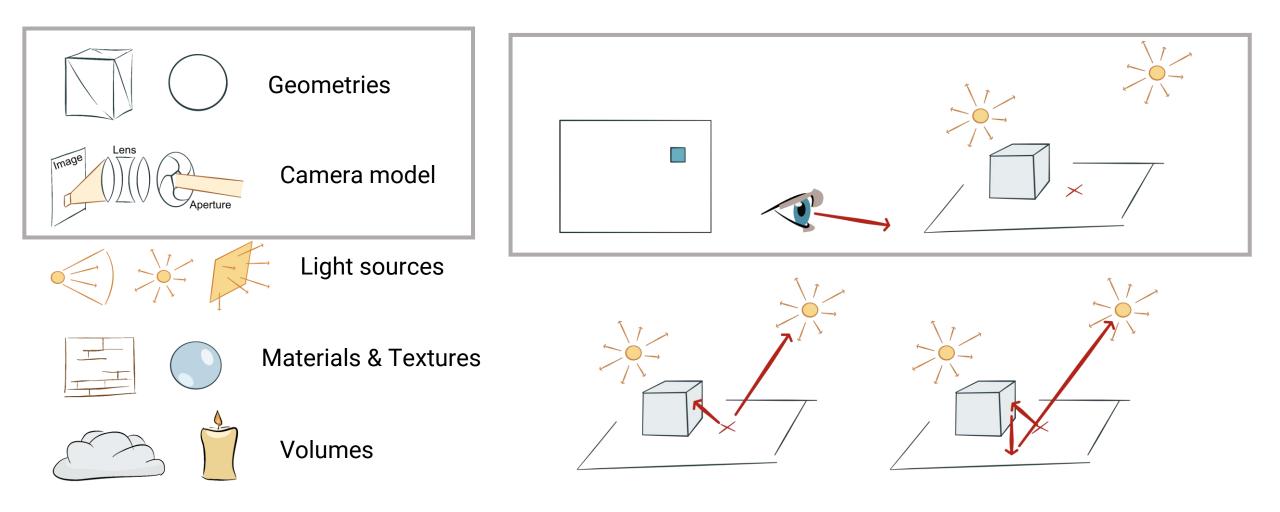
$$L_{o}(x,\omega_{o}) = L_{e}(x,\omega_{o}) + \int_{\Omega} L_{i}(x,\omega_{i})f_{r}(x,\omega_{i},\omega_{o})|\cos\theta_{i}|d\omega$$

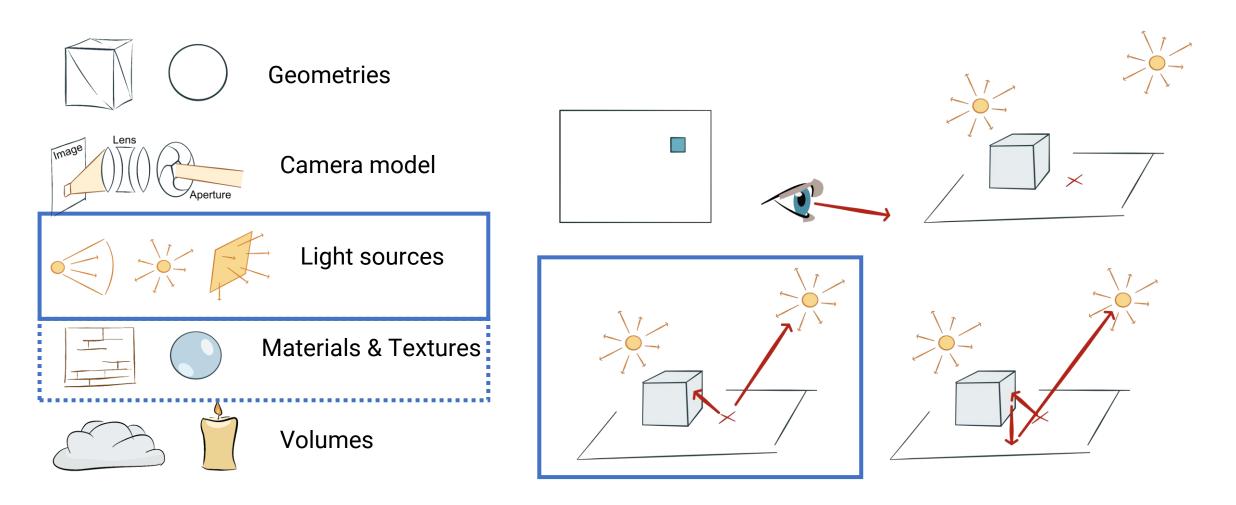
Light transport basics

Computer Graphics 24/25 – Lecture 2

Last time



Today



UNIVERSITÄT DES SAARLANDES

Computer Graphics 24/25 - Lecture 1

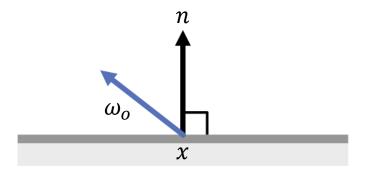
Rendering equation

The heart of rendering

... and a guaranteed exam question

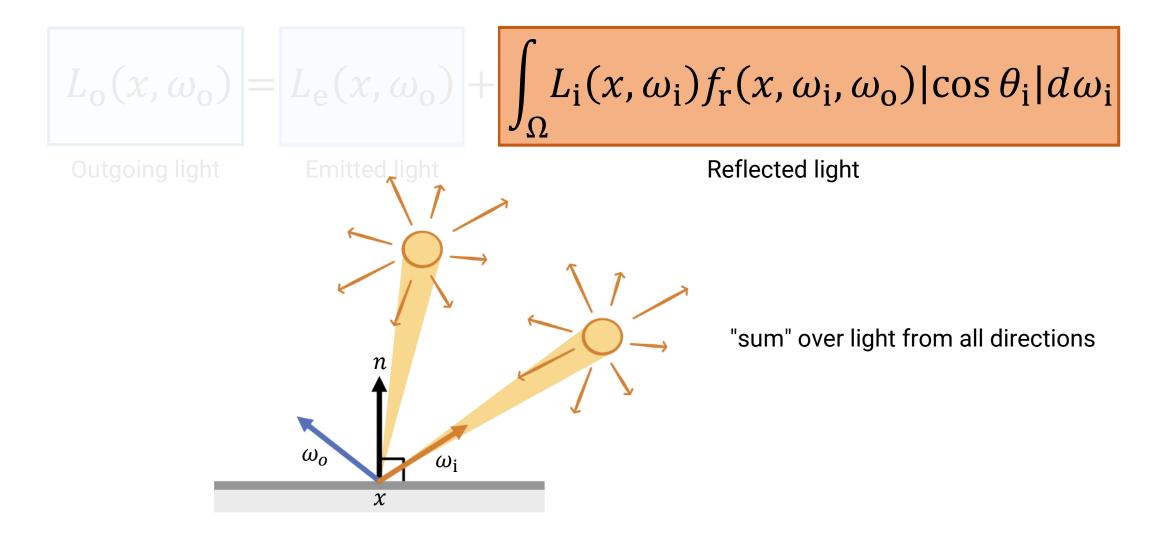
$$L_{o}(x, \omega_{o}) = L_{e}(x, \omega_{o}) + \int_{\Omega} L_{i}(x, \omega_{i}) f_{r}(x, \omega_{i}, \omega_{o}) |\cos \theta_{i}| d\omega_{i}$$

Outgoing light Emitted light Reflected light



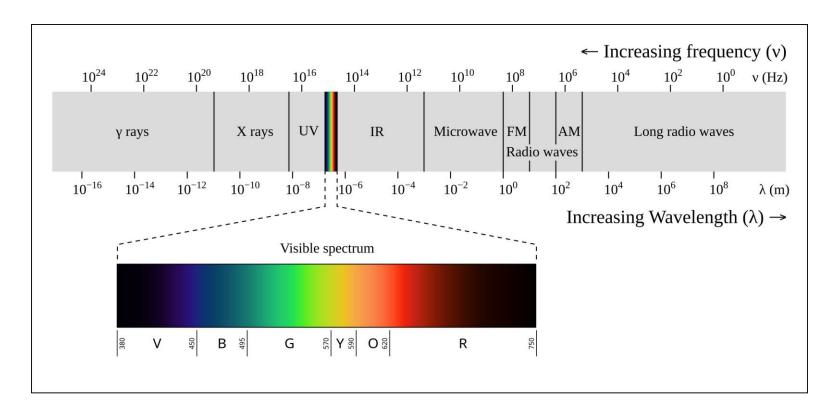
The heart of rendering

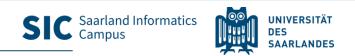
... and a guaranteed exam question



To define this properly, let's look at some physics

- Visible light is a type of electromagnetic radiation
- We use radiometry to measure it





Flux Φ (radiometric power)

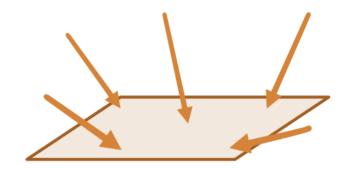
- Energy per unit time
 - Definition: Time derivative of the energy $\Phi = \frac{dQ}{dt}$
 - Unit: Watt (W)
- We measure / compute it at an instant in time

