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Rendering equation



The heart of rendering

𝐿o 𝑥, 𝜔o = 𝐿e 𝑥, 𝜔o +න
Ω

𝐿i 𝑥, 𝜔i 𝑓r 𝑥, 𝜔i, 𝜔o cos 𝜃i 𝑑𝜔i

... and a guaranteed exam question

Outgoing light Emitted light Reflected light

𝜔𝑜

𝑛

𝑥



The heart of rendering

𝐿o 𝑥, 𝜔o = 𝐿e 𝑥, 𝜔o +න
Ω

𝐿i 𝑥, 𝜔i 𝑓r 𝑥, 𝜔i, 𝜔o cos 𝜃i 𝑑𝜔i

... and a guaranteed exam question

Outgoing light Emitted light Reflected light

"sum" over light from all directions

𝜔𝑜

𝑛

𝑥

𝜔i



To define this properly, let’s look at some physics

• Visible light is a type of electromagnetic radiation

• We use radiometry to measure it



Flux Φ (radiometric power)

• Energy per unit time

• Definition: Time derivative of the energy Φ =
𝑑𝑄

𝑑𝑡

• Unit: Watt (𝑊)

• We measure / compute it at an instant in time

Not this, though

• Electric power of an equivalent incandescent light bulb

• Flux is this power minus heat loss

• (Though, technically, “heat loss“ is mostly flux in IR spectrum)



Quantifying the amount of light that reaches / leaves a surface

• Irradiance is the incoming power per unit area

• 𝐸 =
𝑑Φ

𝑑𝐴

• unit: 
𝑊

𝑚2

• Radiosity is the outgoing (emitted or reflected) power per unit area

• 𝑅 =
𝑑Φ

𝑑𝐴

• unit: 
𝑊

𝑚2

Radiosity

Irradiance



Radiance is our main quantity of interest

• A directional quantity: Power per “direction” and projected area 

𝐿 =
𝑑Φ

𝑑𝜔 𝑑𝐴 cos 𝜃

𝜔

𝐴

𝑑𝐴 𝑑𝜔

𝑑𝐴 cos 𝜃

𝜃

𝜃cos 𝜃

To define this properly, we need a measure

That’s why we have a cosine in the rendering equation



Integrals and derivatives are defined via a measure

𝑑𝑓 𝑥

𝑑𝑥
= lim

Δ𝑥→0

𝑓 𝑥 + Δ𝑥 − 𝑓 𝑥

Δ𝑥

This needs a notion of “how big is Δ𝑥?”

1D length measured in meters 2D area measured in square meters

Examples

1𝑚 2𝑚

Δ𝑥 = 1.5𝑚

1𝑚 2𝑚
1𝑚

2𝑚
Δ𝑥 = 2.25𝑚2



The solid angle: A measure for directions

• Remember radian (“rad”)?

• Measures 2D angle as the corresponding length on the unit circle

• A solid angle is the 3D analog of a 2D angle

• Its unit is the steradian (“sr”)

• Measures the area on the unit sphere

• And a set of directions corresponds to a patch on the unit sphere



Radiance is power per solid angle per projected area 

𝐿 =
𝑑Φ

𝑑𝜔 𝑑𝐴 cos 𝜃

𝑑𝐴 𝑑𝜔

𝑑𝐴 cos 𝜃

𝑊

sr 𝑚2Unit:

That’s why we have a cosine in the rendering equation



Radiance remains constant (in vacuum)

𝐿o −𝜔

𝐿i 𝜔

𝐿i 𝜔 = 𝐿o −𝜔

Independent of geometry and distance!



Getting back to the rendering equation

𝐿o 𝑥, 𝜔o = 𝐿e 𝑥, 𝜔o +න
Ω

𝐿i 𝑥, 𝜔i 𝑓r 𝑥, 𝜔i, 𝜔o cos 𝜃i 𝑑𝜔i

Outgoing radiance is emitted radiance plus integral over the unit sphere, 
measured by solid angle, of the incoming radiance, modified by the BRDF and cosine

• Why the cosine?

• Cancels out the same cos 𝜃 in the definition of radiance

• Because we want the power per area at 𝑥

• And 𝐿𝑖 is power per area perpendicular to 𝜔𝑖



An intuitive take on the cosine

• If the same “amount of” light arrives from different angles...

