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A few quick words on the format

• Lectures only every 2nd Monday (check webpage when in doubt)

• Lectures provide a condensed overview of the topics

• All exam-relevant topics are covered

• But details may be missing

• Suggested reading materials in the slides supplement those

• Don’t understand something?

1. Check the reading materials

2. Ask in the Q&A session (the Mondays where there is no lecture)
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What do you need to know / understand?

• Guidance to answer that is offered via Mini Tests and Assignments

• The Mini Tests

• Are mandatory but not graded

• Take place before the Q&A session (every 2nd Monday)

• Resemble the exam (if you don’t get a question right, you should read up on that topic)

• The practical assignments

• Are mandatory and graded

• Released after each overview lecture

• Implementation can require additional details; you should use the reading materials to study those

• Mandatory presentation of your submission in the tutorial following the deadline
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The Q&A session

• Voluntary attendance, but starts with a mandatory Mini Test

• You can leave after the test if you are bored 

• We’ll discuss the test solutions immediately afterwards

• Then, the floor is open for public questions

• Ask clarifications on stuff you think might interest your peers

• E.g., questions about Mini Test, general understanding of topics, course formalities

• After, I’ll be available for individual questions

• Anything you think too specific or personal to concern everyone else

• ... or that you are too shy to ask in front of everyone 

• Suggestion: 

• Use the Q&A session to work on reading materials and assignment

• Ask questions as they arise
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Rendering in a nutshell
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Renderer

Input data Rendered image

Geometries

Camera model

Light sources

Volumes

Materials & Textures



Rendering with ray tracing (the rough idea)
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Select a pixel Sample a ray from the camera Find where it hits the scene

Direct illumination
Trace rays to determine visibility of lights

Global illumination
Recursively continue paths



Today
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Geometries

Camera model

Light sources

Volumes

Materials & Textures



3D Scene Description
What data are we working with?
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Many ways to describe geometry, e.g.,

• Simple objects

• Spheres, cylinders, boxes, ...

• Aggregation of simple objects

• Boolean operations / constructive solid geometry (CSG)

• Curves

• NURBS, hair

• Polygon meshes
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Why polygon meshes?

• Can (approximately) represent any shape

• Easy and fast to render and do other computations with
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What polygons?

• Quad meshes are preferred for modeling and animation

• Easier to manipulate

• Artifact-free deformations

• Artifact-free subdivision for smoothing

• Triangle meshes are popular for rendering

• Least common denominator: Any polygon can be turned into triangles
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Further reading

• https://pbr-book.org/4ed/Shapes

• Try Blender to make your own meshes! https://www.blender.org/

• Tutorial recommendations: https://www.blenderguru.com/ or https://cgcookie.com/
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Camera models
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Cameras describe how the 3D scene is projected onto the image
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The perspective pinhole

• Camera obscura

• Crudely approximates human eye / typical camera

• Generating a ray from pixel 𝑥: 

• Ray origin is the camera position

• Direction is the vector from the pixel to the pinhole

Computer Graphics 24/25 - Lecture 1 15



Orthographic camera

• Parallel projection of the scene onto the image plane

• Useful, e.g., during 3D modelling to judge sizes of objects

• Generating a ray from pixel 𝑥: 

• All rays have the same direction

• Pixel position determines ray origin
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Fisheye

• Projects a 180° or 360° view of the scene

• Useful for visualization, light probes, or scientific uses

• Generating a ray from pixel 𝑥:

• Origin is the camera position

• Direction is computed from spherical coordinates, using a mapping
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many options, just like a world map
https://en.wikipedia.org/wiki/List_of_map_projections



Advanced camera models simulate additional effects
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Lens flare Chromatic aberration

↑ Depth of field and Bokeh ↓



Further reading

• https://www.pbr-book.org/4ed/Cameras_and_Film/Projective_Camera_Models

• https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-generating-camera-

rays/generating-camera-rays.html

• Hullin et al. 2012. Polynomial Optics: A Construction Kit for Efficient Ray-Tracing of Lens Systems. 

