Computer Graphics

Camera & Projective Transformations

Philipp Slusallek

Motivation

« Rasterization works in a 2D image plane (+ depth)
 Need to project 3D world onto 2D screen

« Based on
— Positioning of objects/vertices in 3D space
— Positioning and parameters of the virtual camera

Coordinate Systems

Local (object) coordinate system (3D)
— Object vertex positions
— Can be hierarchically nested in each other (scene graph, transf. stack)

World (global) coordinate system (3D)
— Scene composition and object placement
» Mostly rigid objects: translation, rotation per object, (scaling)
« Animated objects: time-varying transformation in world or local space
— lllumination can be computed in this space

Cameral/view/eye coordinate system (3D)
— Coordinates relative to camera pose (position & orientation)

« Camera itself specified relative to world space
— lllumination can also be done in this space

Normalized device coordinate system (2.5D)

— After perspective transformation, rectilinear, in [-1/0, 1]

— Normalization to view frustum (for rasterization and depth buffer)

— Rasterization & shading done here (e.g., interpolation across triangle)

Window/screen (raster) coordinate system (2D)
— 2D transformation to place image in window on the screen

Hierarchical Coordinate Systems

 Used in Scene Graphs
— Group objects hierarchically
— Local coordinate system is relative to parent coordinate system

— Apply transformation to the parent to change the whole sub-tree
(or sub-graph)

Hierarchical Coordinate Systems

Hierarchy of transformations
T root
T ShoulderR
T _ShoulderRJoint

T _UpperArmR
T _ElbowRJoint
T LowerArmR
T WristRJoint

T _ShoulderL
T _ShoulderLJoint

T _UpperArmL
T _ElbowLJoint
T LowerArmL

Positions the character in the world
Moves to the right shoulder

Rotates in the shoulder (3 DOF) <€ User
Moves to the Elbow

Rotates in the Elbow (1 DOF) € User
Moves to the wrist

Rotates in the wrist (1 DOF) € User
Further for the right hand and the fingers
Moves to the left shoulder

Rotates in the shoulder (3 DOF) <€ User
Moves to the Elbow

Rotates in the Elbow (1 DOF) € User
Moves to the wrist

Further for the left hand and the fingers

— Each transformation is relative to its parent

» Concatenated by multiplying (from right) and pushing onto a stack

» Going back by poping from the stack

— This transformation stack was so common, it was built into OpenGL

Coordinate Transformations

 Model transformation
— ODbject space to world space
— Can be hierarchically nested
— Typically, an affine transformation
— As just discussed

* View transformation
— World space to eye/camera space
— Typically, an affine transformation

« Combination of both: Modelview transformation

— Used by traditional OpenGL, but still in use today (while world
space is conceptually intuitive, it was not exposed in OpenGL)

Coordinate Transformations

* Projective transformation
— Eye space to normalized device space
— From frustum to rectilinear space
— Parallel or perspective projection (defined by view frustum)
— 3D to 2D: With preservation of depth (2.5 D)

* Viewport transformation
— Normalized device space to window (raster) coordinates

Simple Camera Parameters

« Camera definition (typically used in ray tracers)
— o0 € R3 : center of projection, point of view (PRP)
— CW € R3 : vector to center of window
» “Focal length”: projection of vector to CW onto VPN
— focal = [(CW —o0) - VPN|
— x,y € R3: span of half viewing window
* VPN = (y x x)/|(y x x)|

* VUP=—y
* width = 2|x]|
* height = 2|y|

« Aspect ratio: camera,.4:i, = |x|/|V|

PRP: Projection reference point
VPN: View plane normal

VUP: View up vector

CW: Center of window

Full Camera Transformation

e Goal

— Compute the transformation between points in 3D and
their 2D location on screen

— Required for rasterization algorithms (e.g., OpenGL)
» They project all primitives from 3D to 2D
» S0, rasterization can work in 2D (actually, 2.5D: XY plus Z as attribute)

« Given
— Camera pose (pos. & orient.)

