
Light transport basics
Computer Graphics 24/25 – Lecture 2

𝐿o 𝑥, 𝜔o = 𝐿e 𝑥, 𝜔o +න
Ω

𝐿i 𝑥, 𝜔i 𝑓r 𝑥, 𝜔i, 𝜔o cos 𝜃i 𝑑𝜔i

Last time

Computer Graphics 24/25 - Lecture 1 2

Geometries

Camera model

Light sources

Volumes

Materials & Textures

Today

Computer Graphics 24/25 - Lecture 1 3

Geometries

Camera model

Light sources

Volumes

Materials & Textures

Rendering equation

The heart of rendering

𝐿o 𝑥, 𝜔o = 𝐿e 𝑥, 𝜔o +න
Ω

𝐿i 𝑥, 𝜔i 𝑓r 𝑥, 𝜔i, 𝜔o cos 𝜃i 𝑑𝜔i

... and a guaranteed exam question

Outgoing light Emitted light Reflected light

𝜔𝑜

𝑛

𝑥

The heart of rendering

𝐿o 𝑥, 𝜔o = 𝐿e 𝑥, 𝜔o +න
Ω

𝐿i 𝑥, 𝜔i 𝑓r 𝑥, 𝜔i, 𝜔o cos 𝜃i 𝑑𝜔i

... and a guaranteed exam question

Outgoing light Emitted light Reflected light

"sum" over light from all directions

𝜔𝑜

𝑛

𝑥

𝜔i

To define this properly, let’s look at some physics

• Visible light is a type of electromagnetic radiation

• We use radiometry to measure it

Flux Φ (radiometric power)

• Energy per unit time

• Definition: Time derivative of the energy Φ =
𝑑𝑄

𝑑𝑡

• Unit: Watt (𝑊)

• We measure / compute it at an instant in time

Not this, though

• Electric power of an equivalent incandescent light bulb

• Flux is this power minus heat loss

• (Though, technically, “heat loss“ is mostly flux in IR spectrum)

Quantifying the amount of light that reaches / leaves a surface

• Irradiance is the incoming power per unit area

• 𝐸 =
𝑑Φ

𝑑𝐴

• unit:
𝑊

𝑚2

• Radiosity is the outgoing (emitted or reflected) power per unit area

• 𝑅 =
𝑑Φ

𝑑𝐴

• unit:
𝑊

𝑚2

Radiosity

Irradiance

Radiance is our main quantity of interest

• A directional quantity: Power per “direction” and projected area

𝐿 =
𝑑Φ

𝑑𝜔 𝑑𝐴 cos 𝜃

𝜔

𝐴

𝑑𝐴 𝑑𝜔

𝑑𝐴 cos 𝜃

𝜃

𝜃cos 𝜃

To define this properly, we need a measure

That’s why we have a cosine in the rendering equation

Integrals and derivatives are defined via a measure

𝑑𝑓 𝑥

𝑑𝑥
= lim

Δ𝑥→0

𝑓 𝑥 + Δ𝑥 − 𝑓 𝑥

Δ𝑥

This needs a notion of “how big is Δ𝑥?”

1D length measured in meters 2D area measured in square meters

Examples

1𝑚 2𝑚

Δ𝑥 = 1.5𝑚

1𝑚 2𝑚
1𝑚

2𝑚
Δ𝑥 = 2.25𝑚2

The solid angle: A measure for directions

• Remember radian (“rad”)?

• Measures 2D angle as the corresponding length on the unit circle

• A solid angle is the 3D analog of a 2D angle

• Its unit is the steradian (“sr”)

• Measures the area on the unit sphere

• And a set of directions corresponds to a patch on the unit sphere

Radiance is power per solid angle per projected area

𝐿 =
𝑑Φ

𝑑𝜔 𝑑𝐴 cos 𝜃

𝑑𝐴 𝑑𝜔

𝑑𝐴 cos 𝜃

𝑊

sr 𝑚2Unit:

That’s why we have a cosine in the rendering equation

Radiance remains constant (in vacuum)

𝐿o −𝜔

𝐿i 𝜔

𝐿i 𝜔 = 𝐿o −𝜔

Independent of geometry and distance!

