ω

න
Ω

𝐿𝑖 = 𝐿𝑜

𝐿𝑖 = 𝐿𝑜



A simple path tracer

1. Trace ray from the camera

2. Add emitted radiance 𝐿𝑒

3. Compute direct illumination via shadow rays

4. Sample direction 𝜔𝑖 to continue the path

5. Trace ray to find the next point
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for directly visible lights only, so we don’t count it twice!

terminate if maximum depth reached



For more on path tracing...

• Like tracing paths from lights and camera,

• better sampling procedures,

• or adaptive sampling

• ... You’ll have to wait for the Realistic Image Synthesis lecture 
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Material models for glass and metal
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The refractive index

• Speed of light in vacuum 𝑐 = 299,792,458
𝑚

𝑠

• Refractive index: relative speed of light inside medium

• 𝜂 =
𝑐

𝑣

• Typical values

• Vacuum: 𝜂 = 1

• Air: 𝜂 = 1.000293

• Water at 20°C: 𝜂 = 1.33

• Window glass: 𝜂 = 1.52

• Depends on temperature, wavelength, mechanical stress, polarization, ...
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Snell’s law – refraction at an optical boundary

sin 𝜃1
sin 𝜃2

=
𝜂2
𝜂1

Computing the refracted direction – Step 1

1. cos 𝜃𝑖 = 𝜔𝑖 , 𝑛

2. sin2 𝜃𝑖 = 1 − cos2 𝜃𝑖

• Using: cos2 𝑥 + sin2 𝑥 = 1

3. sin2 𝜃𝑜 =
𝜂𝑖

𝜂𝑜

2
sin2 𝜃𝑖

• Using Snell’s law
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𝜃𝑜

𝜃𝑖

𝜂𝑖

𝜂𝑜

𝜔𝑖

𝜔𝑜



Total internal reflection (TIR)

• If sin2 𝜃𝑜 =
𝜂𝑖

𝜂𝑜

2
sin2 𝜃𝑖 ≥ 1

• Refracted direction does not exist, all light is reflected
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𝜂𝑖
𝜂𝑜

2

sin2 𝜃𝑖 < 1
𝜂𝑖
𝜂𝑜

2

sin2 𝜃𝑖 = 1
𝜂𝑖
𝜂𝑜

2

sin2 𝜃𝑖 > 1



Computing the refracted direction – Step 2

• Assuming TIR does not occur

1. cos 𝜃𝑜 = 1 − sin2 𝜃𝑜

• Using: cos2 𝑥 + sin2 𝑥 = 1

2. 𝜔𝑜 = −
𝜂𝑖

𝜂𝑜
𝜔𝑖 +

𝜂𝑖

𝜂𝑜
cos 𝜃𝑖 − cos 𝜃𝑜 𝑛

• Using Snell’s law again and some trigonometry
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𝑛

𝜃𝑜

𝜃𝑖

𝜂𝑖

𝜂𝑜

𝜔𝑖

𝜔𝑜



Fresnel equations

• How much light is reflected? How much refracted?

➔ Quantified by the Fresnel coefficient 𝐹𝑟

• Depends on incident angle and polarization
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Less reflection when looking straight down Less reflection through polarized sunglasses

𝐹𝑟

1 − 𝐹𝑟



S and P Polarization on the plane of incidence

• Light is a transverse wave (oscillates perpendicularly to direction of travel)

• Polarization is the orientation of this oscillation

• Can be expressed as linear combination of

• Parallelly polarized light

• (“P” from German “parallel”)

• Orthogonally polarized light 

• (“S” from German “senkrecht”)
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𝜔𝑖 𝜔𝑜

𝑛



Fresnel term for dielectrics

• Assuming unpolarized light,

• Where
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𝑟𝑝 =
𝜂𝑜 cos 𝜃𝑖 − 𝜂𝑖 cos 𝜃𝑜
𝜂𝑜 cos 𝜃𝑖 + 𝜂𝑖 cos 𝜃𝑜