Not this, though

- Electric power of an equivalent incandescent light bulb
- Flux is this power minus heat loss
 - (Though, technically, "heat loss" is mostly flux in IR spectrum)

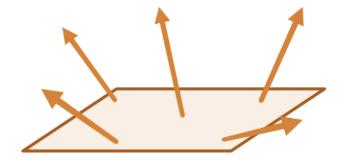
Quantifying the amount of light that reaches / leaves a surface

- Irradiance is the incoming power per unit area
 - $E = \frac{d\Phi}{dA}$
 - unit: $\frac{W}{m^2}$



Irradiance

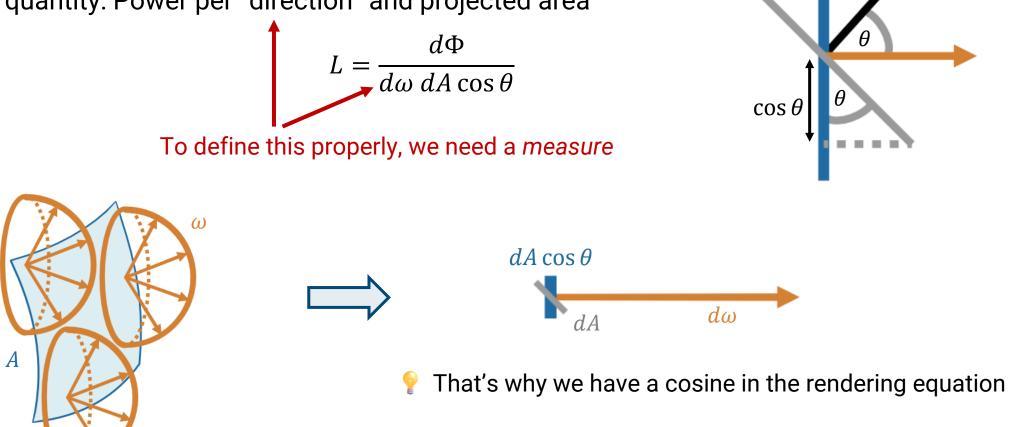
- Radiosity is the outgoing (emitted or reflected) power per unit area
 - $R = \frac{d\Phi}{dA}$
 - unit: $\frac{W}{m^2}$



Radiosity

Radiance is our main quantity of interest

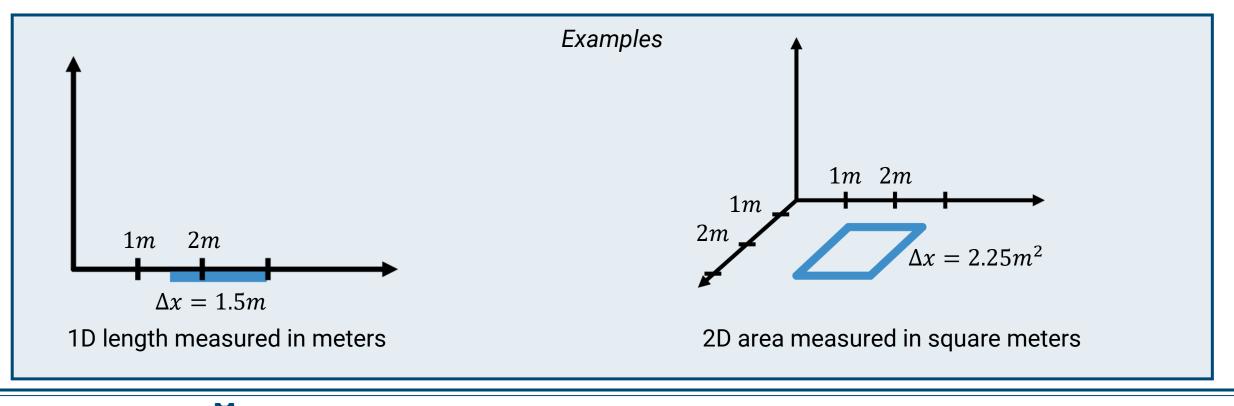
• A directional quantity: Power per "direction" and projected area



Integrals and derivatives are defined via a measure

$$\frac{df(x)}{dx} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

This needs a notion of "how big is Δx ?"

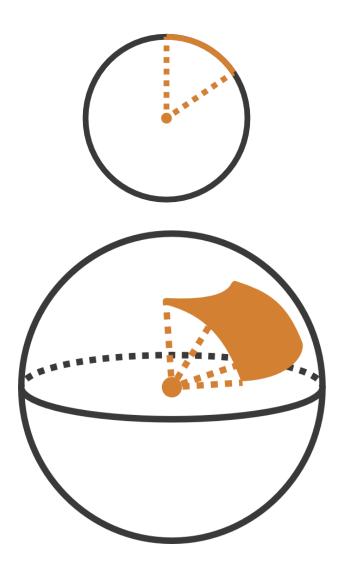


SIC Saarland Informatics Campus

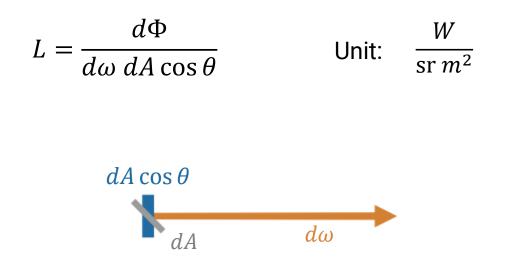
UNIVERSITÄT DES SAARLANDES

The solid angle: A measure for directions

- Remember radian ("rad")?
 - Measures 2D angle as the corresponding length on the unit circle
- A solid angle is the 3D analog of a 2D angle
 - Its unit is the steradian ("sr")
 - Measures the area on the unit sphere
- And a set of directions corresponds to a patch on the unit sphere

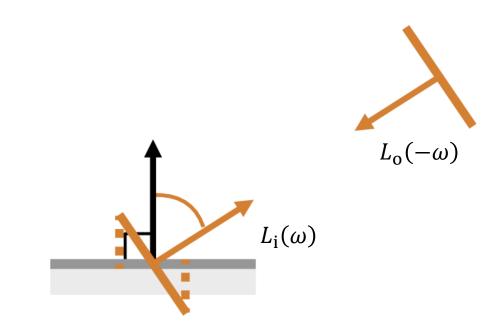


Radiance is power per solid angle per projected area



That's why we have a cosine in the rendering equation

Radiance remains constant (in vacuum)



$$L_{\rm i}(\omega) = L_{\rm o}(-\omega)$$

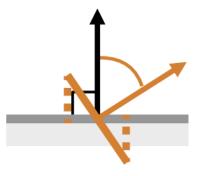
Independent of geometry and distance!

Getting back to the rendering equation

$$L_{o}(x,\omega_{o}) = L_{e}(x,\omega_{o}) + \int_{\Omega} L_{i}(x,\omega_{i})f_{r}(x,\omega_{i},\omega_{o})|\cos\theta_{i}|d\omega_{i}$$

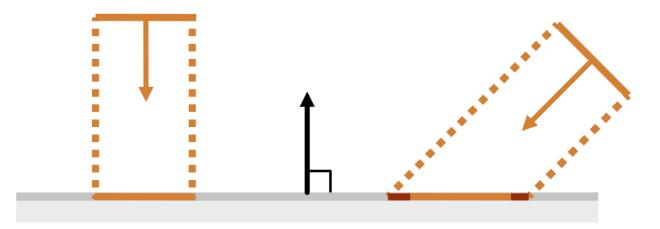
Outgoing radiance is emitted radiance plus integral over the unit sphere, measured by solid angle, of the incoming radiance, modified by the BRDF and cosine

- Why the cosine?
 - Cancels out the same $\cos \theta$ in the definition of radiance
 - Because we want the power per area at *x*
 - And L_i is power per area perpendicular to ω_i



An intuitive take on the cosine

- If the same "amount of" light arrives from different angles...
- The one from the grazing angle is "spread over a larger area"



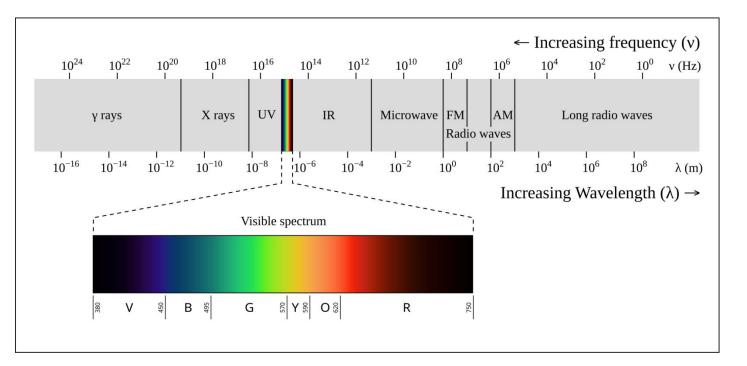
Don't want to take my word for it? Try shining light with your phone onto your table!

What about color?

