$$
L_0(x, \omega_0) = L_e(x, \omega_0) + \int_{\Omega} L_i(x, \omega_i) f_r(x, \omega_i, \omega_0) |\cos \theta_i| d\omega_i
$$

Light transport basics

Computer Graphics 24/25 – Lecture 2

Last time

Today

UNIVERSITÄT
DES
SAARLANDES

Rendering equation

The heart of rendering

... and a **guaranteed** exam question

$$
L_{0}(x,\omega_{0}) = L_{e}(x,\omega_{0}) + \int_{\Omega} L_{i}(x,\omega_{i}) f_{r}(x,\omega_{i},\omega_{0}) |\cos \theta_{i}| d\omega_{i}
$$

Outgoing light
Emitted light
Reflected light

The heart of rendering

... and a **guaranteed** exam question

To define this properly, let's look at some physics

- Visible light is a type of electromagnetic radiation
- We use *radiometry* to measure it

Flux Φ (radiometric power)

- Energy per unit time
	- Definition: Time derivative of the energy $\Phi = \frac{dQ}{dt}$ dt
	- Unit: Watt (W)
- We measure / compute it at an instant in time

Not this, though

- Electric power of an equivalent incandescent light bulb
- Flux is this power minus heat loss
	- (Though, technically, "heat loss" is mostly flux in IR spectrum)

Quantifying the amount of light that reaches / leaves a surface

- Irradiance is the incoming power per unit area
	- $E = \frac{d\Phi}{dA}$ dA
	- unit: $\frac{W}{m^2}$ $m²$

Irradiance

- Radiosity is the outgoing (emitted or reflected) power per unit area
	- $R = \frac{d\Phi}{dA}$ dA
	- unit: $\frac{W}{m^2}$ $m²$

Radiosity

Radiance is our main quantity of interest

• A *directional* quantity: Power per "direction" and projected area

Integrals and derivatives are defined via a *measure*

$$
\frac{df(x)}{dx} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}
$$

This needs a notion of "how big is Δx ?"

Saarland Informatics Campus

UNIVERSITÄT DES

SAARLANDES

The solid angle: A measure for directions

- Remember radian ("rad")?
	- Measures 2D angle as the corresponding length on the unit circle
- A *solid angle* is the 3D analog of a 2D angle
	- Its unit is the steradian ("sr")
	- Measures the area on the unit sphere
- And a set of directions corresponds to a patch on the unit sphere

Radiance is power per solid angle per projected area

That's why we have a cosine in the rendering equation \mathbf{P}

Radiance remains constant (in vacuum)

$$
L_{\rm i}(\omega) = L_{\rm o}(-\omega)
$$

Independent of geometry and distance!

Getting back to the rendering equation

$$
L_0(x, \omega_0) = L_e(x, \omega_0) + \int_{\Omega} L_i(x, \omega_i) f_r(x, \omega_i, \omega_0) |\cos \theta_i| d\omega_i
$$

Outgoing radiance is emitted radiance plus integral over the unit sphere, measured by solid angle, of the incoming radiance, modified by the BRDF and cosine

- Why the cosine?
	- Cancels out the same $\cos \theta$ in the definition of radiance
	- Because we want the power per area at x
	- And L_i is power per area $perpendicular$ to ω_i

An intuitive take on the cosine

- If the same "amount of" light arrives from different angles...
- The one from the grazing angle is "spread over a larger area"

Don't want to take my word for it? Try shining light with your phone onto your table!

What about color?