« EXxtrinsic parameters
— Camera configuration

* Intrinsic parameters
— Pixel raster description ‘|: 7 -

» Resolution and placement on screen
World space

* In the following: Stepwise Approach
— EXxpress each transformation step in homogeneous coordinates
— Finally, multiply all 4x4 matrices to get full transformation

10

Camera Transformation

 Need camera position and orientation in world space
— External (extrinsic) camera parameters
» Center of projection: projection reference point (PRP)
* Optical axis: view-plane normal (VPN), towards camera

* View up vector (VUP)
— Not necessarily orthogonal to VPN, but not co-linear

VUP

PRP
VPN

11

Camera Transformation

 Goal: Camera at origin, view along —Z, Y upwards
— Assume right-handed coordinate system!
— Translation of PRP to the origin
— Rotation of VPN (is normalized) to Z-axis
— Rotation of projection of VUP to Y-axis

 Build local camera coordinate frame & rotation
— Build orthonormal basis for the camera and compute its inverse
« Z’=VPN, X'= normalize(VUP x VPN), Y'=Z" x X

« Camera transformation V
— Translation T followed by rotation R

, , ’ T -Z" = -VPN
X, Y, Z, 0
v=rT=|"% k¢ Y,y z ¢ O\ r<PrP)
X, Y, Z, 0
0 0 0 1

x World space

Viewing Transformation

« Define projection (perspective or orthographic)
— Needs internal (intrinsic) camera parameters
— Screen window (Center Window (CW), width, height)
* Window size/position on image plane (relative to VPN intersection)
* PRP to window center determines viewing direction (= VPN)
— Focal length (f)
» Distance of projection plane from camera along VPN, orthogonal to VPN
« Smaller focal length means larger field of view
— Alternative: Field of view (fov) (defines width of view frustum)
« Often used instead of screen window and focal length
— Only valid when screen window is centered around VPN (often the case)
 Vertical (or horizontal) angle plus aspect ratio (width/neight)
— Or two angles (both angles may be half or full angles, beware!)
— Near and far clipping planes
» Given as distances from the PRP along VPN
* Near clipping plane avoids singularity at origin (division by zero)
 Far clipping plane restricts the depth for fixed-point representation in HW

Shearing Transformation

« Step 1: VPN may not go through center of window

— Possible oblique viewing configuration

e Shear

— Shear space such that window center is along Z-axis
— Window center CW (in 3D view coordinates)

e Shear matrix

1

0

0
0

CW,
CW,
CW,
CW,
1
0

Image plane

— |eft

CW

__right

View from top

14

Normalizing

« Step 2: Scaling to canonical viewing frustum

— Goal: Scale in X and Y such that screen window boundaries open
at 45-degree angles

— Scale in Z such that far clipping plane is at Z= -1

N\,

-
> -7 > -Z
-near — 7
-focal -near -focal
i . f
+ Scaling matrix o far “far N
(7 O 0 0\ ol g o
width
O — 0 0 2focal
_S=Sfar5xy= far) 0 height 0 O
0 0O — O 0 0 1 0
far
\0 0 0 1/ 0 0 0 1

Perspective Transformation

« Step 3: Perspective transformation
— From canonical perspective viewing frustum (= cone at origin
around -Z-axis, 45° opening) to regular box [-1 .. 1] x [0 .. 1]
« Mapping of Xand Y
— Lines through the origin are mapped to lines parallel to the Z-axis
« X'=x/-z and y’'= y/-z (coordinate given by slope with respect to -z!)
— Do not change X and Y additively (first two rows stay the same)
— Set W to —z so we divide by it when converting back to 3D

« Determines last row A 45° A (-1,1)
 Perspective transformation
1 0 0 O s S

_ p=

O 1 0 O
A B C DI Still unknown
O 0 -1 O

— Note: Perspective projection = — -
perspective transformation + parallel projection

16

Perspective Transformation

« Computation of the coefficients A, B, C, D
— No shear of Z with respectto X and Y
- A=B=0
— Mapping of two known points

« Computation of the two remaining parameters C and D
— n = near / far (due to previous scaling by 1/far)
» Following mapping must hold
— (0,0,—1,1)T = P(0,0,—1,1)T and (0,0,0,1)T = P(0,0,—n, 1)T