Getting back to the rendering equation

𝐿o 𝑥, 𝜔o = 𝐿e 𝑥, 𝜔o +න
Ω

𝐿i 𝑥, 𝜔i 𝑓r 𝑥, 𝜔i, 𝜔o cos 𝜃i 𝑑𝜔i

Outgoing radiance is emitted radiance plus integral over the unit sphere,
measured by solid angle, of the incoming radiance, modified by the BRDF and cosine

• Why the cosine?

• Cancels out the same cos 𝜃 in the definition of radiance

• Because we want the power per area at 𝑥

• And 𝐿𝑖 is power per area perpendicular to 𝜔𝑖

An intuitive take on the cosine

• If the same “amount of” light arrives from different angles...

• The one from the grazing angle is “spread over a larger area”

Don’t want to take my word for it? Try shining light with your phone onto your table!

What about color?

• Ideally: consider the spectral radiance, i.e., radiance per wavelength 𝜆

𝐿𝜆 =
𝐿

𝑑𝜆

• Common simplification: RGB

• Red, Green, Blue color channels

• More on that in lecture 4

Reading materials

• https://pbr-book.org/4ed/Radiometry,_Spectra,_and_Color/Radiometry

• Kajiya, James T. 1986. "The rendering equation."

• Chapter 3 of: Veach, Eric. 1997. Robust Monte Carlo Methods for Light Transport Simulation. PhD

thesis. https://graphics.stanford.edu/papers/veach_thesis/thesis-bw.pdf

https://pbr-book.org/4ed/Radiometry,_Spectra,_and_Color/Radiometry
https://graphics.stanford.edu/papers/veach_thesis/thesis-bw.pdf

The BRDF
Bidirectional Reflectance Distribution Function

𝐿o 𝑥, 𝜔o = 𝐿e 𝑥, 𝜔o +න
Ω

𝐿i 𝑥, 𝜔i 𝑓r 𝑥, 𝜔i, 𝜔o cos 𝜃i 𝑑𝜔i

The BRDF models the surface appearance

The BRDF – 𝑓r 𝑥, 𝜔i, 𝜔o

• Describes the fraction of light from 𝜔𝑖 that is reflected to 𝜔𝑜 at point 𝑥

• Must satisfy some properties:

• Energy conservation (technically, conservation means =, but we allow absorption):

න
Ω

𝑓r 𝑥, 𝜔𝑖 , 𝜔𝑜 cos 𝜃𝑖 𝑑𝜔𝑖 ≤ 1

• Reciprocity (typically but not always equivalent to symmetry):

𝑓r 𝑥, 𝜔𝑖 , 𝜔𝑜 = 𝑓r 𝑥, 𝜔𝑜, 𝜔𝑖

A Lambertian diffuse BRDF

• Reflects light equally in all directions

• This is not 𝑓𝑟 = 𝜌

• 𝜌 is the albedo – the color of the reflected light

• Because

න
Ω

1 cos 𝜃 𝑑𝜔 = 𝜋 > 1

• Violates energy conservation (the surface would appear to generate light)

• The correct diffuse BRDF is

𝑓𝑟 = 𝜌
1

𝜋

Perfect mirror reflection

• 𝐿𝑟 𝜔 = 𝐿𝑖 𝜔𝑟

• How to encode that as a BRDF?

• Dirac delta distribution 𝛿 𝑥 , defined as

𝑓 0 = න
𝑋

𝑓 𝑥 𝛿 𝑥 𝑑𝑥

• Intuition: 𝛿 𝑥 is zero everywhere, except exactly at 0, where it is infinitely large

• Perfect mirror BRDF:

𝐿𝑟 𝜔 = න
Ω

𝛿 𝜔𝑖 − 𝜔𝑟
cos 𝜃𝑟

𝐿𝑖 cos 𝜃𝑖 𝑑𝜔𝑖 = 𝐿𝑖 𝜔𝑟

𝜔𝑟𝜔

To be continued...