https://doi.org/10.1111/j.1467-8659.2012.03132.x
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Ray tracing
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Example: Ray-plane intersection

• A ray is defined by:

• Origin 𝑜, direction 𝑑

• 𝑥 is on the ray if 𝑥 = 𝑜 + 𝑡𝑑

• A plane is defined by:

• Point 𝑝, Normal 𝑛

• 𝑥 is on the plane if 𝑥 − 𝑝, 𝑛 = 0

⇒ We find the intersection by substituting the ray equation into the plane equation

𝑜 + 𝑡𝑑 − 𝑝, 𝑛 = 0 ⇔ 𝑡 =
𝑝 − 𝑜, 𝑛

𝑑, 𝑛

• Same idea can be used for any other shape (sphere, cylinder, fractal, ...)
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Example: Ray-triangle intersection (simplified)

https://www.realtimerendering.com/intersections.html

• Triangle with corner points 𝑝1, 𝑝2, 𝑝3

• Normal 𝑛 = 𝑝2 − 𝑝1 × 𝑝3 − 𝑝1

1. Intersect the ray with the plane that contains the triangle

2. Check if the point lies in the triangle (see reading materials)

• Many algorithms exist to make this fast & precise (see 

https://www.realtimerendering.com/intersections.html for an overview)
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https://www.realtimerendering.com/intersections.html


Self-intersections and other numerical issues
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Perfect world: no intersection in-between Reality: floating point error

Solution: 

• offset ray origin

• minimum and maximum distance for intersections

(We’ll revisit this when talking about shadow rays and lighting computations)



Further reading

• Eric Lengyel. Mathematics for 3D Game Programming and Computer Graphics. 2011. 

• https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-rendering-a-

triangle/moller-trumbore-ray-triangle-intersection.html

• Sven Woop, Carsten Benthin, Ingo Wald. Watertight Ray/Triangle Intersection. JCGT. 2013.

• https://www.realtimerendering.com/intersections.html
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Acceleration Structures
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Make ray tracing scale to large geometries

• Intersecting meshes one triangle at a time is slow!

• 𝑂(𝑛)

• Acceleration structures build a tree (or similar) to prune non-visible

• 𝑂 log𝑛
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7.5 million

This simple scene has

triangles



Two types

• Subdividing space

• Grid

• Octree

• BSP / kd-Tree

• Subdividing objects

• Bounding volume hierarchy (BVH)

• State-of-the-art: 

• BVH dominates

• kd-Trees occasionally used
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Using a grid

• March through the grid cells along the ray

• Intersect geometries within

• Same object can be in multiple cells

• Cache intersections per-ray
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Grids are easy, but not very adaptive

• Often called the “teapot in a stadium” problem
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We can adapt the resolution locally by using, e.g., an octree
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Binary space partitioning (BSP) – (e.g., used by Doom)

• Split recursively using planes

• Arbitrary split position

• Arbitrary split orientation
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kd-Trees (axis-aligned BSP)
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Grouping objects via a Bounding volume hierarchy (BVH)

• Unlike spatial subdivision: bounding boxes can overlap
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Traversing a BVH

• Intersect ray with bounding box

• If hit: Recursively visit children (best starting with the closest!)

• Cannot stop on first hit!
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BVH vs kd-Tree

• KD trees require fewer intersection tests

• kd: Terminate on first hit

• BVH: First hit might be further away than others, due to spatial overlap

• BVH has faster build time and lower memory cost

• Each triangle is in exactly one leaf node

➔ Fixed storage cost

• BVHs do not have to be binary

• E.g., 4ary BVH for SIMD on the CPU
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triangle ID tracked in multiple nodes



Where to split?