• The one from the grazing angle is “spread over a larger area”

Don’t want to take my word for it? Try shining light with your phone onto your table!



What about color?

• Ideally: consider the spectral radiance, i.e., radiance per wavelength 𝜆

𝐿𝜆 =
𝐿

𝑑𝜆

• Common simplification: RGB

• Red, Green, Blue color channels

• More on that in lecture 4



Reading materials

• https://pbr-book.org/4ed/Radiometry,_Spectra,_and_Color/Radiometry

• Kajiya, James T. 1986. "The rendering equation."

• Chapter 3  of: Veach, Eric. 1997. Robust Monte Carlo Methods for Light Transport Simulation. PhD 

thesis. https://graphics.stanford.edu/papers/veach_thesis/thesis-bw.pdf

https://pbr-book.org/4ed/Radiometry,_Spectra,_and_Color/Radiometry
https://graphics.stanford.edu/papers/veach_thesis/thesis-bw.pdf


The BRDF
Bidirectional Reflectance Distribution Function

𝐿o 𝑥, 𝜔o = 𝐿e 𝑥, 𝜔o +න
Ω

𝐿i 𝑥, 𝜔i 𝑓r 𝑥, 𝜔i, 𝜔o cos 𝜃i 𝑑𝜔i



The BRDF models the surface appearance



The BRDF – 𝑓r 𝑥, 𝜔i, 𝜔o

• Describes the fraction of light from 𝜔𝑖 that is reflected to 𝜔𝑜 at point 𝑥

• Must satisfy some properties:

• Energy conservation (technically, conservation means =, but we allow absorption):

න
Ω

𝑓r 𝑥, 𝜔𝑖 , 𝜔𝑜 cos 𝜃𝑖 𝑑𝜔𝑖 ≤ 1

• Reciprocity (typically but not always equivalent to symmetry):

𝑓r 𝑥, 𝜔𝑖 , 𝜔𝑜 = 𝑓r 𝑥, 𝜔𝑜, 𝜔𝑖



A Lambertian diffuse BRDF

• Reflects light equally in all directions

• This is not 𝑓𝑟 = 𝜌

• 𝜌 is the albedo – the color of the reflected light

• Because

න
Ω

1 cos 𝜃 𝑑𝜔 = 𝜋 > 1

• Violates energy conservation (the surface would appear to generate light)

• The correct diffuse BRDF is

𝑓𝑟 = 𝜌
1

𝜋



Perfect mirror reflection

• 𝐿𝑟 𝜔 = 𝐿𝑖 𝜔𝑟

• How to encode that as a BRDF?

• Dirac delta distribution 𝛿 𝑥 , defined as

𝑓 0 = න
𝑋

𝑓 𝑥 𝛿 𝑥 𝑑𝑥

• Intuition: 𝛿 𝑥 is zero everywhere, except exactly at 0, where it is infinitely large

• Perfect mirror BRDF:

𝐿𝑟 𝜔 = න
Ω

𝛿 𝜔𝑖 − 𝜔𝑟
cos 𝜃𝑟

𝐿𝑖 cos 𝜃𝑖 𝑑𝜔𝑖 = 𝐿𝑖 𝜔𝑟

𝜔𝑟𝜔



To be continued...

(in 2 weeks)



Reading materials

• Nicodemus, Fred (1965). "Directional reflectance and emissivity of an opaque surface". Applied 