𝑟𝑠 =
𝜂𝑖 cos 𝜃𝑖 − 𝜂𝑜 cos 𝜃𝑜
𝜂𝑖 cos 𝜃𝑖 + 𝜂𝑜 cos 𝜃𝑜

𝐹𝑟 =
𝑟𝑝
2 + 𝑟𝑠

2

2



Fresnel term for conductors

• Conductors reflect 𝐹𝑟 and absorb the rest

• Assuming unpolarized light,

• Where

• 𝜅 is the absorption coefficient and 𝜂 the refractive index
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𝐹𝑟 =
𝑟𝑝
2 + 𝑟𝑠

2

2

𝑟𝑝
2 =

𝜂2 + 𝜅2 cos2 𝜃 − 2𝜂 cos 𝜃 + 1

𝜂2 + 𝜅2 cos2 𝜃 + 2𝜂 cos 𝜃 + 1

𝑟𝑠
2 =

𝜂2 + 𝜅2 − 2𝜂 cos 𝜃 + cos2 𝜃

𝜂2 + 𝜅2 + 2𝜂 cos 𝜃 + cos2 𝜃

𝜼 𝜿

Gold 0.370 2.820

Silver 0.177 3.638

Copper 0.617 2.630

Steel 2.485 3.433



Microfacet BSDFs
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Smooth versus rough surface appearances
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Smooth Smooth RoughRough



Microscopic detail – The microfacet model
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Smooth surface – perfect reflection Rough surface – “wider” reflection

• These “microfacets” are too small to be seen individually

• We don’t model them explicitly (too expensive)

• Instead: Model their average, statistical effect as part of the BSDF



We describe microfacet models by the distribution of normals
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Uniformly spread normals
➔ Rough surface

More focused normals
➔ Smooth surface

• Many different models possible.

• Differ, e.g., in the choice of primitive geometry assumed for the microfacets

• e.g., V-grooves, spheres, ellipsoids, ...



The Trowbridge-Reitz normal distribution function (NDF)

• Assumes ellipsoidal microgeometry

• Parameters 𝛼𝑥 and 𝛼𝑦 control the ellipsoid shape

• Reciprocal size of the ellipsoid along each surface tangent

• Larger ellipsoids → smaller 𝛼𝑥 / 𝛼𝑦 → smoother surface

• Anisotropic appearance if 𝛼𝑥 ≠ 𝛼𝑦
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Reinvented by Walter et al. 2007 under the name “GGX”

Expressed in shading space
i.e., normal 𝑛 is the z-axis

𝑡𝑦

𝑡𝑥𝑛𝑚𝛼𝑥

𝛼𝑦

𝑡𝑦

𝑡𝑥

𝑛

Anisotropic Isotropic



The Trowbridge-Reitz normal distribution function (NDF)

• The probability density of microfacet normal 𝑛𝑚

• 𝜃𝑚 and 𝜙𝑚: spherical coordinates of microfacet normal 𝜔𝑚
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Microfacet effects

• Microfacets occlude each other

• Not the entire surface is visible to the camera ➔Masking

• Not the entire surface is lit by the light ➔ Shadowing

• Light scatters between microfacets
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The masking function

• What fraction of microfacets with normal 𝜔𝑚 is visible from 𝜔?

• 0 ≤ 𝐺 𝜔,𝜔𝑚 ≤ 1

• For Trowbridge-Reitz, this is
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The masking-shadowing function

• Bidirectional form of 𝐺

• Models the masking and shadowing between a pair of directions
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A Microfacet BRDF assuming mirror-like microfacets

• Given a pair of directions 𝜔𝑖 and 𝜔𝑜

• Compute the “half vector” 𝜔ℎ: the normal of a mirror-like microfacet that will reflect 𝜔𝑖 to 𝜔𝑜
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𝜔ℎ =
𝜔𝑖 + 𝜔𝑜
𝜔𝑖 + 𝜔𝑜

𝜔ℎ

𝜔𝑖

𝜔𝑜

𝜔𝑖

𝜔ℎ

𝜔𝑖

𝜔𝑜

𝑛



A Microfacet BRDF assuming mirror-like microfacets
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𝑓𝑟 𝑥, 𝜔𝑖 , 𝜔𝑜 =
𝐷 𝜔ℎ 𝐺 𝜔𝑖 , 𝜔𝑜 𝐹𝑟 𝜔𝑜, 𝜔ℎ

