
Fundamentals of Ray Tracing
Computer Graphics 24/25 – Lecture 1

Scene by Lynxsdesign

Computer Graphics 24/25 - Lecture 1 1



A few quick words on the format

• Lectures only every 2nd Monday (check webpage when in doubt)

• Lectures provide a condensed overview of the topics

• All exam-relevant topics are covered

• But details may be missing

• Suggested reading materials in the slides supplement those

• Don’t understand something?

1. Check the reading materials

2. Ask in the Q&A session (the Mondays where there is no lecture)

Computer Graphics 24/25 - Lecture 1 2



What do you need to know / understand?

• Guidance to answer that is offered via Mini Tests and Assignments

• The Mini Tests

• Are mandatory but not graded

• Take place before the Q&A session (every 2nd Monday)

• Resemble the exam (if you don’t get a question right, you should read up on that topic)

• The practical assignments

• Are mandatory and graded

• Released after each overview lecture

• Implementation can require additional details; you should use the reading materials to study those

• Mandatory presentation of your submission in the tutorial following the deadline

Computer Graphics 24/25 - Lecture 1 3



The Q&A session

• Voluntary attendance, but starts with a mandatory Mini Test

• You can leave after the test if you are bored 

• We’ll discuss the test solutions immediately afterwards

• Then, the floor is open for public questions

• Ask clarifications on stuff you think might interest your peers

• E.g., questions about Mini Test, general understanding of topics, course formalities

• After, I’ll be available for individual questions

• Anything you think too specific or personal to concern everyone else

• ... or that you are too shy to ask in front of everyone 

• Suggestion: 

• Use the Q&A session to work on reading materials and assignment

• Ask questions as they arise

Computer Graphics 24/25 - Lecture 1 4



Rendering in a nutshell

Computer Graphics 24/25 - Lecture 1 5

Renderer

Input data Rendered image

Geometries

Camera model

Light sources

Volumes

Materials & Textures



Rendering with ray tracing (the rough idea)

Computer Graphics 24/25 - Lecture 1 6

Select a pixel Sample a ray from the camera Find where it hits the scene

Direct illumination
Trace rays to determine visibility of lights

Global illumination
Recursively continue paths



Today

Computer Graphics 24/25 - Lecture 1 7

Geometries

Camera model

Light sources

Volumes

Materials & Textures



3D Scene Description
What data are we working with?

Computer Graphics 24/25 - Lecture 1 8



Many ways to describe geometry, e.g.,

• Simple objects

• Spheres, cylinders, boxes, ...

• Aggregation of simple objects

• Boolean operations / constructive solid geometry (CSG)

• Curves

• NURBS, hair

• Polygon meshes

Computer Graphics 24/25 - Lecture 1 9



Why polygon meshes?

• Can (approximately) represent any shape

• Easy and fast to render and do other computations with

Computer Graphics 24/25 - Lecture 1 10



What polygons?

• Quad meshes are preferred for modeling and animation

• Easier to manipulate

• Artifact-free deformations

• Artifact-free subdivision for smoothing

• Triangle meshes are popular for rendering

• Least common denominator: Any polygon can be turned into triangles

Computer Graphics 24/25 - Lecture 1 11



Further reading

• https://pbr-book.org/4ed/Shapes

• Try Blender to make your own meshes! https://www.blender.org/

• Tutorial recommendations: https://www.blenderguru.com/ or https://cgcookie.com/

Computer Graphics 24/25 - Lecture 1 12

https://pbr-book.org/4ed/Shapes
https://www.blender.org/
https://www.blenderguru.com/
https://cgcookie.com/


Camera models

Computer Graphics 24/25 - Lecture 1 13



Cameras describe how the 3D scene is projected onto the image

Computer Graphics 24/25 - Lecture 1 14



The perspective pinhole

• Camera obscura

• Crudely approximates human eye / typical camera

• Generating a ray from pixel 𝑥: 

• Ray origin is the camera position

• Direction is the vector from the pixel to the pinhole

Computer Graphics 24/25 - Lecture 1 15



Orthographic camera

• Parallel projection of the scene onto the image plane

• Useful, e.g., during 3D modelling to judge sizes of objects

• Generating a ray from pixel 𝑥: 

• All rays have the same direction

• Pixel position determines ray origin

Computer Graphics 24/25 - Lecture 1 16



Fisheye

• Projects a 180° or 360° view of the scene

• Useful for visualization, light probes, or scientific uses

• Generating a ray from pixel 𝑥:

• Origin is the camera position

• Direction is computed from spherical coordinates, using a mapping

Computer Graphics 24/25 - Lecture 1 17

many options, just like a world map
https://en.wikipedia.org/wiki/List_of_map_projections