Optics. 4 (7): 767–775



Computing simple illumination



Point, spot, and directional lights

Point light

• Emits total power 𝜙

in all directions

Spot light

• A point light 

restricted to a cone

Directional light

• Infinitely far away light

• Exactly one direction



Computing direct illumination from a point light

𝐿𝑜 =
𝜙

4𝜋 𝑥 − 𝑦 2
𝑉 𝑥, 𝑦 𝑓𝑟 𝑥, 𝜔𝑜, 𝑥𝑦 cos 𝜃𝑖

• 𝑉 𝑥, 𝑦 is a binary visibility term, we ray-trace it to get shadows

• “Radiance” makes no sense for a single point: there is no area

• The total power 𝜙 spreads spherically

• Surface area of the sphere at 𝑥 is 4𝜋 𝑥 − 𝑖 2

𝑥

𝑦

𝑦

𝑥

𝑥 − 𝑦 2



Computing direct illumination from a spot light

• Almost the same as for the point light

• Need to check if we are within the cone

• Compare 𝛼 to opening angle

cos𝛼 =
𝑑, 𝑦𝑥

𝑥 − 𝑦

• Bonus: intensity falloff as we move away from the center

• Multiply 𝜙 by some factor computed from cos 𝛼 𝑦

𝑥

𝑑
𝛼



Computing direct illumination from a directional light

• Assumption: infinitely far away light source with emitted radiance 𝐿𝑒

• Light arrives from a single direction 𝜔

• Rendering equation simplifies to

𝐿𝑜 𝑥, 𝜔𝑜 = 𝑉 𝜔 𝐿𝑒𝑓𝑟 𝑥, 𝜔𝑜, 𝜔 cos 𝜃

• 𝑉 𝜔 checks if there is any geometry in this direction, at any distance (ray traced)



Shadow rays, aka “any-hit” ray queries

• Trace ray between two points

• Can terminate on first hit – distance is irrelevant

➔ Faster than “normal” closest-hit rays



Self intersections are a problem

• Computers have limited accuracy

• Floating point errors can cause shadow tests to fail



Self-intersection on the illuminated surface

• Move origin away from the surface

• And/Or: ignore hits closer than a small minimum distance



Self-intersection on the light source

• Set maximum distance shorter than actual distance



Reading materials

• https://pbr-book.org/4ed/Light_Sources

• https://www.pbr-book.org/4ed/Shapes/Managing_Rounding_Error

https://pbr-book.org/4ed/Light_Sources
https://www.pbr-book.org/4ed/Shapes/Managing_Rounding_Error


Textures



Textures are an inexpensive way to add detail

https://polyhaven.com/a/cliff_side

… well, compared to excessive geometry detail

https://polyhaven.com/a/cliff_side


Textures can control arbitrary parameters

Base color Normal



A texture is a function 𝑡 𝑥

• Maps surface point 𝑥 to a parameter value

• Here: 𝑡 𝑥 assigns a material color based on an image

• Two main types:

• Image textures

• Procedural textures 𝑥

𝑡(𝑥)



Surface parametrization of a cube

Geometry UV Map



Surface parametrization of a humanoid head

Geometry UV Map



Tiling: repeating a texture over a larger surface

• Texture coordinates outside the 0,1 range

• Border handling dictates how these are mapped back onto the image

• Here: “repeat”: 𝑢′ = 𝑢 mod 1

• Alternatives: mirror, clamp



Barycentric coordinates and vertex attributes

• How to get the texture coordinate at a hit point 𝑥?

• Vertices 𝑝1, 𝑝2, 𝑝3 store their texture coordinates 𝑡1, 𝑡2, 𝑡3

• Barycentric coordinates 𝑢, 𝑣

• 𝑥 = 𝑢𝑝1 + 𝑣𝑝2 + 1 − 𝑢 − 𝑣 𝑝3

• Interpolate the triangle corners to get 𝑥

• We can interpolate any vertex attribute the same way

• 𝑡𝑥 = 𝑢𝑡1 + 𝑣𝑡2 + 1 − 𝑢 − 𝑣 𝑡3



Procedural textures: Describing patterns via math

• Many possibilities:

• (quasi) random noise

• Voronoi patterns

• Tiles and chessboards

• ...

• And all combinations of those!

