
Philipp Slusallek

Computer Graphics

- Rasterization -

Rasterization
• Definition

– Given some 2D geometry (point, line, circle, triangle, polygon,…),
specify which pixels of a raster display each primitive covers

• Sometimes also called “scan-conversion” (for historic reasons)

– Anti-aliasing: Instead of fully-covered pixels (single sample), specify
what fraction/parts of a pixel are covered (multi/super-sampling)

• Perspectives
– OpenGL lecture: from an application programmer’s point of view

– This lecture: from a graphics implementer’s point of view

– Looking at rasterization of (i) lines and (ii) polygons (areas)

• Usages of rasterization in practice
– 2D-raster graphics, e.g. Postscript, PDF, SVG, …

– 3D-raster graphics, e.g. SW rasterizers (Mesa, OpenSWR), HW

– 3D volume modeling and rendering

– Volume operations (CSG operations, collision detection)

– Space subdivision (spatial indices): Construction and traversal

Rasterization
• Assumptions

– Pixels are sample points on a 2D integer grid
• OpenGL: Integer at bottom-left of pixel

• Vulkan: Integer at upper-left

• X11: At the center (we will use this)

– Simple raster operations
• Just setting pixel values or not (binary decision)

• More complex operations later: compositing/anti-aliasing

– Endpoints snapped to (sub-)pixel integer coordinates
• Simple and consistent computations with fixed-point arithmetic

– Limiting to lines with gradient/slope |m|  1 (mostly horizontal)
• Separate handling of horizontal and vertical lines

• For mostly vertical, swap x and y (|1/m|  1), rasterize, swap back

– Special cases in SW, trivial in HW :-)

– Line width is one pixel

• |m|  1: 1 pixel per column (X-driving axis)

• |m| > 1: 1 pixel per row (Y-driving axis)

x

y

Lines: As Functions
• Specification

– Initial and end points: (𝑥𝑏, 𝑦𝑏), (𝑥𝑒, 𝑦𝑒), (𝑑𝑥, 𝑑𝑦) = (𝑥𝑒 − 𝑥𝑏, 𝑦𝑒 − 𝑦𝑏)

– Functional form: 𝑦 = 𝑚𝑥 + 𝐵

– End points with integer coordinates  rational slope 𝑚 = 𝑑𝑦/𝑑𝑥

• Goal
– Find that pixel per column whose distance to the line is smallest

• Brute-force algorithm
– Assume that +X is the driving axis → set pixel in every column

for xi = xb to xe

 yi = m * xi + B

 setPixel(xi, Round(yi)) // Round(yi) = Floor(yi + 0.5)

• Comments
– Variables m and thus yi need to be calculated in floating-point

– Not well suited for direct HW implementation

• A floating-point ALU is significantly larger in HW than integer

Lines: DDA
• DDA: Digital Differential Analyzer

– Origin of incremental solvers for simple differential equations
• E.g. Euler method

– Per time-step: x’ = x + dx/dt, y’ = y + dy /dt

• Incremental algorithm
– Choose dt=dx, then per pixel

• xi+1 = xi + 1

• yi+1 = m * xi+1 + B = m(xi + 1) + B = (m * xi + B) + m = yi + m

• setPixel(xi+1, Round(yi+1))

• Remark
– Utilization of coherence through incremental calculation (only adds)

• Avoids the “costly” multiplication

– Accumulates error over length of the line
• Up to 4k additions on UHD!

– Floating point calculations may be moved to fixed point
• Must control accuracy of fixed-point representation

• Enough extra bits to hide accumulated error (>>12 bits for UHD)

Lines: Bresenham (1963)
• DDA analysis

– Critical point: Decision whether we need rounding up or down

• Idea
– Integer-based decision through implicit functions

– Implicit line equation (similar to Window Edge Coordinates, WEC)

• 𝐹 𝑥, 𝑦 = 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0

– Here with 𝑦 = 𝑚𝑥 + 𝐵 =
𝑑𝑦

𝑑𝑥
𝑥 + 𝐵 ⇒ 0 = 𝑑𝑦 𝑥 − 𝑑𝑥 𝑦 + 𝐵 𝑑𝑥

• 𝒂 = 𝒅𝒚, 𝒃 = −𝒅𝒙, 𝒄 = 𝑩𝒅𝒙

– Results in

• 𝐹 𝑥, 𝑦 = 𝑑𝑦 𝑥 − 𝑑𝑥 𝑦 + 𝑑𝑥 𝐵 = 0
𝐹 𝑥, 𝑦 = 0

𝐹 𝑥, 𝑦 > 0

𝐹(𝑥, 𝑦) < 0

Lines: Bresenham
• Decision variable d (the midpoint formulation)

– Assume we are at x=i, calculating next step at x=i+1

– Measures the vertical distance of midpoint from line:

• Preparations for the next pixel
IF (di+1  0) // Increment in x only

 di+2 = di+1 + a = di+1 + dy // Incremental calculation

ELSE // Increment in x and y

 di+2 = di+1 + a + b = di+1 + dy – dx

 y = y + 1

ENDIF

x = x + 1

𝑑𝑖+1 = 𝐹 𝑀𝑖+1 = 𝐹 𝑥𝑖 + 1, 𝑦𝑖 + Τ1 2
= 𝑎 𝑥𝑖 + 1 + 𝑏 𝑦𝑖 + Τ1 2 + 𝑐

Mi+1

i i+1

Lines: Integer Bresenham
• Initialization

–
𝑑1 = 𝐹 𝑥𝑏 + 1, 𝑦𝑏 +

1

2
= 𝑎 𝑥𝑏 + 1 + 𝑏 𝑦𝑏 +

1

2
+ 𝑐

= 𝑎𝑥𝑏 + 𝑏𝑦𝑏 + 𝑐 + 𝑎 +
𝑏

2
= 𝐹 𝑥𝑏, 𝑦𝑏 + 𝑎 +

𝑏

2
= 𝑎 +

𝑏

2

– Because F(𝑥𝑏, 𝑦𝑏) is zero by definition (line goes through (xb, yb))

• Pixel is always set (but check consistency rules → later)

• Elimination of fractions
– Any positive scale factor maintains the sign of F(x,y)

• 2𝐹 𝑥𝑏, 𝑦𝑏 = 2 𝑎𝑥𝑏 + 𝑏𝑦𝑏 + 𝑐 → 𝑑𝑠𝑡𝑎𝑟𝑡 = 2𝑎 + 𝑏

• Observation:
– When the start and end points have integer coordinates then

b = -dx and a = dy are also integers

• Floating point computation can be eliminated

– No accumulated error!!

Lines: Arbitrary Directions
• 8 different cases

– Driving (active) axis: ±X or ±Y

– Increment/decrement of y or x, respectively

+Y,x+++Y,x--

-Y,x-- -Y,x++

+X,y--

+X,y++-X,y++

-X,y--

• Pixel replication

– Problems with even-numbered widths

– Varying intensity of a line as a function of slope

• The moving pen
– For some pen footprints the thickness of a line might change as a

function of its slope

– Should be as “round” as possible

• Real Solution: Draw 2D area (see later)
– Allows for anti-aliasing and fractional width

– Main approach these days!

Thick Lines

Handling Start and End Points
• End points handling (not available in current OpenGL)

– Joining: handling of joints between lines

• Bevel: connect outer edges by straight line

• Miter: join by extending outer edges to intersection

• Round: join with radius of half the line width

– Capping: handling of end point

• Butt: end line orthogonally at end point

• Square: end line with oriented square

• Round: end line with radius of half the line width

– Avoid overdraw when lines join

Bresenham: Circle
• Eight different cases, here +X, y--

Initialization: x = 0, y = R

F(x,y) = x2+y2-R2

d = F(x+1, y-1/2)

IF d < 0

d = F(x+2,y-1/2)

ELSE IF d > 0

d = F(x+2,y-3/2)

y = y-1

ENDIF

x = x+1

– Works because |slope| is smaller than 1

• Eight-way symmetry: only one 45 segment is
needed to determine all pixels in a full circle

F < 0

F > 0

F = 0

(x,y)

(x,-y)

(y,x)

(-x,y)

(y,-x)

(-x,-y)

(-y,x)

(-y,-x)

• Types
– Triangles

– Trapezoids

– Rectangles

– Convex polygons

– Concave polygons

– Arbitrary polygons

• Holes

• Overlapping

• Two approaches
– Polygon tessellation into triangles

• Only option for OpenGL

– Direct scan-conversion

• Mostly in early SW algorithms

Reminder: Polygons

Inside-Outside Tests
• What is the interior of a polygon?

– Jordan curve theorem

• „Any continuous simple closed curve in
the plane, separates the plane into two
disjoint regions, the inside and the outside,
one of which is bounded.“

• What to do with non-simple polygons?
– Even-odd Winding Number rule (odd parity)

• Counting the number of edge crossings with
a ray starting at the queried point P till infinity

• Inside, if the number of crossings is odd

– (Non-zero) winding number rule

• Counts # times polygon wraps around P

– Signed intersections with a ray

• Inside, if the number is not equal to zero

– Differences only in the case of
non-simple curves (e.g. self-intersection)

0

1

2

3

4

-1

+1

-1

O
E:out

O

O

O

1

1 1

1

1

2:in
O

Even-odd NZ-Winding

Winding

Even-odd

Triangle Rasterization
Raster3_box(vertex v[3])

{

 int x, y;

 bbox b;

 bound3(v, &b);

 for (y = b.ymin; y < b.ymax; y++)

 for (x = b.xmin; x < b.xmax; x++)

 if (inside(v, x, y)) // upcoming

 fragment(x,y);

}

• Brute-force algorithm
– Iterate over all pixels within bounding box

• Possible approaches for dealing with scissoring
– Scissoring: Only draw on AA-Box of the screen (region of interest)

• Test triangle for overlap with scissor box, otherwise discard

• Use intersection of scissor and bounding box, otherwise as above

• Important if clipping against box larger than viewport!