Advanced camera models simulate additional effects

Computer Graphics 24/25 - Lecture 1 18

Lens flare Chromatic aberration

↑ Depth of field and Bokeh ↓



Further reading

• https://www.pbr-book.org/4ed/Cameras_and_Film/Projective_Camera_Models

• https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-generating-camera-

rays/generating-camera-rays.html

• Hullin et al. 2012. Polynomial Optics: A Construction Kit for Efficient Ray-Tracing of Lens Systems. 

https://doi.org/10.1111/j.1467-8659.2012.03132.x

Computer Graphics 24/25 - Lecture 1 19

https://www.pbr-book.org/4ed/Cameras_and_Film/Projective_Camera_Models
https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-generating-camera-rays/generating-camera-rays.html
https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-generating-camera-rays/generating-camera-rays.html
https://doi.org/10.1111/j.1467-8659.2012.03132.x


Ray tracing

Computer Graphics 24/25 - Lecture 1 20



Example: Ray-plane intersection

• A ray is defined by:

• Origin 𝑜, direction 𝑑

• 𝑥 is on the ray if 𝑥 = 𝑜 + 𝑡𝑑

• A plane is defined by:

• Point 𝑝, Normal 𝑛

• 𝑥 is on the plane if 𝑥 − 𝑝, 𝑛 = 0

⇒ We find the intersection by substituting the ray equation into the plane equation

𝑜 + 𝑡𝑑 − 𝑝, 𝑛 = 0 ⇔ 𝑡 =
𝑝 − 𝑜, 𝑛

𝑑, 𝑛

• Same idea can be used for any other shape (sphere, cylinder, fractal, ...)

Computer Graphics 24/25 - Lecture 1 21



Example: Ray-triangle intersection (simplified)

https://www.realtimerendering.com/intersections.html

• Triangle with corner points 𝑝1, 𝑝2, 𝑝3

• Normal 𝑛 = 𝑝2 − 𝑝1 × 𝑝3 − 𝑝1

1. Intersect the ray with the plane that contains the triangle

2. Check if the point lies in the triangle (see reading materials)

• Many algorithms exist to make this fast & precise (see 

https://www.realtimerendering.com/intersections.html for an overview)

Computer Graphics 24/25 - Lecture 1 22

https://www.realtimerendering.com/intersections.html


Self-intersections and other numerical issues

Computer Graphics 24/25 - Lecture 1 23

Perfect world: no intersection in-between Reality: floating point error

Solution: 

• offset ray origin

• minimum and maximum distance for intersections

(We’ll revisit this when talking about shadow rays and lighting computations)



Further reading

• Eric Lengyel. Mathematics for 3D Game Programming and Computer Graphics. 2011. 

• https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-rendering-a-

triangle/moller-trumbore-ray-triangle-intersection.html

• Sven Woop, Carsten Benthin, Ingo Wald. Watertight Ray/Triangle Intersection. JCGT. 2013.

• https://www.realtimerendering.com/intersections.html

Computer Graphics 24/25 - Lecture 1 24

https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-rendering-a-triangle/moller-trumbore-ray-triangle-intersection.html
https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-rendering-a-triangle/moller-trumbore-ray-triangle-intersection.html
https://www.realtimerendering.com/intersections.html


Acceleration Structures

Computer Graphics 24/25 - Lecture 1 25



Make ray tracing scale to large geometries

• Intersecting meshes one triangle at a time is slow!

• 𝑂(𝑛)

• Acceleration structures build a tree (or similar) to prune non-visible

• 𝑂 log𝑛

Computer Graphics 24/25 - Lecture 1 26

7.5 million

This simple scene has

triangles



Two types

• Subdividing space

• Grid

• Octree

• BSP / kd-Tree

• Subdividing objects

• Bounding volume hierarchy (BVH)

• State-of-the-art: 

• BVH dominates

• kd-Trees occasionally used

Computer Graphics 24/25 - Lecture 1 27



Using a grid

• March through the grid cells along the ray

• Intersect geometries within

• Same object can be in multiple cells

• Cache intersections per-ray

Computer Graphics 24/25 - Lecture 1 28



Grids are easy, but not very adaptive

• Often called the “teapot in a stadium” problem

Computer Graphics 24/25 - Lecture 1 29



We can adapt the resolution locally by using, e.g., an octree

Computer Graphics 24/25 - Lecture 1 30



Binary space partitioning (BSP) – (e.g., used by Doom)

• Split recursively using planes

• Arbitrary split position

• Arbitrary split orientation

Computer Graphics 24/25 - Lecture 1 31



kd-Trees (axis-aligned BSP)

Computer Graphics 24/25 - Lecture 1 32



Grouping objects via a Bounding volume hierarchy (BVH)

• Unlike spatial subdivision: bounding boxes can overlap

Computer Graphics 24/25 - Lecture 1 33



Traversing a BVH

• Intersect ray with bounding box

• If hit: Recursively visit children (best starting with the closest!)