• Ideally: consider the spectral radiance, i.e., radiance per wavelength λ

$$L_{\lambda} = \frac{L}{d\lambda}$$

- Common simplification: RGB
 - Red, Green, Blue color channels
 - More on that in lecture 4



Reading materials

- <u>https://pbr-book.org/4ed/Radiometry,_Spectra,_and_Color/Radiometry</u>
- Kajiya, James T. 1986. "The rendering equation."
- Chapter 3 of: Veach, Eric. 1997. Robust Monte Carlo Methods for Light Transport Simulation. PhD thesis. <u>https://graphics.stanford.edu/papers/veach_thesis/thesis-bw.pdf</u>

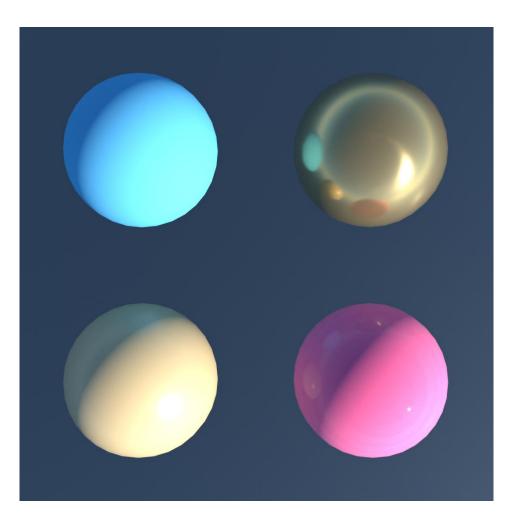


$$L_{o}(x,\omega_{o}) = L_{e}(x,\omega_{o}) + \int_{\Omega} L_{i}(x,\omega_{i}) f_{r}(x,\omega_{i},\omega_{o}) |\cos\theta_{i}| d\omega_{i}$$

The BRDF

Bidirectional Reflectance Distribution Function

The BRDF models the surface appearance



The BRDF – $f_r(x, \omega_i, \omega_o)$

- Describes the fraction of light from ω_i that is reflected to ω_o at point x
- Must satisfy some properties:
 - Energy conservation (technically, conservation means =, but we allow absorption):

 $\int_{\Omega} f_{\rm r}(x,\omega_i,\omega_o)\cos\theta_i\,d\omega_i \leq 1$

• Reciprocity (typically but *not always* equivalent to symmetry):

 $f_{\mathbf{r}}(x,\omega_i,\omega_o) = f_{\mathbf{r}}(x,\omega_o,\omega_i)$

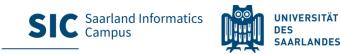
A Lambertian diffuse BRDF

- Reflects light equally in all directions
- This is <u>**not**</u> $f_r = \rho$
 - ρ is the albedo the color of the reflected light
- Because

$$\int_{\Omega} 1\cos\theta \, d\omega = \pi > 1$$

- Violates energy conservation (the surface would appear to generate light)
- The correct diffuse BRDF is

$$f_r = \rho \frac{1}{\pi}$$



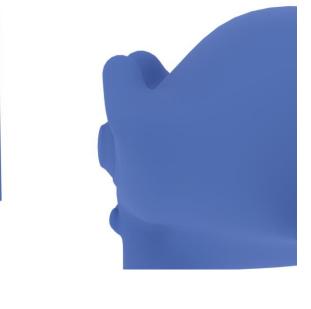
Perfect mirror reflection

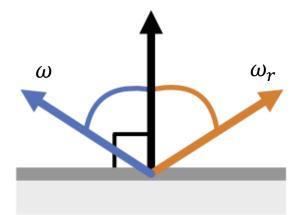
- $L_r(\omega) = L_i(\omega_r)$
- How to encode that as a BRDF?
 - Dirac delta distribution $\delta(x)$, defined as

- Intuition: $\delta(x)$ is zero everywhere, except *exactly* at 0, where it is infinitely large
- Perfect mirror BRDF:

$$= f_r(x, \omega_i, \omega)$$
$$L_r(\omega) = \int_{\Omega} \frac{\delta(\omega_i - \omega_r)}{\cos \theta_r} L_i \cos \theta_i \, d\omega_i = L_i(\omega_r)$$

 $f(0) = \int_X f(x)\delta(x)dx$



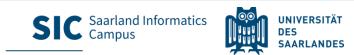


To be continued...

(in 2 weeks)

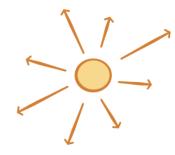
Reading materials

 Nicodemus, Fred (1965). "Directional reflectance and emissivity of an opaque surface". Applied Optics. 4 (7): 767–775



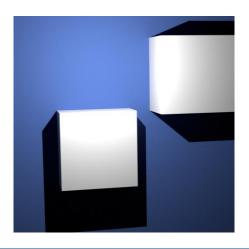
Computing simple illumination

Point, spot, and directional lights



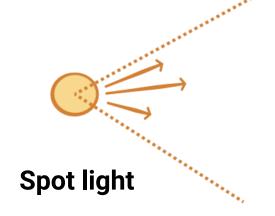
Point light

• Emits total power ϕ in all directions

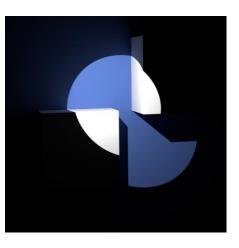


UNIVERSITÄT DES

SAARLANDES



• A point light restricted to a cone





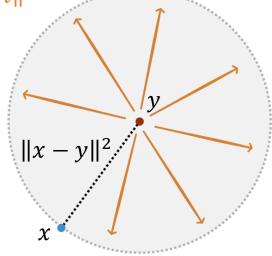
Directional light

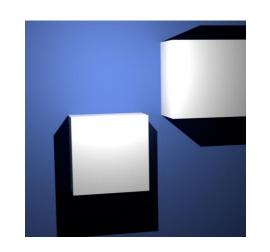
- Infinitely far away light
- Exactly one direction

Computing direct illumination from a point light

$$L_o = \frac{\phi}{4\pi \|x - y\|^2} V(x, y) f_r(x, \omega_o, \overrightarrow{xy}) \cos \theta_i$$

- V(x, y) is a binary visibility term, we ray-trace it to get shadows
- "Radiance" makes no sense for a single point: there is no area
 - The total power ϕ spreads spherically
 - Surface area of the sphere at x is $4\pi ||x i||^2$





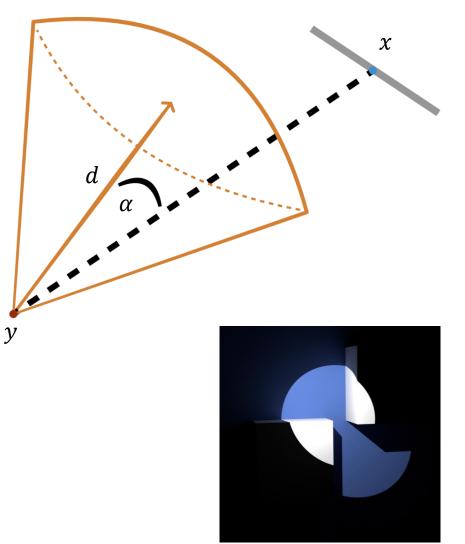
х

Computing direct illumination from a spot light

- Almost the same as for the point light
- Need to check if we are within the cone
 - Compare α to opening angle

$$\cos \alpha = \frac{\langle d, \overline{y} \overline{x} \rangle}{\|x - y\|}$$

- Bonus: intensity falloff as we move away from the center
 - Multiply ϕ by some factor computed from $\cos \alpha$



Computing direct illumination from a directional light

- Assumption: infinitely far away light source with emitted radiance L_e
- Light arrives from a single direction $\boldsymbol{\omega}$

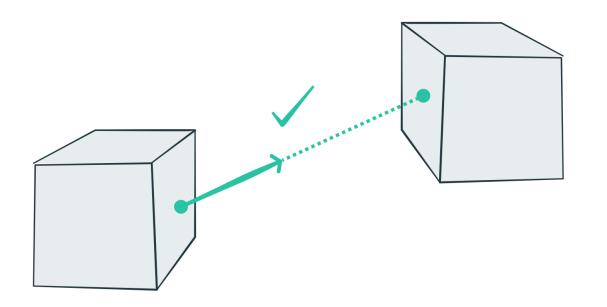
• Rendering equation simplifies to

 $L_o(x, \omega_o) = V(\omega) L_e f_r(x, \omega_o, \omega) \cos \theta$

• $V(\omega)$ checks if there is any geometry in this direction, at any distance (ray traced)