• Ideally: consider the spectral radiance, i.e., radiance per wavelength λ

$$
L_{\lambda} = \frac{L}{d\lambda}
$$

- Common simplification: RGB
	- Red, Green, Blue color channels
	- More on that in lecture 4

Reading materials

- https://pbr-book.org/4ed/Radiometry, Spectra, and Color/Radiometry
- Kajiya, James T. 1986. "The rendering equation."
- *Chapter 3 of:* Veach, Eric. 1997. Robust Monte Carlo Methods for Light Transport Simulation. PhD thesis. https://graphics.stanford.edu/papers/veach_thesis/thesis-bw.pdf

$$
L_0(x,\omega_0) = L_e(x,\omega_0) + \int_{\Omega} L_i(x,\omega_i) \overline{f_r(x,\omega_i,\omega_0)} \cos \theta_i | d\omega_i
$$

The BRDF

Bidirectional Reflectance Distribution Function

The BRDF models the surface appearance

The BRDF – $f_{\rm r}(x,\omega_{\rm i},\omega_{\rm o})$

- Describes the fraction of light from ω_i that is reflected to ω_o at point x
- Must satisfy some properties:
	- Energy conservation (technically, conservation means =, but we allow absorption):

 $\overline{1}$ Ω $f_{\rm r}(x,\omega_i,\omega_o)$ cos $\theta_i d\omega_i \leq 1$

• Reciprocity (typically but *not always* equivalent to symmetry):

 $f_{\rm r}(x,\omega_i,\omega_o) = f_{\rm r}(x,\omega_o,\omega_i)$

A Lambertian diffuse BRDF

- Reflects light equally in all directions
- This is <u>not</u> $f_r = \rho$
	- ρ is the albedo the color of the reflected light
- Because

$$
\int_{\Omega} 1 \cos \theta \, d\omega = \pi > 1
$$

- Violates energy conservation (the surface would appear to generate light)
- The **correct** diffuse BRDF is

$$
f_r=\rho\frac{1}{\pi}
$$

Perfect mirror reflection

- $L_r(\omega) = L_i(\omega_r)$
- How to encode that as a BRDF?
	- Dirac delta distribution $\delta(x)$, defined as

• Intuition:
$$
\delta(x)
$$
 is zero everywhere, except exactly at 0, where it is infinitely large

 $f(0) = |$

X

• Perfect mirror BRDF:

$$
L_r(\omega) = \int_{\Omega} \frac{\delta(\omega_i - \omega_r)}{\cos \theta_r} L_i \cos \theta_i d\omega_i = L_i(\omega_r)
$$

 $f(x)\delta(x)dx$

To be continued...

(in 2 weeks)

Reading materials

• *Nicodemus, Fred (1965). "Directional reflectance and emissivity of an opaque surface". Applied Optics. 4 (7): 767–775*

Computing simple illumination

Point, spot, and directional lights

Point light

• Emits total power ϕ in all directions

• A point light restricted to a cone

Directional light

- Infinitely far away light
- Exactly one direction

Computing direct illumination from a point light

$$
L_o = \frac{\phi}{4\pi ||x - y||^2} V(x, y) f_r(x, \omega_o, \overrightarrow{xy}) \cos \theta_i
$$

- $V(x, y)$ is a binary visibility term, we ray-trace it to get shadows
- "Radiance" makes no sense for a single point: there is no area
	- The total power ϕ spreads spherically
	- Surface area of the sphere at x is $4\pi ||x i||^2$

 \overline{y}

 χ

Computing direct illumination from a spot light

- Almost the same as for the point light
- Need to check if we are within the cone
	- Compare α to opening angle

$$
\cos \alpha = \frac{\langle d, \overrightarrow{yx} \rangle}{\|x - y\|}
$$

- Bonus: intensity falloff as we move away from the center
	- Multiply ϕ by some factor computed from cos α

Computing direct illumination from a directional light

- Assumption: infinitely far away light source with emitted radiance L_e
- Light arrives from a single direction ω
- Rendering equation simplifies to

 $L_{o}(x, \omega_{o}) = V(\omega) L_{e} f_{r}(x, \omega_{o}, \omega) \cos \theta$

• $V(\omega)$ checks if there is any geometry in this direction, at any distance (ray traced)

Shadow rays, aka "any-hit" ray queries

- Trace ray between two points
- Can terminate *on first hit* distance is irrelevant
	- ➔ Faster than "normal" closest-hit rays

Self intersections are a problem

- Computers have limited accuracy
- Floating point errors can cause shadow tests to fail

Self-intersection on the illuminated surface

- Move origin away from the surface
- And/Or: ignore hits closer than a small minimum distance