(in 2 weeks)

Reading materials

• Nicodemus, Fred (1965). "Directional reflectance and emissivity of an opaque surface". Applied

Optics. 4 (7): 767–775

Computing simple illumination

Point, spot, and directional lights

Point light

• Emits total power 𝜙

in all directions

Spot light

• A point light

restricted to a cone

Directional light

• Infinitely far away light

• Exactly one direction

Computing direct illumination from a point light

𝐿𝑜 =
𝜙

4𝜋 𝑥 − 𝑦 2
𝑉 𝑥, 𝑦 𝑓𝑟 𝑥, 𝜔𝑜, 𝑥𝑦 cos 𝜃𝑖

• 𝑉 𝑥, 𝑦 is a binary visibility term, we ray-trace it to get shadows

• “Radiance” makes no sense for a single point: there is no area

• The total power 𝜙 spreads spherically

• Surface area of the sphere at 𝑥 is 4𝜋 𝑥 − 𝑖 2

𝑥

𝑦

𝑦

𝑥

𝑥 − 𝑦 2

Computing direct illumination from a spot light

• Almost the same as for the point light

• Need to check if we are within the cone

• Compare 𝛼 to opening angle

cos𝛼 =
𝑑, 𝑦𝑥

𝑥 − 𝑦

• Bonus: intensity falloff as we move away from the center

• Multiply 𝜙 by some factor computed from cos 𝛼 𝑦

𝑥

𝑑
𝛼

Computing direct illumination from a directional light

• Assumption: infinitely far away light source with emitted radiance 𝐿𝑒

• Light arrives from a single direction 𝜔

• Rendering equation simplifies to

𝐿𝑜 𝑥, 𝜔𝑜 = 𝑉 𝜔 𝐿𝑒𝑓𝑟 𝑥, 𝜔𝑜, 𝜔 cos 𝜃

• 𝑉 𝜔 checks if there is any geometry in this direction, at any distance (ray traced)

Shadow rays, aka “any-hit” ray queries

• Trace ray between two points

• Can terminate on first hit – distance is irrelevant

➔ Faster than “normal” closest-hit rays

Self intersections are a problem

• Computers have limited accuracy

• Floating point errors can cause shadow tests to fail

Self-intersection on the illuminated surface

• Move origin away from the surface

• And/Or: ignore hits closer than a small minimum distance

Self-intersection on the light source

• Set maximum distance shorter than actual distance

Reading materials

• https://pbr-book.org/4ed/Light_Sources

• https://www.pbr-book.org/4ed/Shapes/Managing_Rounding_Error

https://pbr-book.org/4ed/Light_Sources
https://www.pbr-book.org/4ed/Shapes/Managing_Rounding_Error

Textures

Textures are an inexpensive way to add detail

https://polyhaven.com/a/cliff_side

… well, compared to excessive geometry detail

https://polyhaven.com/a/cliff_side

Textures can control arbitrary parameters

Base color Normal

A texture is a function 𝑡 𝑥

• Maps surface point 𝑥 to a parameter value

• Here: 𝑡 𝑥 assigns a material color based on an image

• Two main types:

• Image textures

• Procedural textures 𝑥

𝑡(𝑥)

Surface parametrization of a cube

Geometry UV Map

Surface parametrization of a humanoid head

Geometry UV Map

Tiling: repeating a texture over a larger surface

• Texture coordinates outside the 0,1 range

• Border handling dictates how these are mapped back onto the image

• Here: “repeat”: 𝑢′ = 𝑢 mod 1

• Alternatives: mirror, clamp

Barycentric coordinates and vertex attributes

• How to get the texture coordinate at a hit point 𝑥?

• Vertices 𝑝1, 𝑝2, 𝑝3 store their texture coordinates 𝑡1, 𝑡2, 𝑡3

• Barycentric coordinates 𝑢, 𝑣

• 𝑥 = 𝑢𝑝1 + 𝑣𝑝2 + 1 − 𝑢 − 𝑣 𝑝3

• Interpolate the triangle corners to get 𝑥

• We can interpolate any vertex attribute the same way

• 𝑡𝑥 = 𝑢𝑡1 + 𝑣𝑡2 + 1 − 𝑢 − 𝑣 𝑡3

Procedural textures: Describing patterns via math

• Many possibilities:

• (quasi) random noise

• Voronoi patterns

• Tiles and chessboards

• ...

• And all combinations of those!