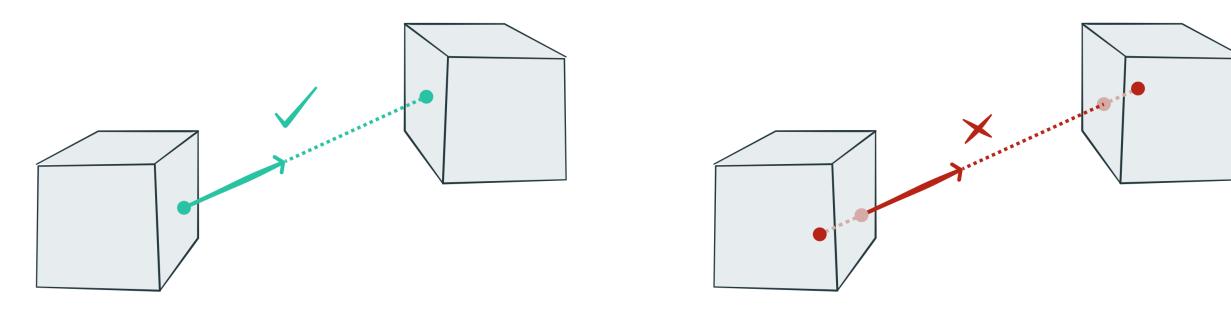
Shadow rays, aka "any-hit" ray queries

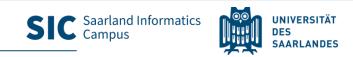
- Trace ray between two points
- Can terminate on first hit distance is irrelevant
 - → Faster than "normal" closest-hit rays



Self intersections are a problem

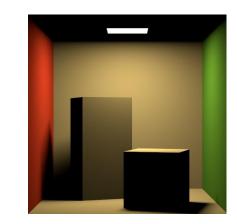
- Computers have limited accuracy
- Floating point errors can cause shadow tests to fail

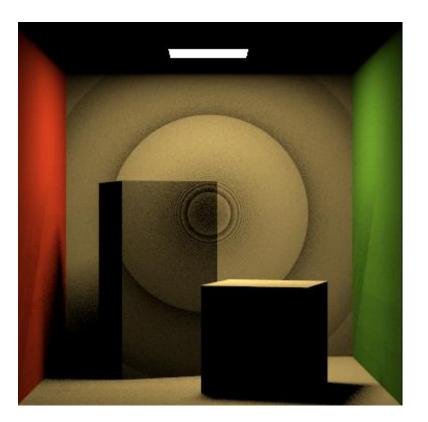


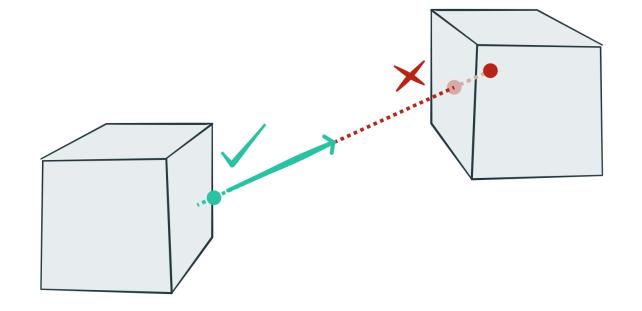


Self-intersection on the illuminated surface

- Move origin away from the surface
- And/Or: ignore hits closer than a small minimum distance

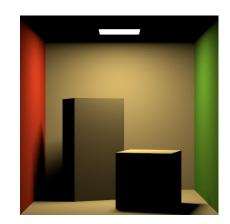


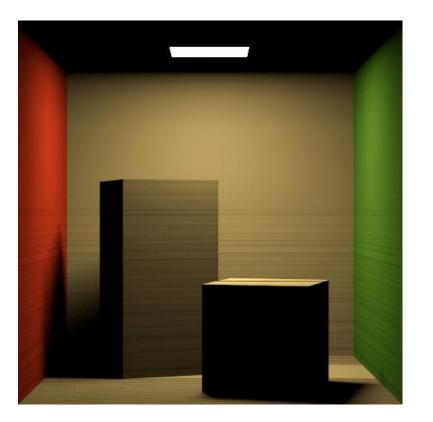


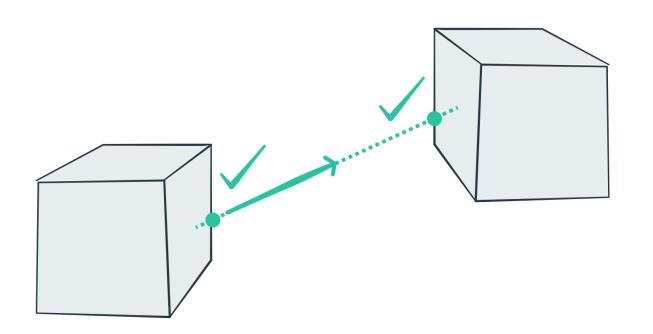


Self-intersection on the light source

• Set maximum distance shorter than actual distance







Reading materials

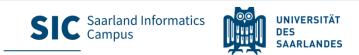
- https://pbr-book.org/4ed/Light_Sources
- <u>https://www.pbr-book.org/4ed/Shapes/Managing_Rounding_Error</u>

Textures

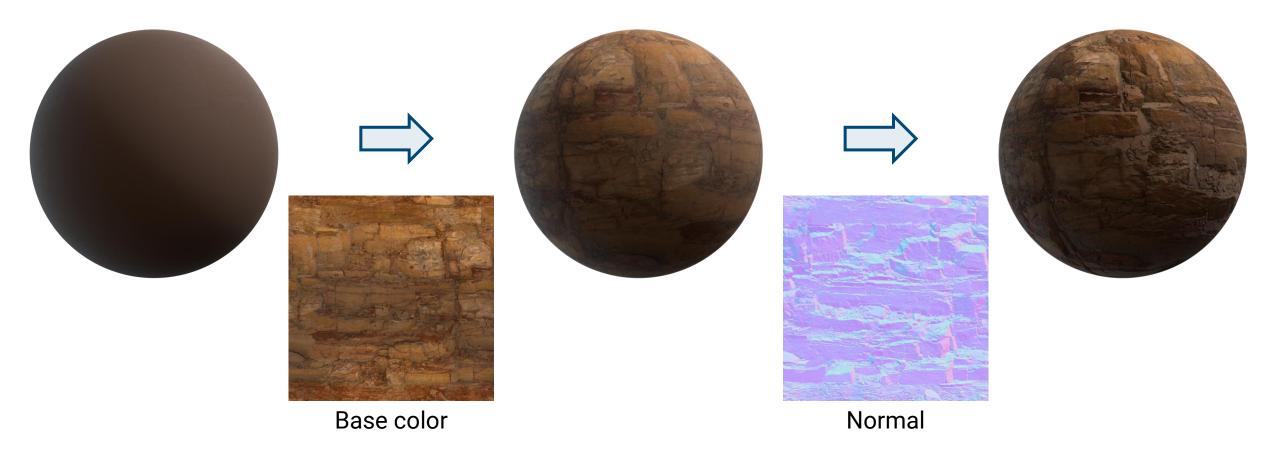
Textures are an inexpensive way to add detail

... well, compared to excessive geometry detail

https://polyhaven.com/a/cliff_side



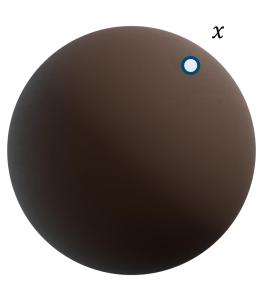
Textures can control arbitrary parameters





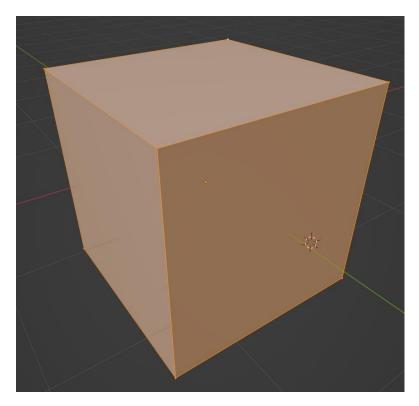
A texture is a function t(x)

- Maps surface point *x* to a parameter value
 - Here: t(x) assigns a material color based on an image
- Two main types:
 - Image textures
 - Procedural textures

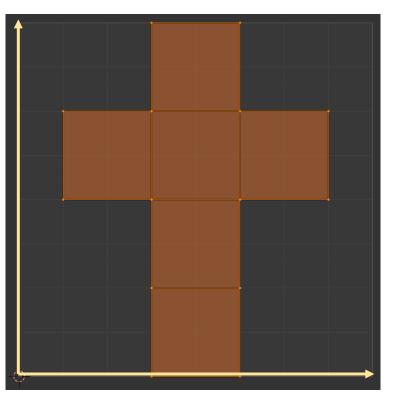


t(x)