• Benefits: low memory cost, infinite resolution

• Drawbacks: 

• Tricky to find functions and parameters to get a desired look

• (sometimes) high evaluation cost https://opengameart.org/content/40-procedural-textures

https://opengameart.org/content/40-procedural-textures


Example: Procedural Noise

• A great way to add detail to huge scenes

• Or to make your renderings look less “synthetic” 

https://www.shadertoy.com/view/4ttSWf

https://www.shadertoy.com/view/4ttSWf


Value noise: Every pixel (or tile) gets a random value

float ValueNoise(uint seed, Vector2 p) {
return RandomValue(seed, p);

}

Value noise ➔ Grainy result
pixel

value



Gradient noise: Compute values from random gradients

Gradient noise ➔ Smooth result
pixel

value



Perlin noise: Random gradients at grid points
float PerlinNoise(uint seed, Vector2 p) {

float DotGridGradient(Vector2 gridPos) 
=> Vector2.Dot(p - gridPos, RandomGradient(seed, gridPos));

Vector2 p0 = new(float.Floor(p.X), float.Floor(p.Y));
Vector2 p1 = p0 + Vector2.One;
Vector2 offset = p - p0;

float valX1 = Interpolate(
DotGridGradient(p0),
DotGridGradient(new(p1.X, p0.Y)),
offset.X

);

float valX2 = Interpolate(
DotGridGradient(new(p0.X, p1.Y)),
DotGridGradient(p1),
offset.X

);

float val = Interpolate(valX1, valX2, offset.Y);

return float.Clamp(0.5f * (val + 1), 0, 1);
}

p0

p1

p



Perlin noise: Compute dot products with gradients
float PerlinNoise(uint seed, Vector2 p) {

float DotGridGradient(Vector2 gridPos) 
=> Vector2.Dot(p - gridPos, RandomGradient(seed, gridPos));

Vector2 p0 = new(float.Floor(p.X), float.Floor(p.Y));
Vector2 p1 = p0 + Vector2.One;
Vector2 offset = p - p0;

float valX1 = Interpolate(
DotGridGradient(p0),
DotGridGradient(new(p1.X, p0.Y)),
offset.X

);

float valX2 = Interpolate(
DotGridGradient(new(p0.X, p1.Y)),
DotGridGradient(p1),
offset.X

);

float val = Interpolate(valX1, valX2, offset.Y);

return float.Clamp(0.5f * (val + 1), 0, 1);
}

𝑔0, 𝑝0 − 𝑝 𝑔10, 𝑝10 − 𝑝

𝑔1, 𝑝1 − 𝑝𝑔01, 𝑝01 − 𝑝

p1

p

p0



Perlin noise: Bicubic interpolation of dot products
float PerlinNoise(uint seed, Vector2 p) {

float DotGridGradient(Vector2 gridPos) 
=> Vector2.Dot(p - gridPos, RandomGradient(seed, gridPos));

Vector2 p0 = new(float.Floor(p.X), float.Floor(p.Y));
Vector2 p1 = p0 + Vector2.One;
Vector2 offset = p - p0;

float valX1 = Interpolate(
DotGridGradient(p0),
DotGridGradient(new(p1.X, p0.Y)),
offset.X

);

float valX2 = Interpolate(
DotGridGradient(new(p0.X, p1.Y)),
DotGridGradient(p1),
offset.X

);

float val = Interpolate(valX1, valX2, offset.Y);

return float.Clamp(0.5f * (val + 1), 0, 1);
}

𝑔0, 𝑝0 − 𝑝 𝑔10, 𝑝10 − 𝑝

𝑔1, 𝑝1 − 𝑝𝑔01, 𝑝01 − 𝑝

p1

p

p0



Noise frequency can be tweaked via the grid resolution



Mixing multiple frequencies ➔More natural result

float MixedNoise(uint seed, IEnumerable<(float Frequency, float Amplitude)> components, Vector2 p) {
float noise = 0.0f;
foreach (var component in components)

noise += PerlinNoise(seed, p * component.Frequency) * component.Amplitude;
return noise;

}

Noise 𝑝 =෍

𝑖

𝑎𝑖 Perlin 𝑓𝑖 𝑝



Image Textures

• Obtained via:

• Painting

• Photographs (+ manipulation)

• Simulation

• Benefits: extremely flexible, intuitive creation

• Drawbacks: limited resolution and huge memory cost



An image is a grid of values

• Pixels are point samples

• Not little squares To get a value at a position 

we need to interpolate



Nearest-neighbor interpolation

• Round the texture coordinate down to integer:

• 𝑢 ⋅ 𝑤

• 𝑣 ⋅ ℎ

• 𝑤 and ℎ are image width and height in pixels

• Fast, but results in a blocky / “pixelated” look

• ... though that is sometimes desired!