* Resulting Projective transformation

1 0 0 0 A 45° A
0O 1 O 0
—_— — \
P 0 0 1 n
1-n 1-n g > ¢ +
0O 0 -1 O -Z
— Transforms Z non-linearly (in 3D) P 0 -1

. _ Z+n
zZ= z(1—-n) @

Parallel Projection to 2D

- Parallel projection Py,g.q11e1 10 [-1 .. 1]°
— Formally scaling in Z with factor O
— Typically, still maintains Z in [0,1] for depth buffering
» As a vertex attribute (see OpenGL later)

 Normalizing Transform N
— From[-1.. 1]?°to NDC ([0 .. 1]?
— Scaling (by 1/2 in X and Y) and translation (by (1/2,1/2))

10 0 0 1/2 0 0

(o1 o o0 [o 1/2 0
Poarallel =\ o o 0or1 0 N=1 09 0o 1
00 0 1 0 0 0

1/2
1/2
0
1

18

Viewport Transformation

« Normalized Device Coordinates (NDC)
— Intrinsic camera parameters transform to NDC
« [0,1]° for X, y across the screen window
 [0,1] for z (depth)
« Mapping NDC to raster coordinates on the screen
— xres, yres . Size of window in pixels
« Should have same aspect ratios to avoid distortion

xres pixelspacing,

— camerQyrgiio =
ratio yres pixelspacing,, ’

» Horizontal and vertical pixel spacing (distance between pixel centers)
— Today, typically the same but can be different e.g. for some video formats
— Position of window on the screen
» Offset of window from origin of screen
— posx and posy given in pixels
» Depends on where the origin is on the screen (top left, bottom left)
— “Scissor box” or “crop window” (region of interest)
* No change in mapping but limits which pixels are rendered

Viewport Transformation

« Scaling and translation in 2D
— Scaling matrix to map to entire window on screen
* Sraster(xresi yres)
* No distortion if aspect ratios have been handled correctly earlier
— l.e. aspect ratio of window in world space == aspect ratio of raster window
* In some cases, one needs to reverse direction of y
— Some formats have screen origin at bottom left, some at top left
— Needs additional translation/scaling
— Positioning on the screen
« Translation T,,,..(xpos, ypos)
« May be different depending on raster coordinate system
— Origin at upper left or lower left

20

Alternative: Orthographic Projection

e Step 2a: Translation (orthographic)
— Bring near clipping plane into the origin

« Step 2b: Scaling to regular box [-1 .. 1]>x [0 .. -1]

« Mapping of Xand Y

- P, = Sxsznear =

0 0
2 0
height
1
0 far—nmear

0 0

0
0

0
1

\

/

SO O

S O - O

o = O O

21

Full Camera Transformation

« Complete transformation (combination of matrices)
— Perspective Projection

y Tcamera — 1Yraster Sraster N Pparallel Ppersp Sfar Sxy HRT
— Orthographic Projection

* Tcamera = lraster Sraster N Pparallel Sxyz Tnear - HRT

« Other representations
— Other literature uses different conventions
» Different camera parameters as input
 Different canonical viewing frustum

« Different normalized coordinates
— [-1 .. 1]3 versus [0 ..1]3 versus ...

— Results in different transformation matrices — so be careful !!!

22

	Slide 1: Computer Graphics Camera & Projective Transformations
	Slide 2: Motivation
	Slide 3: Coordinate Systems
	Slide 4: Hierarchical Coordinate Systems
	Slide 5: Hierarchical Coordinate Systems
	Slide 6: Coordinate Transformations
	Slide 7: Coordinate Transformations
	Slide 9: Simple Camera Parameters
	Slide 10: Full Camera Transformation
	Slide 11: Camera Transformation
	Slide 12: Camera Transformation
	Slide 13: Viewing Transformation
	Slide 14: Shearing Transformation
	Slide 15: Normalizing
	Slide 16: Perspective Transformation
	Slide 17: Perspective Transformation
	Slide 18: Parallel Projection to 2D
	Slide 19: Viewport Transformation
	Slide 20: Viewport Transformation
	Slide 21: Alternative: Orthographic Projection
	Slide 22: Full Camera Transformation