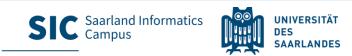
Surface parametrization of a cube



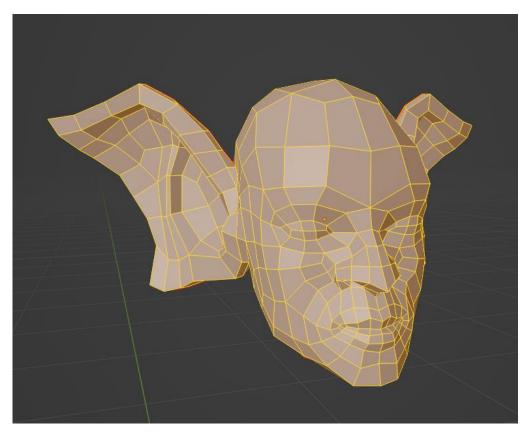
Geometry

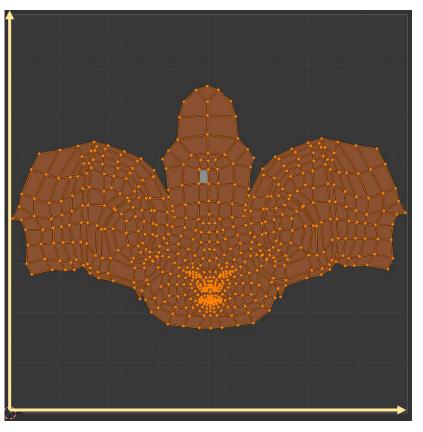


UV Map



Surface parametrization of a humanoid head





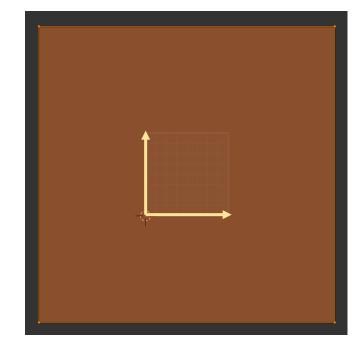
0.0

UNIVERSITÄT

DES SAARLANDES

Tiling: repeating a texture over a larger surface

- Texture coordinates outside the [0,1] range
- Border handling dictates how these are mapped back onto the image
 - Here: "repeat": $u' = u \mod 1$
 - Alternatives: mirror, clamp



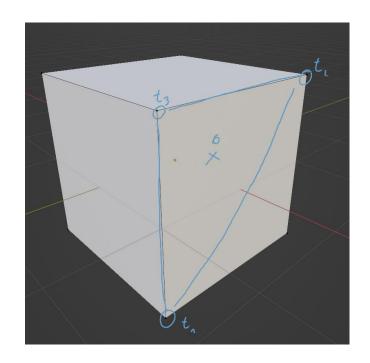
Barycentric coordinates and vertex attributes

- How to get the texture coordinate at a hit point *x*?
- Vertices p_1, p_2, p_3 store their texture coordinates t_1, t_2, t_3

- Barycentric coordinates (*u*, *v*)
 - $x = up_1 + vp_2 + (1 u v)p_3$
 - Interpolate the triangle corners to get *x*

• We can interpolate any vertex attribute the same way

•
$$t_x = ut_1 + vt_2 + (1 - u - v)t_3$$



Procedural textures: Describing patterns via math

- Many possibilities:
 - (quasi) random noise
 - Voronoi patterns
 - Tiles and chessboards
 - ...
 - And all combinations of those!

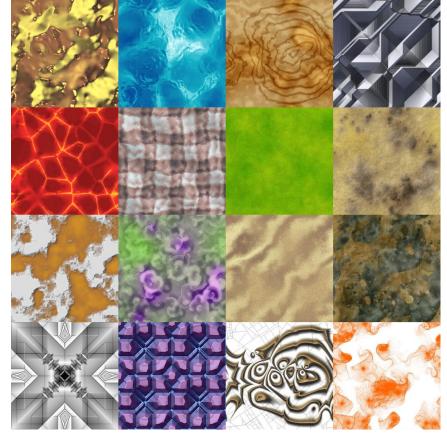
- Benefits: low memory cost, infinite resolution
- Drawbacks:

Saarland Informatics

- Tricky to find functions and parameters to get a desired look
- (sometimes) high evaluation cost

UNIVERSITÄT DES

AARLANDES



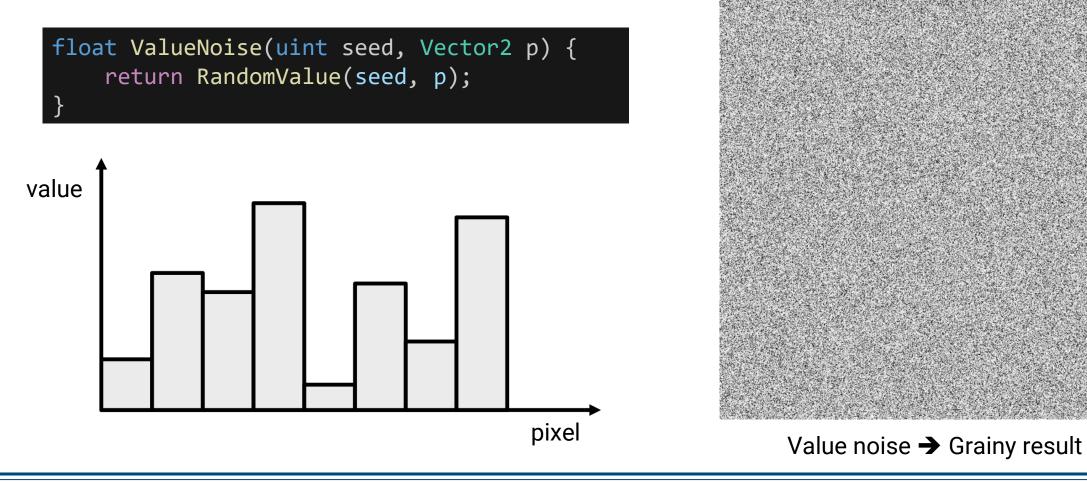
https://opengameart.org/content/40-procedural-textures

Example: Procedural Noise

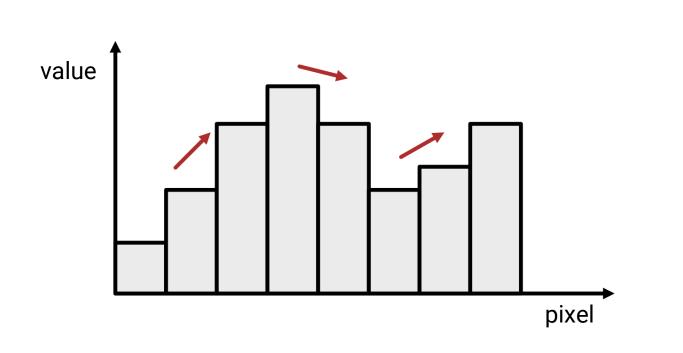
- A great way to add detail to huge scenes
- Or to make your renderings look less "synthetic"

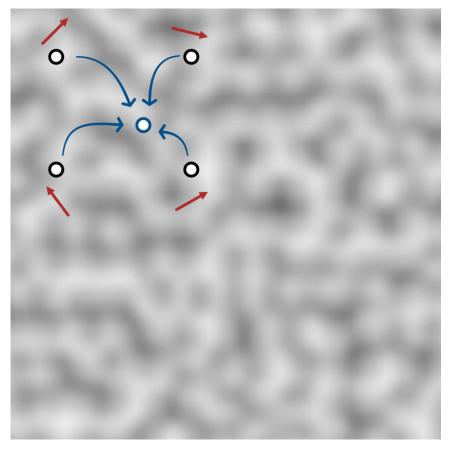
https://www.shadertoy.com/view/4ttSWf

Value noise: Every pixel (or tile) gets a random value



Gradient noise: Compute values from random gradients





Gradient noise → Smooth result

Perlin noise: Random gradients at grid points

p1

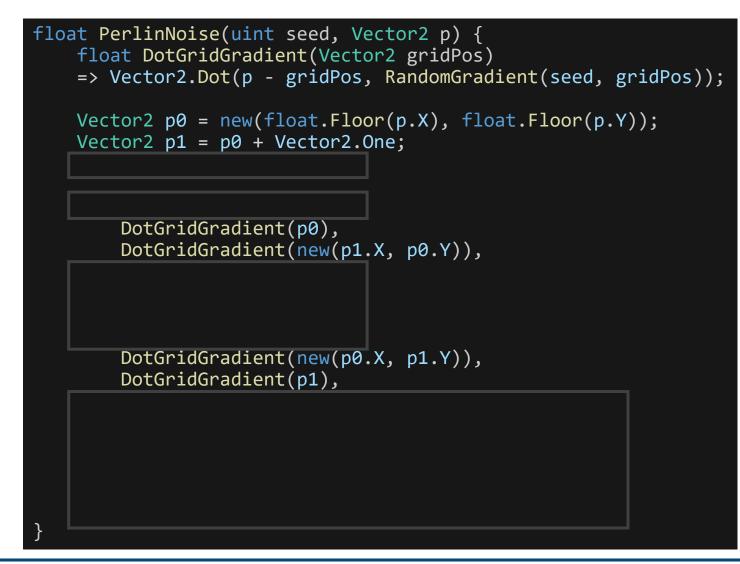
р

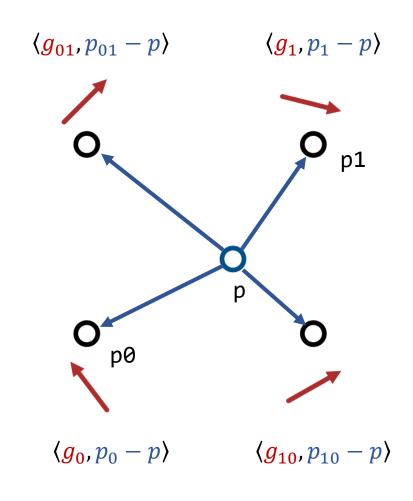
p0



SIC Saarland Informatics Campus

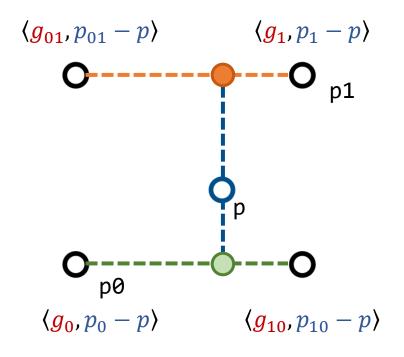
Perlin noise: Compute dot products with gradients