Bilinear interpolation

• Linearly interpolate between left and right

• 𝑝1 = 𝑡𝑥𝑝01 + 1 − 𝑡𝑥 𝑝11

• 𝑝0 = 𝑡𝑥𝑝00 + 1 − 𝑡𝑥 𝑝10

• Linearly interpolate result vertically

• 𝑝 = 𝑡𝑦𝑝0 + 1 − 𝑡𝑦 𝑝1

• For even smoother results:

• Bicubic interpolation

p11

p

p10

p01

p00



Reading materials

• Ken Perlin. 1985. An Image Synthesizer.

• https://pbr-book.org/4ed/Textures_and_Materials

https://pbr-book.org/4ed/Textures_and_Materials


Anti-aliasing and texture filtering



What is aliasing?

• Jagged edges and distorted shapes

• If the sample count is too low to capture all details



Example values with Alias

Computed Desired

Computed Desired



Naively getting rid of alias is simple: Just use more samples

32 spp1 spp



Alias can be avoided by prefiltering the texture

no jagged edges 

2px Gaussian blur



But how much filtering do we need?

no jagged edges 

still artifacts 

looks blurry

(almost) no artifacts 

2px Gaussian blur 5px Gaussian blur

To answer that, we turn to Fourier analysis



High-frequency and low-frequency images

• Some trivial examples

Low frequency = slowly changing signal High frequency = rapidly changing signal



Images typically contain many different frequencies



Fourier analysis decomposes a signal into its frequencies

መ𝑓 𝜉 = න
−∞

∞

𝑓 𝑥 𝑒−𝑖2𝜋𝜉𝑥𝑑𝑥

1

1

4

4



Sampling as a multiplication with a comb function

“slight” stretch of what a Dirac delta is...
But good enough for our intuition 



Multiplication in space  convolution in frequency domain

Convolution in space Multiplication in frequency domain

∗ 





Convolution (a fancy term for filtering)

𝑓 𝑥 ∗ 𝑔 𝑥 = න𝑓 𝑥′ 𝑔 𝑥 − 𝑥′ 𝑑𝑥′

https://en.wikipedia.org/wiki/Convolution

https://en.wikipedia.org/wiki/Convolution


In Fourier space: Sampling is a convolution with a comb

Signal function

Sampling function

ConvolutionProduct

Space domain Fourier domain



Alias  Overlap
Nyquist theorem: 
No alias if sample rate ≥ highest signal frequency

Minimal sample distance without overlap

𝑓𝑚𝑎𝑥

2𝑓𝑚𝑎𝑥



Prefiltering: remove all frequencies above the sample rate

• Ideal low-pass: multiplication with a box in frequency domain

• We loose high-frequency detail

• But we don’t destroy more than that (as alias does!)

• In image space: convolution with a sinc

• Costly: infinite support

• But we can use a cheaper, non-ideal, low-pass filter as a surrogate



Texture filtering in practice



Ray differentials to determine the pixel footprint

• Track additional rays to the side and above

• Not actually intersected with the geometry

• Hitpoints approximated from the normal 𝑛, assuming planar surface

• With 1 spp, the texture should be low-pass filtered with roughly this shape

• But how to do that efficiently?



MIP-maps (Multum In Parvo = “much in little”)

• Store image at multiple resolutions

• Computed in pre-process

• Each level uses half the resolution of the previous

• Little overhead

• Less than twice the memory of the original texture

• Rendering

• Pick level based on pixel footprint

• Interpolate (to avoid visible, abrupt transitions)



Trilinear (left) vs anisotropic (right) 

Color = MIP level

Anisotropic filtering reduces unnecessary blur



Reading materials

• https://pbr-book.org/4ed/Textures_and_Materials/Texture_Sampling_and_Antialiasing

• For more on Fourier transforms, image filtering, etc

➔ Image Processing and Computer Vision (IPCV) core lecture

https://pbr-book.org/4ed/Textures_and_Materials/Texture_Sampling_and_Antialiasing


Summary



Topics in this block

• Rendering equation

• Basic radiometry

• Simple BRDF models

• Simple light sources

• Textures

➔ Now we can render textured diffuse surfaces and mirrors under simple direct illumination
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