• Cannot stop on first hit!

Computer Graphics 24/25 - Lecture 1 34



BVH vs kd-Tree

• KD trees require fewer intersection tests

• kd: Terminate on first hit

• BVH: First hit might be further away than others, due to spatial overlap

• BVH has faster build time and lower memory cost

• Each triangle is in exactly one leaf node

➔ Fixed storage cost

• BVHs do not have to be binary

• E.g., 4ary BVH for SIMD on the CPU

Computer Graphics 24/25 - Lecture 1 35

triangle ID tracked in multiple nodes



Where to split?

• With BSP trees, kd-Trees, and BVHs alike, quality hinges on splitting locations

Computer Graphics 24/25 - Lecture 1 36

Split in the middle:
Produces large node with high intersection cost



Where to split?

Computer Graphics 24/25 - Lecture 1 37

In the middle Optimized

large, likely to hit, node
with high cost

large, likely to hit, node
with low cost



Surface area heuristic (SAH)

Computer Graphics 24/25 - Lecture 1 38

𝐶 𝑠 = 𝐶t + 𝑃 𝐿 ⋅ 𝐶 𝐿 + 𝑃 𝑅 ⋅ 𝐶 𝑅L R

𝑃 𝐿 : Probability to hit the left child

Given by ratio of surface area (for uniform rays) 𝑃 𝐿 =
𝐴 𝐿

𝐴 𝐿+𝑅

𝐶t: Cost of traversal (AABB intersection etc.; implementation specific parameter)

𝐶 𝐿 : Cost of intersecting the left child (usually set to the number of triangles)

𝑠



The minima of the SAH cost occur where the primitive assignment 
changes

• SAH Computation is 𝑂 𝑛2 : 𝑛 split candidates, each require 𝑛 operations to compute cost

Computer Graphics 24/25 - Lecture 1 39



Binning: use fixed number of regularly spaced candidate positions

• SAH Computation is 𝑂 𝑘𝑛

• Scales much better; often similar quality

Computer Graphics 24/25 - Lecture 1 40



Further reading

• https://www.pbr-

book.org/4ed/Primitives_and_Intersection_Acceleration/Bounding_Volume_Hierarchies

• https://jacco.ompf2.com/2022/04/13/how-to-build-a-bvh-part-1-basics/

• https://www.youtube.com/watch?v=C1H4zIiCOaI

• Vinkler et al. 2016. Performance Comparison of Bounding Volume Hierarchies and Kd-Trees for 

GPU Ray Tracing. Comput. Graph. Forum.

• Meister et al. 2021. A Survey on Bounding Volume Hierarchies for Ray Tracing. Comput. Graph. 

Forum.

Computer Graphics 24/25 - Lecture 1 41

https://www.pbr-book.org/4ed/Primitives_and_Intersection_Acceleration/Bounding_Volume_Hierarchies
https://www.pbr-book.org/4ed/Primitives_and_Intersection_Acceleration/Bounding_Volume_Hierarchies
https://jacco.ompf2.com/2022/04/13/how-to-build-a-bvh-part-1-basics/
https://www.youtube.com/watch?v=C1H4zIiCOaI


Transformations

Computer Graphics 24/25 - Lecture 1 42



Scale

Computer Graphics 24/25 - Lecture 1 43

𝑥𝑠 = 𝑠𝑥𝑥
𝑦𝑠 = 𝑠𝑦𝑦

𝑧𝑠 = 𝑠𝑧𝑧

Can be written as a matrix – vector product:

𝑠𝑥 0 0
0 𝑠𝑦 0

0 0 𝑠𝑧

𝑥
𝑦
𝑧

=

𝑥𝑠
𝑦𝑠
𝑧𝑠

𝑝

𝑝𝑠

𝑦𝑠

𝑥𝑠
𝑧𝑠

𝑥
𝑦

𝑧



Wait, but why matrices?

• Compact & clean

• Uniform treatment of all types of transformations

• Allows us to easily combine transformations

• Want to reverse a transformation? Use the inverse matrix!