4 cos 𝜃𝑖 cos 𝜃𝑜

𝜔ℎ

𝜔𝑖

𝜔𝑜

𝑛

Probability that a microfacet has normal 𝜔ℎ
Geometry masking

Fresnel term on the 
mirror-like microfacet

Normalization factor 
(energy conservation)



Microfacet BRDFs and energy conservation

• “White furnace test”

• 𝐿𝑖 = 1 from all directions, image should be white

• Darkening = energy loss
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Often unaccounted for

𝛼 = 0.2 𝛼 = 0.6 𝛼 = 0.6 with multi-scatter



BSDF sampling is helpful on glossy surfaces

• Generate directions proportional to the BRDF

• 𝑝 𝜔𝑖 ∝ 𝑓𝑟 𝑥, 𝜔𝑖 , 𝜔𝑜

• E.g., for a microfacet BRDF:

1. Sample a microfacet normal (“half vector”) proportional to the NDF 𝐷 𝜔ℎ

2. Reflect 𝜔𝑜 about this normal to get 𝜔𝑖
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Combined BSDFs
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Example: a metallic-roughness model

• Two components:

• Microfacet BRDF 𝑓𝑚 with a conductor Fresnel term

• Diffuse BRDF 𝑓𝑑

• Additional parameter: “metallic” 𝑚

• Interpolates between the two

𝑓𝑟 = 𝑚𝑓𝑚 + 1 −𝑚 𝑓𝑑

• To sample this with a probability 𝑝 𝜔 ∝ 𝑚𝑓𝑚 + 1 −𝑚 𝑓𝑑:

• Decide between diffuse and microfacet 

• with probability 𝑚 for the former, 1 − 𝑚 for the latter

• Sample the selected component
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𝑚 = 0.9

𝑚 = 0.1



Layer models
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Example from: Jakob et al. 2014. “A Comprehensive Framework for Rendering Layered Materials”



What else is possible with materials?
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Capturing BSDF data
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Example from: Dupuy and Jakob 2018. “An Adaptive Parameterization for Efficient Material Acquisition and Rendering”

Dataset and interactive viewer: https://rgl.epfl.ch/materials

https://rgl.epfl.ch/materials


Fabrics, hair, and fur
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Example from Yan et al. 2017. “An Efficient and Practical Near and Far Field Fur Reflectance Model”



Pearlescence

• Wave-optical interference causes colorful effects

• Can be modelled as part of the BSDF

Computer Graphics - Materials and Sampling 62

Example from: Guillén et al. 2020. A General Framework for Pearlescent Materials



Subsurface scattering approximations with the BSSRDF

• Light enters at one point, leaves at another

• Extends the BSDF with another parameter: 𝑓 𝑥, 𝑦, 𝜔𝑖 , 𝜔𝑜
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And many, many, many more



Reading materials

• https://www.pbr-book.org/4ed/Reflection_Models

• Trowbridge & Reitz. “Average irregularity representation of a rough surface for ray reflection“ 1974

• https://pharr.org/matt/blog/images/average-irregularity-representation-of-a-rough-surface-for-ray-

reflection.pdf

• Walter et al. “Microfacet Models for Refraction through Rough Surfaces” 2007

• Eric Heitz. “Sampling the GGX Distribution of Visible Normals” 2018. 

• https://jcgt.org/published/0007/04/01/paper.pdf
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https://www.pbr-book.org/4ed/Reflection_Models
https://pharr.org/matt/blog/images/average-irregularity-representation-of-a-rough-surface-for-ray-reflection.pdf
https://pharr.org/matt/blog/images/average-irregularity-representation-of-a-rough-surface-for-ray-reflection.pdf
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Volumes

Computer Graphics - Materials and Sampling 66



Real-world objects are not thin shells of emptiness
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The thin-shell surface model we assumed so far Volumetric scattering underneath surfaces



Responsible for subsurface scattering
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(c) Lernert & Sander

Light enters at one point, scatters underneath, leaves at another



Responsible for the color of liquids
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Light is absorbed as it travels through the volume

Some wavelengths (colors) more than others



Not all volumes have a surrounding surface
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Like smoke, fog, or gases



Volumes scatter, emit, or absorb light
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Light interacts with particles in the volume

• Modeling individual particles is not practical

• Instead: aggregate into statistics

• Same idea as microfacet BSDFs

• Parameters:

• Absorption coefficient 𝜇𝑎

• Fraction of radiance absorbed per unit distance

• Scattering coefficient 𝜇𝑠

• Fraction scattered (in or out) per unit distance

• Emission 𝐿𝑒

• Phase function 𝑓𝑝

• Analog of the BSDF on surfaces
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Volume Representation

• Homogeneous:

• Volume parameters are the same everywhere

• Heterogeneous:

• Parameters vary across the volume

• Can be represented using 3D textures
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Representation Example: OpenVDB

• https://www.openvdb.org/

• Hierarchical voxel representation
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https://www.openvdb.org/


Data Acquisition Examples

• Real-world measurements via tomography

• Simulation, e.g.,

• Fluids,

• Fire and smoke,

• Fog
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https://docs.blender.org



Rendering Volumes
Mathematical Formulation of Volumetric Light Transport
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• Compute 𝐿𝑜(𝑥, 𝜔𝑜) using the rendering equation

So far: Assume Vacuum
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𝑥



Attenuation = Absorption + Out-Scattering

• Every point in the volume might absorb light or scatter it in other directions

• Modeled by absorption and scattering densities: 𝜇𝑎 𝑧 and 𝜇𝑠 𝑧
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http://commons.wikimedia.org

𝑥
𝑎 𝑏

𝐿𝑖 = ?𝐿0 𝑥
𝑧



Computing Absorption – Intuition 

• Consider a small segment Δ𝑧

• Along that segment, radiance is reduced from 𝐿 to 𝐿′

• Let 𝜇𝑎 be the fraction of radiance absorbed per unit distance

• 𝐿′ − 𝐿 = −𝜇𝑎 Δ𝑧 𝐿
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𝑎 𝑏Δ𝑧

𝐿𝐿′



Computing Absorption – Exponential Decay 

• Δ𝐿 = −𝜇𝑎 𝐿 Δ𝑧

• For infinitely small Δ𝑧

• 𝑑𝐿 = −𝜇𝑎 𝐿 𝑑𝑧

•
𝑑𝐿

𝑑𝑧
= −𝜇𝑎𝐿

• A differential equation that models exponential decay

• Solution: 𝐿 𝑎 = 𝐿𝑜 𝑥 𝑒− 𝑏׬
𝑎
𝜇𝑎 𝑡 𝑑𝑡
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𝑥

𝐿 𝑏 = 𝐿𝑜 𝑥

𝐿 𝑎

𝑎 𝑏Δ𝑧

𝐿𝐿′



Computing Out-Scattering

• Same as absorption, only different factor!

• 𝜇𝑠 𝑧 : fraction of light scattered at point 𝑧

• 𝐿 𝑎 = 𝐿𝑜 𝑥 𝑒− 𝑏׬
𝑎
𝜇𝑠 𝑡 𝑑𝑡
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Computing Attenuation

• Fraction of light that is neither absorbed nor out-scattered

• 𝜇𝑡 = 𝜇𝑎 + 𝜇𝑠

• 𝐿 𝑎 = 𝐿𝑜 𝑥 𝑇 𝑎, 𝑏

• Attenuation: 𝑇 𝑎, 𝑏 = 𝑒− 𝑏׬
𝑎
𝜇𝑡 𝑡 𝑑𝑡
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𝑥
𝑎 𝑏

𝑧



Computing Attenuation – Homogeneous 

• Simple case: constant density / attenuation

• 𝜇𝑡 𝑧 = 𝜇𝑡 ∀𝑧

• 𝑇 𝑎, 𝑏 = 𝑒− 𝑏׬
𝑎
𝜇𝑡 𝑡 𝑑𝑡 = 𝑒−(𝑎−𝑏)𝜇𝑡

Computer Graphics - Materials and Sampling 83

𝑥
𝑎 𝑏

𝑧

Heterogeneous attenuation is harder
→We’ll cover it in the summer term lecture

distance travelled in the volume



Every Point Might Emit Light

• Assume 𝑧 emits 𝐿𝑒 𝑧 towards 𝑎

• Some of that light might be absorbed or out-scattered: It is attenuated 

• 𝐿 𝑎 = 𝐿𝑒 𝑧 𝑇 𝑧, 𝑎

• Happens at every point along the ray!