• Benefits: low memory cost, infinite resolution

• Drawbacks:

• Tricky to find functions and parameters to get a desired look

• (sometimes) high evaluation cost https://opengameart.org/content/40-procedural-textures

https://opengameart.org/content/40-procedural-textures

Example: Procedural Noise

• A great way to add detail to huge scenes

• Or to make your renderings look less “synthetic”

https://www.shadertoy.com/view/4ttSWf

https://www.shadertoy.com/view/4ttSWf

Value noise: Every pixel (or tile) gets a random value

float ValueNoise(uint seed, Vector2 p) {
return RandomValue(seed, p);

}

Value noise ➔ Grainy result
pixel

value

Gradient noise: Compute values from random gradients

Gradient noise ➔ Smooth result
pixel

value

Perlin noise: Random gradients at grid points
float PerlinNoise(uint seed, Vector2 p) {

float DotGridGradient(Vector2 gridPos)
=> Vector2.Dot(p - gridPos, RandomGradient(seed, gridPos));

Vector2 p0 = new(float.Floor(p.X), float.Floor(p.Y));
Vector2 p1 = p0 + Vector2.One;
Vector2 offset = p - p0;

float valX1 = Interpolate(
DotGridGradient(p0),
DotGridGradient(new(p1.X, p0.Y)),
offset.X

);

float valX2 = Interpolate(
DotGridGradient(new(p0.X, p1.Y)),
DotGridGradient(p1),
offset.X

);

float val = Interpolate(valX1, valX2, offset.Y);

return float.Clamp(0.5f * (val + 1), 0, 1);
}

p0

p1

p

Perlin noise: Compute dot products with gradients
float PerlinNoise(uint seed, Vector2 p) {

float DotGridGradient(Vector2 gridPos)
=> Vector2.Dot(p - gridPos, RandomGradient(seed, gridPos));

Vector2 p0 = new(float.Floor(p.X), float.Floor(p.Y));
Vector2 p1 = p0 + Vector2.One;
Vector2 offset = p - p0;

float valX1 = Interpolate(
DotGridGradient(p0),
DotGridGradient(new(p1.X, p0.Y)),
offset.X

);

float valX2 = Interpolate(
DotGridGradient(new(p0.X, p1.Y)),
DotGridGradient(p1),
offset.X

);

float val = Interpolate(valX1, valX2, offset.Y);

return float.Clamp(0.5f * (val + 1), 0, 1);
}

𝑔0, 𝑝0 − 𝑝 𝑔10, 𝑝10 − 𝑝

𝑔1, 𝑝1 − 𝑝𝑔01, 𝑝01 − 𝑝

p1

p

p0

Perlin noise: Bicubic interpolation of dot products
float PerlinNoise(uint seed, Vector2 p) {

float DotGridGradient(Vector2 gridPos)
=> Vector2.Dot(p - gridPos, RandomGradient(seed, gridPos));

Vector2 p0 = new(float.Floor(p.X), float.Floor(p.Y));
Vector2 p1 = p0 + Vector2.One;
Vector2 offset = p - p0;

float valX1 = Interpolate(
DotGridGradient(p0),
DotGridGradient(new(p1.X, p0.Y)),
offset.X

);

float valX2 = Interpolate(
DotGridGradient(new(p0.X, p1.Y)),
DotGridGradient(p1),
offset.X

);

float val = Interpolate(valX1, valX2, offset.Y);

return float.Clamp(0.5f * (val + 1), 0, 1);
}

𝑔0, 𝑝0 − 𝑝 𝑔10, 𝑝10 − 𝑝

𝑔1, 𝑝1 − 𝑝𝑔01, 𝑝01 − 𝑝

p1

p

p0

Noise frequency can be tweaked via the grid resolution

Mixing multiple frequencies ➔More natural result

float MixedNoise(uint seed, IEnumerable<(float Frequency, float Amplitude)> components, Vector2 p) {
float noise = 0.0f;
foreach (var component in components)

noise += PerlinNoise(seed, p * component.Frequency) * component.Amplitude;
return noise;

}

Noise 𝑝 =෍

𝑖

𝑎𝑖 Perlin 𝑓𝑖 𝑝

Image Textures

• Obtained via:

• Painting

• Photographs (+ manipulation)

• Simulation

• Benefits: extremely flexible, intuitive creation

• Drawbacks: limited resolution and huge memory cost

An image is a grid of values

• Pixels are point samples

• Not little squares To get a value at a position

we need to interpolate

Nearest-neighbor interpolation

• Round the texture coordinate down to integer:

• 𝑢 ⋅ 𝑤

• 𝑣 ⋅ ℎ

• 𝑤 and ℎ are image width and height in pixels

• Fast, but results in a blocky / “pixelated” look

• ... though that is sometimes desired!