Rasterization w/ Edge Functions
• Approach (Pineda, `88)

– Implicit edge functions for every edge
 𝐹𝑖 𝑥, 𝑦 = 𝑎𝑥 + 𝑏𝑦 + 𝑐

– Point is inside triangle, if every
 𝐹𝑖 𝑥, 𝑦 has the same sign

– Perfect for parallel evaluation
at many points

• Particularly with wide SIMD machines (GPUs, SIMD CPU instructions)

– Requires “triangle setup”: Computation of 3 edge functions (a, b, c)

– Evaluation can also be done in homogeneous coordinates

• Hierarchical approach
– Can be used to efficiently check large rectangular blocks of pixels

• Divide screen into tiles/bins (possibly at several levels)

• Evaluate F at tile corners (making sure triangle is not completely inside)

• Recurse only where necessary, possibly until subpixel level

Gap and T-Vertices
• Observations

– Pixels set can be non-connected

– May have overlap and gaps at T-edges

Non-connected pixels: OK Not OK: Triangles must be changed

Problem on Edges
• Consistency: edge singularity (shared by 2 triangles)

– What if term d = ax+by+c = 0 (pixel centers lies exactly on the line)

– For d <= 0: pixels would get set twice

• Problem with some algorithms

• Transparency, XOR, CSG, ...

– Missing pixels for d < 0 (set by no tri.)

• Solution: “shadow” test
– Pixels are not drawn on the right and bottom edges

– Pixels are drawn on the left and upper edges

• Evaluated via derivatives a and b

– Testing for all edges also solves problem at vertices
inside(value d, value a, value b)

{ // ax + by + c = 0

return (d < 0) || (d == 0 && !shadow(a, b));

}

shadow(value a, value b)

{

return (a > 0) || (a == 0 && b > 0);

}

Ray Tracing vs. Rasterization
• In-Triangle test (for common origin)

– Rasterization:

• Project to 2D, clip

• Set up 2D edge functions, evaluate for each sample (using 2D point)

– Ray tracing:

• Set up 3D edge functions, evaluate for each sample (using direction)

– The ray tracing test can also be used for rasterization in 3D

• Avoids projection & clipping

• Enumerating scene primitives
– Rasterization (simple):

• Sequentially enumerate them all in any order

– Rasterization (advanced):

• Build (coarse) spatial index (typically on application side)

• Traverse with view frustum (large)

– Possibly one frustum for every image tile separately, when using tiled rendering

– Ray Tracing:

• Build (detailed) spatial index

• Traverse with (infinitely thin) ray or with some (typically small) frustum

– Both approaches can benefit greatly from spatial index!

Ray Tracing vs. Rasterization (II)
• Binning (finding relevant pixels in a large frustum)

– Test to (hierarchically) find pixels likely covered by a primitive
– Rasterization:

• Great speedup due to very large view frustum (many pixels)

– Ray tracing (frustum tracing)

• Can speed up, depending on frustum size [Benthin'09]

– Ray Tracing (single/few rays)

• Not needed

• Conclusion
– Both algorithms can use the same in-triangle test

• In 3D, requires floating point, but boils down to 2D computation

– Both algorithms can benefit from spatial index

• Benefit depends on relative cost of in-triangle test (HW vs. SW)

– Both algorithms can benefit from 2D binning to find relevant samples

• Benefit depends on ratio of covered/uncovered samples per frustum

• Both approaches are similar
– Different organization (size of frustum, binning)
– There is no reason RT needs to be slower for primary rays (exc. FP)

HW-Supported Ray Tracing (finally)

HW-Supported Ray Tracing (finally)

	Slide 1: Computer Graphics - Rasterization -
	Slide 2: Rasterization
	Slide 3: Rasterization
	Slide 4: Lines: As Functions
	Slide 5: Lines: DDA
	Slide 6: Lines: Bresenham (1963)
	Slide 7: Lines: Bresenham
	Slide 8: Lines: Integer Bresenham
	Slide 9: Lines: Arbitrary Directions
	Slide 11: Thick Lines
	Slide 12: Handling Start and End Points
	Slide 13: Bresenham: Circle
	Slide 14: Reminder: Polygons
	Slide 15: Inside-Outside Tests
	Slide 21: Triangle Rasterization
	Slide 22: Rasterization w/ Edge Functions
	Slide 23: Gap and T-Vertices
	Slide 24: Problem on Edges
	Slide 25: Ray Tracing vs. Rasterization
	Slide 26: Ray Tracing vs. Rasterization (II)
	Slide 27: HW-Supported Ray Tracing (finally)
	Slide 28: HW-Supported Ray Tracing (finally)