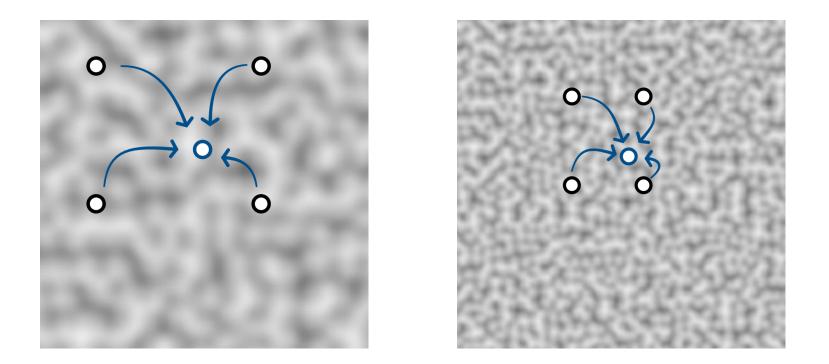


Perlin noise: Bicubic interpolation of dot products

```
float PerlinNoise(uint seed, Vector2 p) {
 float DotGridGradient(Vector2 gridPos)
 => Vector2.Dot(p - gridPos, RandomGradient(seed, gridPos));
Vector2 p0 = new(float.Floor(p.X), float.Floor(p.Y));
Vector2 p1 = p0 + Vector2.0ne;
Vector2 offset = p - p0;
 float valX1 = Interpolate(
     DotGridGradient(p0),
    DotGridGradient(new(p1.X, p0.Y)),
     offset.X
 );
 float valX2 = Interpolate(
     DotGridGradient(new(p0.X, p1.Y)),
     DotGridGradient(p1),
     offset.X
 );
float val = Interpolate(valX1, valX2, offset.Y);
 return float.Clamp(0.5f * (val + 1), 0, 1);
```



Noise frequency can be tweaked via the grid resolution



Mixing multiple frequencies → More natural result

Noise(
$$p$$
) = $\sum_{i} a_i$ Perlin($f_i p$)

float MixedNoise(uint seed, IEnumerable<(float Frequency, float Amplitude)> components, Vector2 p) {
float noise = 0.0f;
foreach (var component in components)
 noise += PerlinNoise(seed, p * component.Frequency) * component.Amplitude;
return noise;

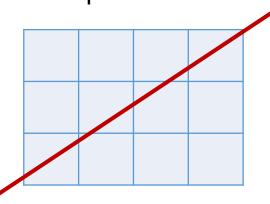


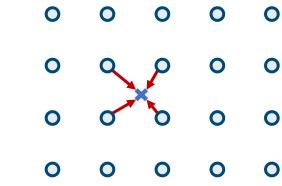
Image Textures

- Obtained via:
 - Painting
 - Photographs (+ manipulation)
 - Simulation
- Benefits: extremely flexible, intuitive creation
- Drawbacks: limited resolution and huge memory cost

An image is a grid of values

- Pixels are point samples
 - Ο
- *Not* little squares

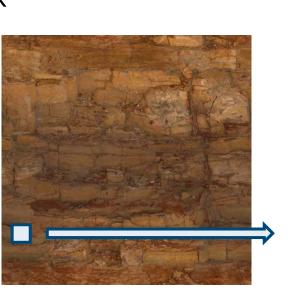


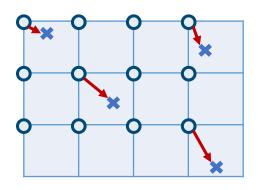


To get a value at a position we need to interpolate

Nearest-neighbor interpolation

- Round the texture coordinate down to integer:
 - $\lfloor u \cdot w \rfloor$
 - $\lfloor v \cdot h \rfloor$
 - *w* and *h* are image width and height in pixels
- Fast, but results in a blocky / "pixelated" look
 - ... though that is sometimes desired!



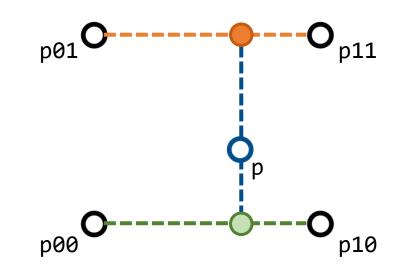


Bilinear interpolation

- Linearly interpolate between left and right
 - $p_1 = t_x p_{01} + (1 t_x) p_{11}$ • $p_0 = t_x p_{00} + (1 - t_x) p_{10}$
- Linearly interpolate result vertically

 $\bigcirc p = t_y p_0 + (1 - t_y) p_1$

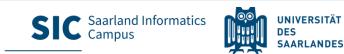
- For even smoother results:
 - Bicubic interpolation





Reading materials

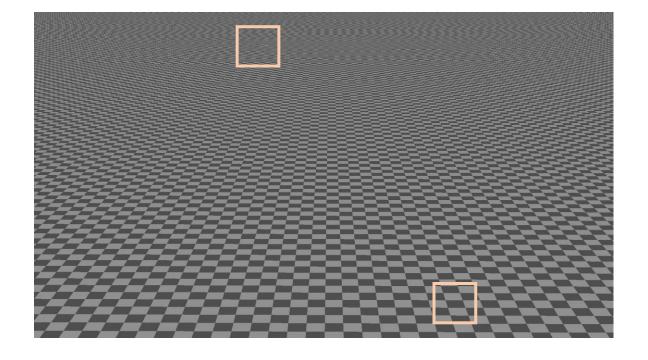
- Ken Perlin. 1985. An Image Synthesizer.
- <u>https://pbr-book.org/4ed/Textures_and_Materials</u>

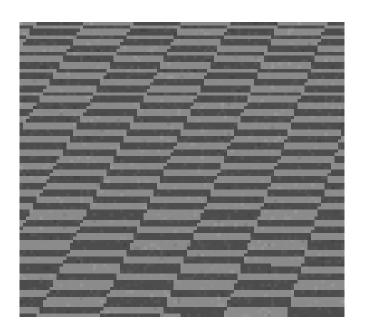


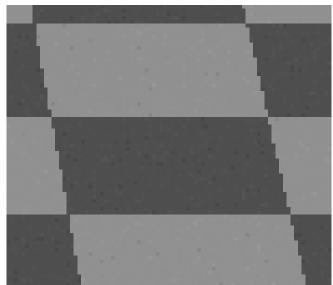
Anti-aliasing and texture filtering

What is aliasing?

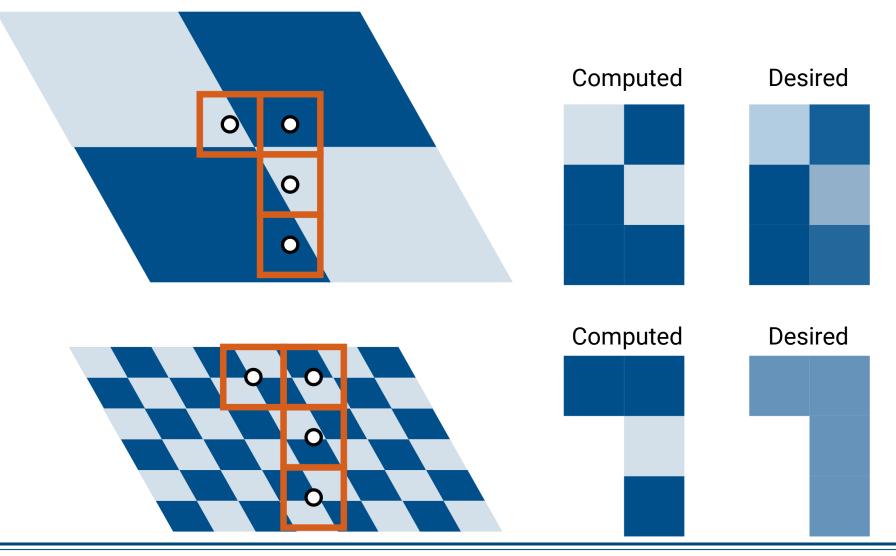
- Jagged edges and distorted shapes
- If the sample count is too low to capture all details