Bilinear interpolation

• Linearly interpolate between left and right

• 𝑝1 = 𝑡𝑥𝑝01 + 1 − 𝑡𝑥 𝑝11

• 𝑝0 = 𝑡𝑥𝑝00 + 1 − 𝑡𝑥 𝑝10

• Linearly interpolate result vertically

• 𝑝 = 𝑡𝑦𝑝0 + 1 − 𝑡𝑦 𝑝1

• For even smoother results:

• Bicubic interpolation

p11

p

p10

p01

p00

Reading materials

• Ken Perlin. 1985. An Image Synthesizer.

• https://pbr-book.org/4ed/Textures_and_Materials

https://pbr-book.org/4ed/Textures_and_Materials

Anti-aliasing and texture filtering

What is aliasing?

• Jagged edges and distorted shapes

• If the sample count is too low to capture all details

Example values with Alias

Computed Desired

Computed Desired

Naively getting rid of alias is simple: Just use more samples

32 spp1 spp

Alias can be avoided by prefiltering the texture

no jagged edges

2px Gaussian blur

But how much filtering do we need?

no jagged edges

still artifacts

looks blurry

(almost) no artifacts

2px Gaussian blur 5px Gaussian blur

To answer that, we turn to Fourier analysis

High-frequency and low-frequency images

• Some trivial examples

Low frequency = slowly changing signal High frequency = rapidly changing signal

Images typically contain many different frequencies

Fourier analysis decomposes a signal into its frequencies

መ𝑓 𝜉 = න
−∞

∞

𝑓 𝑥 𝑒−𝑖2𝜋𝜉𝑥𝑑𝑥

1

1

4

4

Sampling as a multiplication with a comb function

“slight” stretch of what a Dirac delta is...
But good enough for our intuition

Multiplication in space  convolution in frequency domain

Convolution in space Multiplication in frequency domain

∗ 



Convolution (a fancy term for filtering)

𝑓 𝑥 ∗ 𝑔 𝑥 = න𝑓 𝑥′ 𝑔 𝑥 − 𝑥′ 𝑑𝑥′

https://en.wikipedia.org/wiki/Convolution

https://en.wikipedia.org/wiki/Convolution

In Fourier space: Sampling is a convolution with a comb

Signal function

Sampling function

ConvolutionProduct

Space domain Fourier domain

Alias  Overlap
Nyquist theorem:
No alias if sample rate ≥ highest signal frequency

Minimal sample distance without overlap

𝑓𝑚𝑎𝑥

2𝑓𝑚𝑎𝑥

Prefiltering: remove all frequencies above the sample rate

• Ideal low-pass: multiplication with a box in frequency domain

• We loose high-frequency detail

• But we don’t destroy more than that (as alias does!)

• In image space: convolution with a sinc

• Costly: infinite support

• But we can use a cheaper, non-ideal, low-pass filter as a surrogate

Texture filtering in practice

Ray differentials to determine the pixel footprint

• Track additional rays to the side and above

• Not actually intersected with the geometry

• Hitpoints approximated from the normal 𝑛, assuming planar surface

• With 1 spp, the texture should be low-pass filtered with roughly this shape

• But how to do that efficiently?

MIP-maps (Multum In Parvo = “much in little”)

• Store image at multiple resolutions

• Computed in pre-process

• Each level uses half the resolution of the previous

• Little overhead

• Less than twice the memory of the original texture

• Rendering

• Pick level based on pixel footprint

• Interpolate (to avoid visible, abrupt transitions)

Trilinear (left) vs anisotropic (right)

Color = MIP level

Anisotropic filtering reduces unnecessary blur

Reading materials

• https://pbr-book.org/4ed/Textures_and_Materials/Texture_Sampling_and_Antialiasing

• For more on Fourier transforms, image filtering, etc

➔ Image Processing and Computer Vision (IPCV) core lecture

https://pbr-book.org/4ed/Textures_and_Materials/Texture_Sampling_and_Antialiasing