Computer Graphics 24/25 - Lecture 1 44



Rotation around the z axis

Computer Graphics 24/25 - Lecture 1 45

𝑥 = cos𝛽
𝑦 = sin 𝛽

𝑥𝑟 = cos 𝛽 + 𝛼
𝑦𝑟 = sin 𝛽 + 𝛼

Basic trigonometry:

More basic trigonometry (angle sum identity):

𝒙𝒓 = cos 𝛽 + 𝛼 = cos𝛽 cos 𝛼 − sin𝛽 sin 𝛼 = 𝒙 𝐜𝐨𝐬𝜶 − 𝒚 𝐬𝐢𝐧𝜶

𝒚𝒓 = sin 𝛽 + 𝛼 = cos𝛽 sin 𝛼 + sin 𝛽 𝑐𝑜𝑠 𝛼 = 𝒙 𝐬𝐢𝐧𝜶 + 𝒚 𝐜𝐨𝐬𝜶

In matrix form:

cos 𝛼 − sin 𝛼 0
sin 𝛼 cos 𝛼 0
0 0 1

𝑥
𝑦
𝑧

Rotation around 𝑥 and 𝑦 can be derived analogously

𝑝𝑟

𝑝

𝛽

𝛼

𝑥

𝑦



Translation

• Easy:

• 𝑥𝑡 = 𝑥 + 𝑎

• 𝑦𝑡 = 𝑦 + 𝑏

• 𝑧𝑡 = 𝑧 + 𝑐

• How to write as a matrix?

• Be mindful when transforming directions: 

Computer Graphics 24/25 - Lecture 1 46

1 0 0 𝑎
0 1 0 𝑏
0 0 1 𝑐
0 0 0 1

𝑥
𝑦
𝑧
1

1 0 0 𝑎
0 1 0 𝑏
0 0 1 𝑐
0 0 0 1

𝑥
𝑦
𝑧
0



Transformations can be combined via matrix multiplication

• Order matters! Generally, first scale (𝑀𝑠), then rotate (𝑀𝑟), then translate (𝑀𝑡)

𝑀 = 𝑀𝑡𝑀𝑟𝑀𝑠

• Rotation is often expressed via Euler angles (yaw, pitch, roll)

𝑀𝑟 = 𝑀𝑦𝑎𝑤𝑀𝑝𝑖𝑡𝑐ℎ𝑀𝑟𝑜𝑙𝑙

• Each corresponds to a rotation around one axis

• Which axis? Depends on the coordinate system convention!

• (The order of rotation is also up to convention...)

Computer Graphics 24/25 - Lecture 1 47



Coordinate systems

• Always important to define conventions...

• ... and keep them in mind

Computer Graphics 24/25 - Lecture 1 48



Moving to a new coordinate system

• Example: world space and shading space

• Why? 

• Shading is convenient if coordinate system aligned with normal

• How? 

• Construct orthonormal basis 𝑛, 𝑡, 𝑏 from normal, tangent, and bitangent

• If we set 𝑛 to be the 𝑧 axis and 𝑡 and 𝑏 to be 𝑥 and 𝑦 respectively:

𝑝′ = 𝑡𝑥 + 𝑏𝑦 + 𝑛𝑧

• In matrix form:

Computer Graphics 24/25 - Lecture 1 49

𝑝′ =

𝑡𝑥 𝑏𝑥 𝑛𝑥
𝑡𝑦 𝑏𝑦 𝑛𝑦
𝑡𝑧 𝑏𝑧 𝑛𝑧

𝑥
𝑦
𝑧

To invert, we can use the fact that 𝑛, 𝑡, 𝑏 are orthonormal: 

𝑥
𝑦
𝑧

=

𝑡𝑥 𝑡𝑦 𝑡𝑧
𝑏𝑥 𝑏𝑦 𝑏𝑧
𝑛𝑥 𝑛𝑦 𝑛𝑧

𝑝′

𝑡

𝑏

𝑛

𝑥

𝑦

𝑧



Transforming normals

https://www.pbr-book.org/4ed/Geometry_and_Transformations/Applying_Transformations#Normals

• Normals do not remain normalized nor perpendicular when transformed naively

• e.g., due to non-uniform scale:

• Solutions:

1. Recompute the normal based on the transformed tangent vectors

2. Transform with the inverse transpose: n′ = 𝑀−1 𝑇𝑛

• (see https://www.pbr-book.org/4ed/Geometry_and_Transformations/Applying_Transformations#Normals )

Computer Graphics 24/25 - Lecture 1 50

https://www.pbr-book.org/4ed/Geometry_and_Transformations/Applying_Transformations#Normals


Further reading

• Eric Lengyel. Mathematics for 3D Game Programming and Computer Graphics. 2011. 