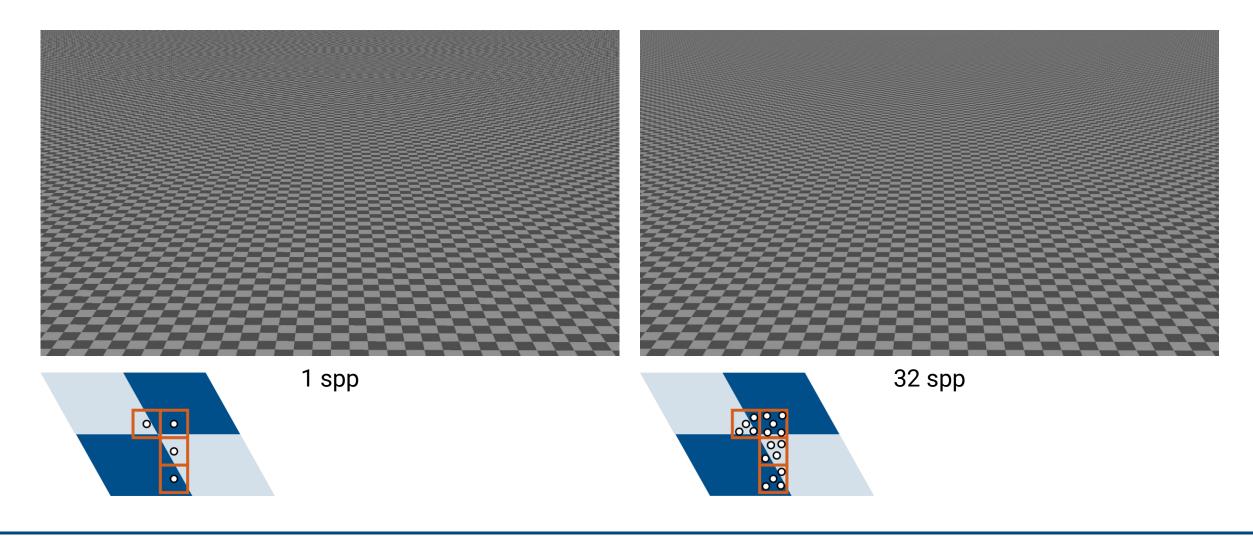




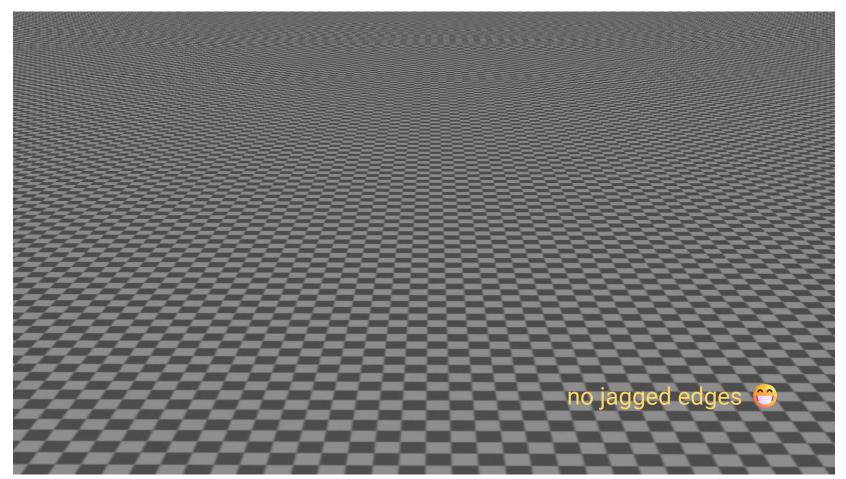
Example values with Alias



Naively getting rid of alias is simple: Just use more samples

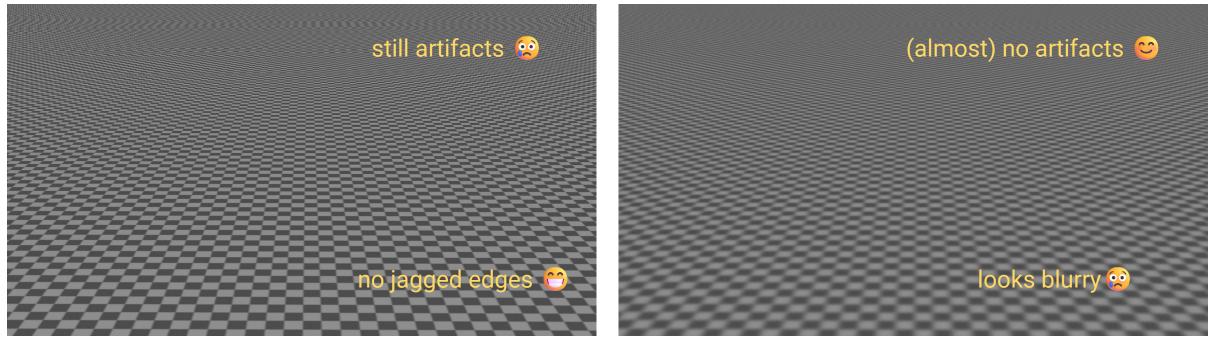


Alias can be avoided by prefiltering the texture



2px Gaussian blur

But how much filtering do we need?



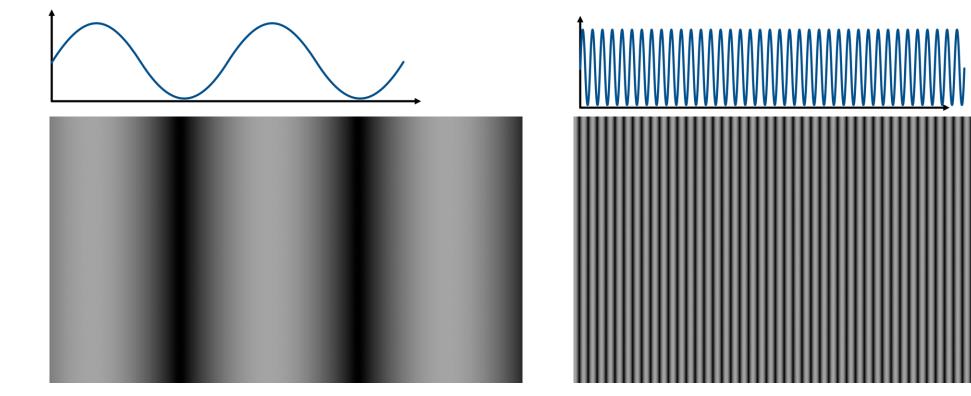
2px Gaussian blur

5px Gaussian blur

To answer that, we turn to Fourier analysis

High-frequency and low-frequency images

• Some trivial examples

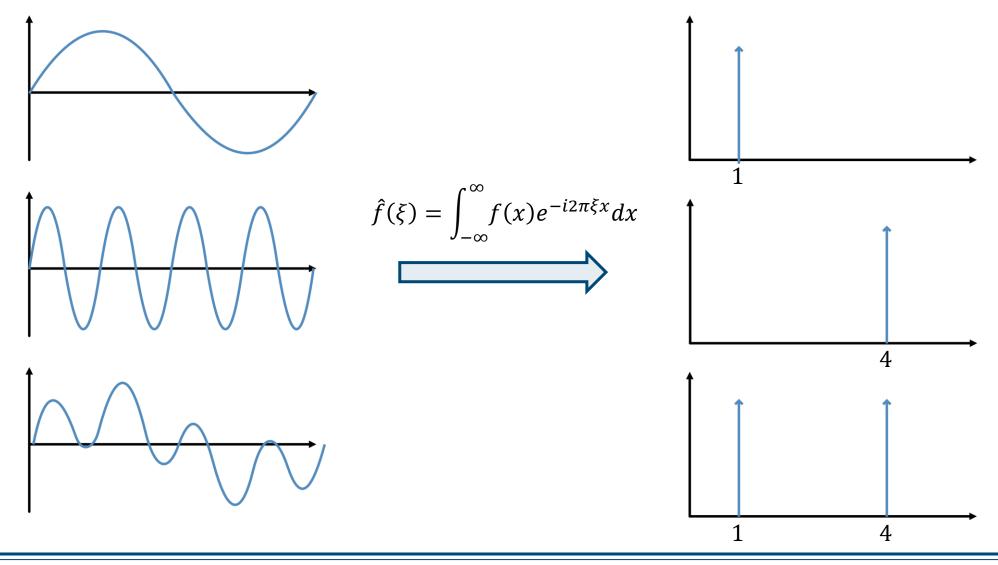


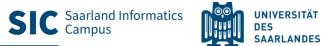
High frequency = rapidly changing signal

Low frequency = slowly changing signal

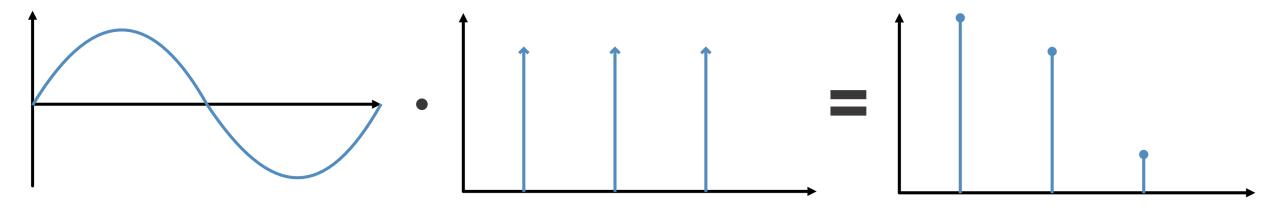
Images typically contain many different frequencies