Summary

Topics in this block

• Rendering equation

• Basic radiometry

• Simple BRDF models

• Simple light sources

• Textures

➔ Now we can render textured diffuse surfaces and mirrors under simple direct illumination

	Slide 1: Light transport basics
	Slide 2: Last time
	Slide 3: Today
	Slide 4: Rendering equation
	Slide 5: The heart of rendering
	Slide 6: The heart of rendering
	Slide 7: To define this properly, let’s look at some physics
	Slide 8: Flux cap phi (radiometric power)
	Slide 9: Quantifying the amount of light that reaches / leaves a surface
	Slide 10: Radiance is our main quantity of interest
	Slide 11: Integrals and derivatives are defined via a measure
	Slide 12: The solid angle: A measure for directions
	Slide 13: Radiance is power per solid angle per projected area
	Slide 14: Radiance remains constant (in vacuum)
	Slide 15: Getting back to the rendering equation
	Slide 16: An intuitive take on the cosine
	Slide 17: What about color?
	Slide 18: Reading materials
	Slide 19: The BRDF
	Slide 20: The BRDF models the surface appearance
	Slide 21: The BRDF – f sub r , open paren x ,omega sub i,omega sub o , , close paren
	Slide 22: A Lambertian diffuse BRDF
	Slide 23: Perfect mirror reflection
	Slide 24
	Slide 25: Reading materials
	Slide 26: Computing simple illumination
	Slide 27: Point, spot, and directional lights
	Slide 28: Computing direct illumination from a point light
	Slide 29: Computing direct illumination from a spot light
	Slide 30: Computing direct illumination from a directional light
	Slide 31: Shadow rays, aka “any-hit” ray queries
	Slide 32: Self intersections are a problem
	Slide 33: Self-intersection on the illuminated surface
	Slide 34: Self-intersection on the light source
	Slide 35: Reading materials
	Slide 36: Textures
	Slide 37: Textures are an inexpensive way to add detail
	Slide 38: Textures can control arbitrary parameters
	Slide 39: A texture is a function t of x
	Slide 40: Surface parametrization of a cube
	Slide 41: Surface parametrization of a humanoid head
	Slide 42: Tiling: repeating a texture over a larger surface
	Slide 43: Barycentric coordinates and vertex attributes
	Slide 44: Procedural textures: Describing patterns via math
	Slide 45: Example: Procedural Noise
	Slide 46: Value noise: Every pixel (or tile) gets a random value
	Slide 47: Gradient noise: Compute values from random gradients
	Slide 48: Perlin noise: Random gradients at grid points
	Slide 49: Perlin noise: Compute dot products with gradients
	Slide 50: Perlin noise: Bicubic interpolation of dot products
	Slide 51: Noise frequency can be tweaked via the grid resolution
	Slide 52: Mixing multiple frequencies  More natural result
	Slide 53: Image Textures
	Slide 54: An image is a grid of values
	Slide 55: Nearest-neighbor interpolation
	Slide 56: Bilinear interpolation
	Slide 57: Reading materials
	Slide 58: Anti-aliasing and texture filtering
	Slide 59: What is aliasing?
	Slide 60: Example values with Alias
	Slide 61: Naively getting rid of alias is simple: Just use more samples
	Slide 62: Alias can be avoided by prefiltering the texture
	Slide 63: But how much filtering do we need?
	Slide 64: High-frequency and low-frequency images
	Slide 65: Images typically contain many different frequencies
	Slide 66: Fourier analysis decomposes a signal into its frequencies
	Slide 67: Sampling as a multiplication with a comb function
	Slide 68: Multiplication in space  convolution in frequency domain
	Slide 69: Convolution (a fancy term for filtering)
	Slide 70: In Fourier space: Sampling is a convolution with a comb
	Slide 71: Alias  Overlap
	Slide 72: Prefiltering: remove all frequencies above the sample rate
	Slide 73: Texture filtering in practice
	Slide 74: Ray differentials to determine the pixel footprint
	Slide 75: MIP-maps (Multum In Parvo = “much in little”)
	Slide 76: Trilinear (left) vs anisotropic (right)
	Slide 77: Reading materials
	Slide 78: Summary
	Slide 79: Topics in this block