Self-intersection on the light source

• Set maximum distance shorter than actual distance

Reading materials

- https://pbr-book.org/4ed/Light_Sources
- *https://www.pbr-book.org/4ed/Shapes/Managing_Rounding_Error*

Textures

Textures are an inexpensive way to add detail

… well, compared to excessive geometry detail

https://polyhaven.com/a/cliff_side

Textures can control arbitrary parameters

A texture is a function $t(x)$

- Maps surface point x to a parameter value
	- Here: $t(x)$ assigns a material color based on an image
- Two main types:
	- Image textures
	-

 $t(x)$

Surface parametrization of a cube

Geometry **Contract Contract Contr**

Surface parametrization of a humanoid head

Tiling: repeating a texture over a larger surface

- Texture coordinates outside the $[0,1]$ range
- *Border handling* dictates how these are mapped back onto the image
	- Here: "repeat": $u' = u \mod 1$
	- Alternatives: mirror, clamp

Barycentric coordinates and vertex attributes

- How to get the texture coordinate at a hit point x ?
- Vertices p_1, p_2, p_3 store their texture coordinates t_1, t_2, t_3
- Barycentric coordinates (u, v)
	- $x = up_1 + vp_2 + (1 u v)p_3$
	- Interpolate the triangle corners to get x
- We can interpolate any *vertex attribute* the same way
	- $t_r = ut_1 + vt_2 + (1 u v)t_3$

Procedural textures: Describing patterns via math

- Many possibilities:
	- (quasi) random noise
	- Voronoi patterns
	- Tiles and chessboards
	- \bullet ...
	- And all combinations of those!

- Benefits: low memory cost, infinite resolution
- Drawbacks:
	- Tricky to find functions and parameters to get a desired look
	- (sometimes) high evaluation cost <https://opengameart.org/content/40-procedural-textures>

UNIVERSITÄT DES

SAARLANDES

Example: Procedural Noise

- A great way to add detail to huge scenes
- Or to make your renderings look less "synthetic"

<https://www.shadertoy.com/view/4ttSWf>

Value noise: Every pixel (or tile) gets a random value

Gradient noise: Compute values from random gradients

pixel **Figure Gradient noise → Smooth result**

Perlin noise: Random gradients at grid points

p0

 \bigodot

p

 \Box

 $p1$

Saarland Informatics Campus

Perlin noise: Compute dot products with gradients

Perlin noise: Bicubic interpolation of dot products

```
float PerlinNoise(uint seed, Vector2 p) {
    float DotGridGradient(Vector2 gridPos) 
    => Vector2.Dot(p - gridPos, RandomGradient(seed, gridPos));
   Vector2 p0 = new(float.Floor(p.X), float.Floor(p.Y));Vector2 p1 = p0 + Vector2.One;
   Vector2 offset = p - p0;
    float valX1 = Interpolate(
        DotGridGradient(p0),
       DotGridGradient(new(p1.X, p0.Y)),
        offset.X
    );
   float valX2 = Interpolate(
        DotGridGradient(new(p0.X, p1.Y)),
        DotGridGradient(p1),
        offset.X
    );
   float val = Interpolate(valX1, valX2, offset.Y);
    return float. Clamp(0.5f * (val + 1), 0, 1);
}
```
UNIVERSITÄT

DES SAARLANDES

Saarland Informatics

Noise frequency can be tweaked via the grid resolution

Mixing multiple frequencies ➔ More natural result

$$
Noise(p) = \sum_{i} a_i \operatorname{Perlin}(f_i \ p)
$$

float MixedNoise(uint seed, IEnumerable<(float Frequency, float Amplitude)> components, Vector2 p) { float noise = $0.0f$; foreach (var component in components) noise += PerlinNoise(seed, p * component.Frequency) * component.Amplitude; return noise; }

Image Textures

- Obtained via:
	- Painting
	- Photographs (+ manipulation)
	- Simulation
- Benefits: extremely flexible, intuitive creation
- Drawbacks: limited resolution and huge memory cost