• 𝐿 𝑎 = 𝑎׬
𝑏
𝐿𝑒 𝑧 𝑇 𝑧, 𝑎 𝑑𝑧

• Can be estimated via MC:

• Sample random distance 𝑧 ∈ 𝑎, 𝑏
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𝑎 𝑏

𝑧

http://wikipedia.org



Volumetric Direct Illumination

• Account for the (attenuated) direct illumination at every point 𝑧

• Similar to the rendering equation:

• 𝐿𝑜 𝑧, 𝜔𝑜 = Ω׬ 𝐿𝑖 𝑧, 𝜔𝑖 𝑓𝑝 𝜔𝑖 , 𝜔𝑜 𝑑𝜔𝑖

• Integration over the whole sphere Ω

• The phase function 𝑓𝑝 takes on the role of the BSDF

Computer Graphics - Materials and Sampling 85

𝑎 𝑏

𝑧

𝜔𝑖

𝜔𝑜



Phase Functions

• 𝐿𝑜 𝑧, 𝜔𝑜 = Ω׬ 𝐿𝑖 𝑥, 𝜔𝑖 𝒇𝒑 𝝎𝒊, 𝝎𝒐 𝑑𝜔𝑖

• Describe what fraction of light is reflected from 𝜔𝑖 to 𝜔𝑜

• Similar to BSDF for surface scattering

• Simplest example: isotropic phase function

• 𝑓𝑝 𝜔𝑖 , 𝜔𝑜 =
1

4𝜋

• (energy conservation: ׬Ω
1

4𝜋
𝑑𝜔 = 1)
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Example: Henyey-Greenstein phase function

• 𝑓𝑝 𝜔𝑖 , 𝜔𝑜 =
1

4𝜋

1−𝑔2

1+𝑔2+2𝑔 cos 𝜔𝑖,𝜔𝑜

3
2

• 𝑔: asymmetry (scalar)

• cos 𝜔𝑖 , 𝜔𝑜 : cosine of the angle formed by 𝜔𝑖 and 𝜔𝑜
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Henyey-Greenstein: Asymmetry Parameter

• 𝑔 = 0: isotropic

• Negative 𝑔: back scattering

• Positive 𝑔: forward scattering 
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http://coclouds.com

Forward Scattering

http://commons.wikimedia.org

Back Scattering



How to Estimate Volume Direct Illumination

• Reflected radiance at a point 𝑧: 

• 𝐿𝑜 𝑧, 𝜔𝑜 = Ω׬ 𝐿𝑖 𝑥, 𝜔𝑖 𝑓𝑝 𝜔𝑖 , 𝜔𝑜 𝑑𝜔𝑖

• In our framework:

• Sum over all point lights (as for surfaces)

• Trace shadow ray (as for surfaces)

• Estimate attenuation along the shadow ray (as for surfaces)
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𝑎 𝑏

𝑧

𝜔𝑖

𝜔𝑜



Putting it all Together
A Simple Volume Integrator
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A Simple Volume Integrator

• Estimate direct illumination at 𝑥

• If volume: continue straight ahead until no volume (yields intersections y, z)

𝑥 𝑦
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𝑦′



A Simple Volume Integrator

• Estimate direct illumination at x (as before)

• If volume: continue straight ahead until no volume (yields intersections y, z)

• Sample scatter distance 𝑧

• Add attenuated emission from 𝑧 to 𝑥

• Add attenuated in-scattered direct light 

𝑥 𝑦 𝑦′𝑧
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A Simple Volume Integrator

• Estimate direct illumination at x (as before)

• If volume: continue straight ahead until no volume (yields intersections y, z)

• Sample scatter distance 𝑧

• Add attenuated emission from 𝑧 to 𝑥

• Add attenuated in-scattered direct light 

• Compute direct light at 𝑦 and 𝑦′

• Attenuate shadow rays through volume

𝑥 𝑦𝑧
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𝑦′



Reading materials

• https://www.pbr-book.org/4ed/Volume_Scattering
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https://www.pbr-book.org/4ed/Volume_Scattering


Summary
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Now we know how to...

• use Monte Carlo integration to compute soft shadows and global illumination

• model non-trivial surface appearances with BSDFs

• model (simple) volumetric scattering effects
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