• https://www.pbr-book.org/4ed/Geometry_and_Transformations/Transformations

• https://www.3blue1brown.com/lessons/linear-transformations

• https://www.3blue1brown.com/lessons/3d-transformations

• https://www.scratchapixel.com/lessons/3d-basic-rendering/transforming-objects-using-

matrices/using-4x4-matrices-transform-objects-3D.html

Computer Graphics 24/25 - Lecture 1 51

https://www.pbr-book.org/4ed/Geometry_and_Transformations/Transformations
https://www.3blue1brown.com/lessons/linear-transformations
https://www.3blue1brown.com/lessons/3d-transformations
https://www.scratchapixel.com/lessons/3d-basic-rendering/transforming-objects-using-matrices/using-4x4-matrices-transform-objects-3D.html
https://www.scratchapixel.com/lessons/3d-basic-rendering/transforming-objects-using-matrices/using-4x4-matrices-transform-objects-3D.html


Instancing

Computer Graphics 24/25 - Lecture 1 52



We often have multiple copies (instances) of the same object

• No need to store all triangles of all these copies!

• Just track a list of transformation matrices per object

Computer Graphics 24/25 - Lecture 1 53



Bottom-level and top-level acceleration structures

• Bottom-level (often called “BLAS” by real-time folks) contains triangles of one mesh

• Top-level (often called “TLAS” by real-time folks) contains transformed AABBs of all instances

Computer Graphics 24/25 - Lecture 1 54

Bottom-level Top-level



Summary

Computer Graphics 24/25 - Lecture 1 55



Now you can visualize geometries with a camera!

Computer Graphics 24/25 - Lecture 1 56

Geometries

Camera model

Light sources

Volumes

Materials & Textures



Computer Graphics 24/25 - Lecture 1 57

Don’t forget to register for a tutorial group on Teams today

Looking for a teammate?

Suggestion: Meet up at the front now and see if you find one

Please make sure you have a University GitLab account today

Log in to: https://gitlab.cs.uni-saarland.de

Issues? https://sam.sic.saarland/

https://gitlab.cs.uni-saarland.de/
https://sam.sic.saarland/

	Slide 1: Fundamentals of Ray Tracing
	Slide 2: A few quick words on the format
	Slide 3: What do you need to know / understand?
	Slide 4: The Q&A session
	Slide 5: Rendering in a nutshell
	Slide 6: Rendering with ray tracing (the rough idea)
	Slide 7: Today
	Slide 8: 3D Scene Description
	Slide 9: Many ways to describe geometry, e.g.,
	Slide 10: Why polygon meshes?
	Slide 11: What polygons?
	Slide 12: Further reading
	Slide 13: Camera models
	Slide 14: Cameras describe how the 3D scene is projected onto the image
	Slide 15: The perspective pinhole
	Slide 16: Orthographic camera
	Slide 17: Fisheye
	Slide 18: Advanced camera models simulate additional effects
	Slide 19: Further reading
	Slide 20: Ray tracing
	Slide 21: Example: Ray-plane intersection
	Slide 22: Example: Ray-triangle intersection (simplified)
	Slide 23: Self-intersections and other numerical issues
	Slide 24: Further reading
	Slide 25: Acceleration Structures
	Slide 26: Make ray tracing scale to large geometries
	Slide 27: Two types
	Slide 28: Using a grid
	Slide 29: Grids are easy, but not very adaptive
	Slide 30: We can adapt the resolution locally by using, e.g., an octree
	Slide 31: Binary space partitioning (BSP) – (e.g., used by Doom)
	Slide 32: kd-Trees (axis-aligned BSP)
	Slide 33: Grouping objects via a Bounding volume hierarchy (BVH)
	Slide 34: Traversing a BVH
	Slide 35: BVH vs kd-Tree
	Slide 36: Where to split?
	Slide 37: Where to split?
	Slide 38: Surface area heuristic (SAH)
	Slide 39: The minima of the SAH cost occur where the primitive assignment changes
	Slide 40: Binning: use fixed number of regularly spaced candidate positions
	Slide 41: Further reading
	Slide 42: Transformations
	Slide 43: Scale
	Slide 44: Wait, but why matrices?
	Slide 45: Rotation around the z axis
	Slide 46: Translation
	Slide 47: Transformations can be combined via matrix multiplication
	Slide 48: Coordinate systems
	Slide 49: Moving to a new coordinate system
	Slide 50: Transforming normals
	Slide 51: Further reading
	Slide 52: Instancing
	Slide 53: We often have multiple copies (instances) of the same object
	Slide 54: Bottom-level and top-level acceleration structures
	Slide 55: Summary
	Slide 56: Now you can visualize geometries with a camera!
	Slide 57