An image is a grid of values

- Pixels are point samples
	- $\overline{\mathbf{O}}$ $\mathbf O$ $\mathbf O$ $\mathbf O$ $\mathbf O$ \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet $\overline{\mathbf{O}}$ $\overline{\mathbf{O}}$ $\overline{\mathbf{O}}$ $\overline{\mathbf{O}}$ $\mathbf O$ \bullet

• **Not** little squares **To get a value at a position** we need to interpolate

Nearest-neighbor interpolation

- Round the texture coordinate down to integer:
	- $[u \cdot w]$
	- $[v \cdot h]$
	- w and h are image width and height in pixels
- Fast, but results in a blocky / "pixelated" look
	- ... though that is sometimes desired!

Bilinear interpolation

- Linearly interpolate between left and right
	- $\bigcirc p_1 = t_x p_{01} + (1 t_x) p_{11}$ $\bigcirc p_0 = t_x p_{00} + (1 - t_x) p_{10}$
- Linearly interpolate result vertically

 $\bigcirc p = t_{\nu} p_0 + (1 - t_{\nu}) p_1$

- For even smoother results:
	- Bicubic interpolation

Reading materials

- Ken Perlin. 1985. An Image Synthesizer.
- https://pbr-book.org/4ed/Textures_and_Materials

Anti-aliasing and texture filtering

What is aliasing?

- Jagged edges and distorted shapes
- If the sample count is too low to capture all details

Example values with Alias

Naively getting rid of alias is simple: Just use more samples

Alias can be avoided by *prefiltering* the texture

2px Gaussian blur

But how much filtering do we need?

2px Gaussian blur **5px Gaussian blur** 5px Gaussian blur

To answer that, we turn to Fourier analysis

High-frequency and low-frequency images

• Some trivial examples

Low frequency = slowly changing signal High frequency = rapidly changing signal

Images typically contain many different frequencies

Fourier analysis decomposes a signal into its frequencies

Sampling as a multiplication with a comb function

"slight" stretch of what a Dirac delta is... But good enough for our intuition

Multiplication in space \Leftrightarrow convolution in frequency domain

Convolution in space \Leftrightarrow Multiplication in frequency domain

Convolution (a fancy term for filtering)

$$
f(x) * g(x) = \int f(x')g(x - x')dx'
$$

<https://en.wikipedia.org/wiki/Convolution>

In Fourier space: Sampling is a convolution with a comb

No alias if sample rate \geq highest signal frequency

Minimal sample distance without overlap

Prefiltering: remove all frequencies above the sample rate

• Ideal low-pass: multiplication with a box in frequency domain

- We loose high-frequency detail
- But we don't destroy more than that (as alias does!)
- In image space: convolution with a sinc
	- Costly: infinite support
	- But we can use a cheaper, non-ideal, low-pass filter as a surrogate
Texture filtering in practice

Ray differentials to determine the pixel footprint

- Track additional rays to the side and above
	- Not actually intersected with the geometry
	- Hitpoints approximated from the normal n , assuming planar surface

- With 1 spp, the texture should be low-pass filtered with roughly this shape
	- But how to do that efficiently?

Saarland Informatics UNIVERSITÄT DES SAARLANDES

MIP-maps (Multum In Parvo = "much in little")

- Store image at multiple resolutions
	- Computed in pre-process
	- Each level uses half the resolution of the previous

- Little overhead
	- Less than twice the memory of the original texture
- Rendering
	- Pick level based on pixel footprint
	- Interpolate (to avoid visible, abrupt transitions)

Trilinear (left) vs anisotropic (right)

Anisotropic filtering reduces *unnecessary* blur

UNIVERSITÄT DES SAARLANDES Color = MIP level

Reading materials

• https://pbr-book.org/4ed/Textures_and_Materials/Texture_Sampling_and_Antialiasing

- For more on Fourier transforms, image filtering, etc
	- ➔ Image Processing and Computer Vision (IPCV) core lecture

Summary

Topics in this block

- Rendering equation
- Basic radiometry
- Simple BRDF models
- Simple light sources
- Textures

➔ Now we can render textured diffuse surfaces and mirrors under simple direct illumination