• With BSP trees, kd-Trees, and BVHs alike, quality hinges on splitting locations
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Split in the middle:
Produces large node with high intersection cost



Where to split?
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In the middle Optimized

large, likely to hit, node
with high cost

large, likely to hit, node
with low cost



Surface area heuristic (SAH)
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𝐶 𝑠 = 𝐶t + 𝑃 𝐿 ⋅ 𝐶 𝐿 + 𝑃 𝑅 ⋅ 𝐶 𝑅L R

𝑃 𝐿 : Probability to hit the left child

Given by ratio of surface area (for uniform rays) 𝑃 𝐿 =
𝐴 𝐿

𝐴 𝐿+𝑅

𝐶t: Cost of traversal (AABB intersection etc.; implementation specific parameter)

𝐶 𝐿 : Cost of intersecting the left child (usually set to the number of triangles)

𝑠



The minima of the SAH cost occur where the primitive assignment 
changes

• SAH Computation is 𝑂 𝑛2 : 𝑛 split candidates, each require 𝑛 operations to compute cost
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Binning: use fixed number of regularly spaced candidate positions

• SAH Computation is 𝑂 𝑘𝑛

• Scales much better; often similar quality
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Further reading

• https://www.pbr-

book.org/4ed/Primitives_and_Intersection_Acceleration/Bounding_Volume_Hierarchies

• https://jacco.ompf2.com/2022/04/13/how-to-build-a-bvh-part-1-basics/

• https://www.youtube.com/watch?v=C1H4zIiCOaI

• Vinkler et al. 2016. Performance Comparison of Bounding Volume Hierarchies and Kd-Trees for 

GPU Ray Tracing. Comput. Graph. Forum.

• Meister et al. 2021. A Survey on Bounding Volume Hierarchies for Ray Tracing. Comput. Graph. 

Forum.
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https://www.pbr-book.org/4ed/Primitives_and_Intersection_Acceleration/Bounding_Volume_Hierarchies
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Transformations
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Scale
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𝑥𝑠 = 𝑠𝑥𝑥
𝑦𝑠 = 𝑠𝑦𝑦

𝑧𝑠 = 𝑠𝑧𝑧

Can be written as a matrix – vector product:

𝑠𝑥 0 0
0 𝑠𝑦 0

0 0 𝑠𝑧

𝑥
𝑦
𝑧

=

𝑥𝑠
𝑦𝑠
𝑧𝑠

𝑝

𝑝𝑠

𝑦𝑠

𝑥𝑠
𝑧𝑠

𝑥
𝑦

𝑧



Wait, but why matrices?

• Compact & clean

• Uniform treatment of all types of transformations

• Allows us to easily combine transformations

• Want to reverse a transformation? Use the inverse matrix!
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Rotation around the z axis
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𝑥 = cos𝛽
𝑦 = sin 𝛽

𝑥𝑟 = cos 𝛽 + 𝛼
𝑦𝑟 = sin 𝛽 + 𝛼

Basic trigonometry:

More basic trigonometry (angle sum identity):

𝒙𝒓 = cos 𝛽 + 𝛼 = cos𝛽 cos 𝛼 − sin𝛽 sin 𝛼 = 𝒙 𝐜𝐨𝐬𝜶 − 𝒚 𝐬𝐢𝐧𝜶

𝒚𝒓 = sin 𝛽 + 𝛼 = cos𝛽 sin 𝛼 + sin 𝛽 𝑐𝑜𝑠 𝛼 = 𝒙 𝐬𝐢𝐧𝜶 + 𝒚 𝐜𝐨𝐬𝜶

In matrix form:

cos 𝛼 − sin 𝛼 0
sin 𝛼 cos 𝛼 0
0 0 1

𝑥
𝑦
𝑧

Rotation around 𝑥 and 𝑦 can be derived analogously

𝑝𝑟

𝑝

𝛽

𝛼

𝑥

𝑦



Translation

• Easy:

• 𝑥𝑡 = 𝑥 + 𝑎

• 𝑦𝑡 = 𝑦 + 𝑏

• 𝑧𝑡 = 𝑧 + 𝑐

• How to write as a matrix?