Fourier analysis decomposes a signal into its frequencies

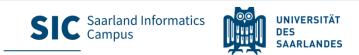




Sampling as a multiplication with a comb function

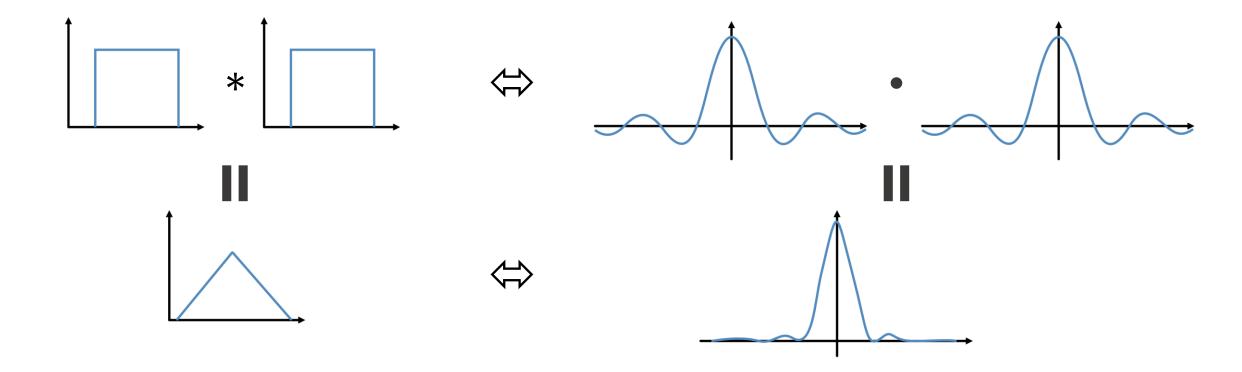


"slight" stretch of what a Dirac delta is... But good enough for our intuition €



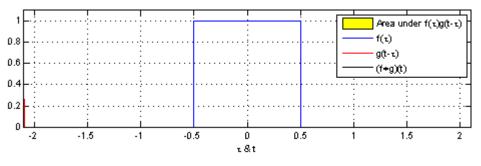
Multiplication in space \Leftrightarrow convolution in frequency domain

Convolution in space \Leftrightarrow Multiplication in frequency domain



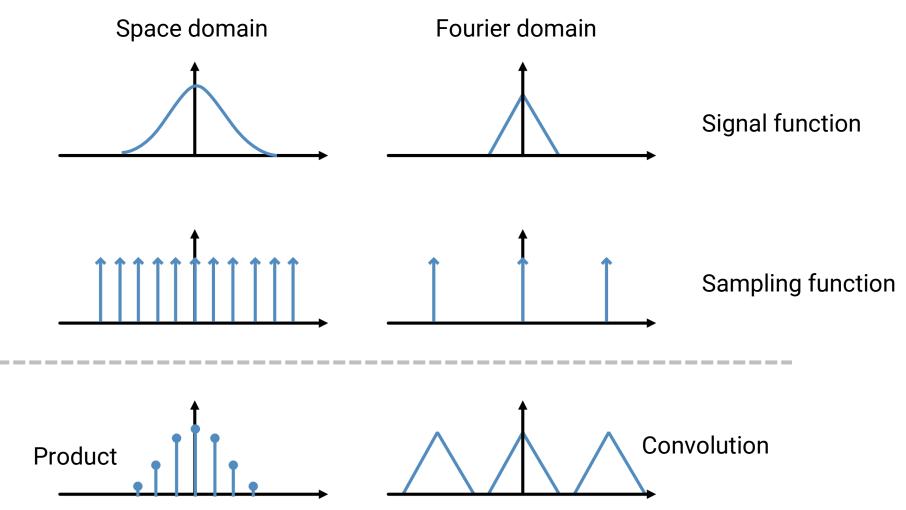
Convolution (a fancy term for filtering)

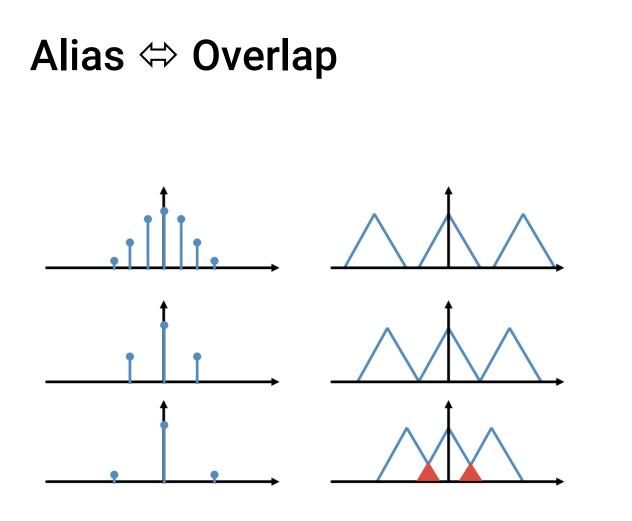
$$f(x) * g(x) = \int f(x')g(x - x')dx'$$



https://en.wikipedia.org/wiki/Convolution

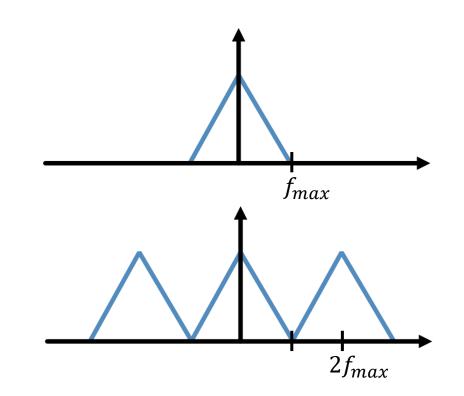
In Fourier space: Sampling is a convolution with a comb





Nyquist theorem:

No alias if sample rate \geq highest signal frequency



Minimal sample distance without overlap

Prefiltering: remove all frequencies above the sample rate

• Ideal low-pass: multiplication with a box in frequency domain



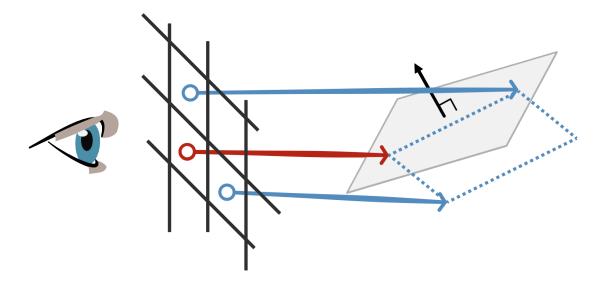
- We loose high-frequency detail
- But we don't destroy more than that (as alias does!)

- In image space: convolution with a sinc
 - Costly: infinite support
 - But we can use a cheaper, non-ideal, low-pass filter as a surrogate

Texture filtering in practice

Ray differentials to determine the pixel footprint

- Track additional rays to the side and above
 - Not actually intersected with the geometry
 - Hitpoints approximated from the normal *n*, assuming planar surface



- With 1 spp, the texture should be low-pass filtered with roughly this shape
 - But how to do that efficiently?

SIC Saarland Informatics Campus

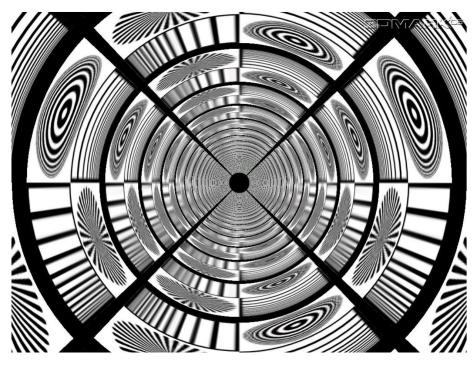
MIP-maps (Multum In Parvo = "much in little")

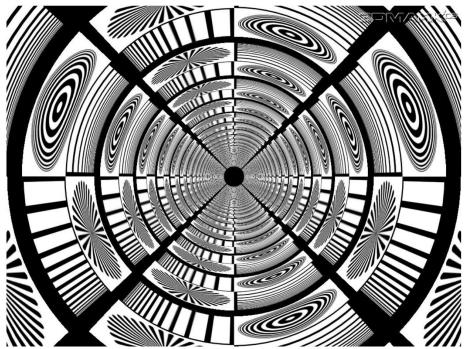
- Store image at multiple resolutions
 - Computed in pre-process
 - Each level uses half the resolution of the previous

- Little overhead
 - Less than twice the memory of the original texture
- Rendering
 - Pick level based on pixel footprint
 - Interpolate (to avoid visible, abrupt transitions)

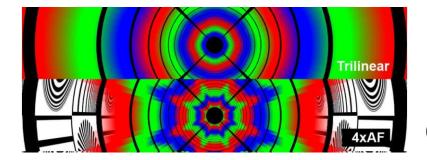
SIC Saarland Informatics Campus

Trilinear (left) vs anisotropic (right)





Anisotropic filtering reduces *unnecessary* blur



UNIVERSITÄT DES SAARLANDES Color = MIP level

Reading materials

• https://pbr-book.org/4ed/Textures_and_Materials/Texture_Sampling_and_Antialiasing

- For more on Fourier transforms, image filtering, etc
 - → Image Processing and Computer Vision (IPCV) core lecture

Summary

Topics in this block

- Rendering equation
- Basic radiometry
- Simple BRDF models
- Simple light sources
- Textures

→ Now we can render textured diffuse surfaces and mirrors under simple direct illumination