• Be mindful when transforming directions: 
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1 0 0 𝑎
0 1 0 𝑏
0 0 1 𝑐
0 0 0 1

𝑥
𝑦
𝑧
1

1 0 0 𝑎
0 1 0 𝑏
0 0 1 𝑐
0 0 0 1

𝑥
𝑦
𝑧
0



Transformations can be combined via matrix multiplication

• Order matters! Generally, first scale (𝑀𝑠), then rotate (𝑀𝑟), then translate (𝑀𝑡)

𝑀 = 𝑀𝑡𝑀𝑟𝑀𝑠

• Rotation is often expressed via Euler angles (yaw, pitch, roll)

𝑀𝑟 = 𝑀𝑦𝑎𝑤𝑀𝑝𝑖𝑡𝑐ℎ𝑀𝑟𝑜𝑙𝑙

• Each corresponds to a rotation around one axis

• Which axis? Depends on the coordinate system convention!

• (The order of rotation is also up to convention...)
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Coordinate systems

• Always important to define conventions...

• ... and keep them in mind
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Moving to a new coordinate system

• Example: world space and shading space

• Why? 

• Shading is convenient if coordinate system aligned with normal

• How? 

• Construct orthonormal basis 𝑛, 𝑡, 𝑏 from normal, tangent, and bitangent

• If we set 𝑛 to be the 𝑧 axis and 𝑡 and 𝑏 to be 𝑥 and 𝑦 respectively:

𝑝′ = 𝑡𝑥 + 𝑏𝑦 + 𝑛𝑧

• In matrix form:
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𝑝′ =

𝑡𝑥 𝑏𝑥 𝑛𝑥
𝑡𝑦 𝑏𝑦 𝑛𝑦
𝑡𝑧 𝑏𝑧 𝑛𝑧

𝑥
𝑦
𝑧

To invert, we can use the fact that 𝑛, 𝑡, 𝑏 are orthonormal: 

𝑥
𝑦
𝑧

=

𝑡𝑥 𝑡𝑦 𝑡𝑧
𝑏𝑥 𝑏𝑦 𝑏𝑧
𝑛𝑥 𝑛𝑦 𝑛𝑧

𝑝′

𝑡

𝑏

𝑛

𝑥

𝑦

𝑧



Transforming normals

https://www.pbr-book.org/4ed/Geometry_and_Transformations/Applying_Transformations#Normals

• Normals do not remain normalized nor perpendicular when transformed naively

• e.g., due to non-uniform scale:

• Solutions:

1. Recompute the normal based on the transformed tangent vectors

2. Transform with the inverse transpose: n′ = 𝑀−1 𝑇𝑛

• (see https://www.pbr-book.org/4ed/Geometry_and_Transformations/Applying_Transformations#Normals )
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Further reading

• Eric Lengyel. Mathematics for 3D Game Programming and Computer Graphics. 2011. 

• https://www.pbr-book.org/4ed/Geometry_and_Transformations/Transformations

• https://www.3blue1brown.com/lessons/linear-transformations

• https://www.3blue1brown.com/lessons/3d-transformations

• https://www.scratchapixel.com/lessons/3d-basic-rendering/transforming-objects-using-

matrices/using-4x4-matrices-transform-objects-3D.html
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Instancing
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We often have multiple copies (instances) of the same object

• No need to store all triangles of all these copies!

• Just track a list of transformation matrices per object
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Bottom-level and top-level acceleration structures

• Bottom-level (often called “BLAS” by real-time folks) contains triangles of one mesh

• Top-level (often called “TLAS” by real-time folks) contains transformed AABBs of all instances
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Bottom-level Top-level



Summary
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Now you can visualize geometries with a camera!
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Geometries

Camera model

Light sources

Volumes

Materials & Textures



Computer Graphics 24/25 - Lecture 1 57

Don’t forget to register for a tutorial group on Teams today

Looking for a teammate?

Suggestion: Meet up at the front now and see if you find one

Please make sure you have a University GitLab account today

Log in to: https://gitlab.cs.uni-saarland.de

Issues? https://sam.sic.saarland/

https://gitlab.cs.uni-saarland.de/
https://sam.sic.saarland/
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