
Philipp Slusallek

Computer Graphics

Camera & Projective Transformations

Motivation
• Rasterization works in a 2D image plane (+ depth)

• Need to project 3D world onto 2D screen

• Based on
– Positioning of objects/vertices in 3D space

– Positioning and parameters of the virtual camera

2

Coordinate Systems
• Local (object) coordinate system (3D)

– Object vertex positions
– Can be hierarchically nested in each other (scene graph, transf. stack)

• World (global) coordinate system (3D)
– Scene composition and object placement

• Mostly rigid objects: translation, rotation per object, (scaling)

• Animated objects: time-varying transformation in world or local space

– Illumination can be computed in this space

• Camera/view/eye coordinate system (3D)
– Coordinates relative to camera pose (position & orientation)

• Camera itself specified relative to world space

– Illumination can also be done in this space

• Normalized device coordinate system (2.5D)
– After perspective transformation, rectilinear, in [-1/0, 1]3

– Normalization to view frustum (for rasterization and depth buffer)
– Rasterization & shading done here (e.g., interpolation across triangle)

• Window/screen (raster) coordinate system (2D)
– 2D transformation to place image in window on the screen

3

Hierarchical Coordinate Systems

• Used in Scene Graphs
– Group objects hierarchically

– Local coordinate system is relative to parent coordinate system

– Apply transformation to the parent to change the whole sub-tree
(or sub-graph)

Hierarchical Coordinate Systems

• Hierarchy of transformations
T_root Positions the character in the world
 T_ShoulderR Moves to the right shoulder
 T_ShoulderRJoint Rotates in the shoulder (3 DOF)  User
 T_UpperArmR Moves to the Elbow
 T_ElbowRJoint Rotates in the Elbow (1 DOF)  User
 T_LowerArmR Moves to the wrist
 T_WristRJoint Rotates in the wrist (1 DOF)  User
 ….. Further for the right hand and the fingers
 T_ShoulderL Moves to the left shoulder
 T_ShoulderLJoint Rotates in the shoulder (3 DOF)  User
 T_UpperArmL Moves to the Elbow
 T_ElbowLJoint Rotates in the Elbow (1 DOF)  User
 T_LowerArmL Moves to the wrist
….. Further for the left hand and the fingers
– Each transformation is relative to its parent

• Concatenated by multiplying (from right) and pushing onto a stack

• Going back by poping from the stack

– This transformation stack was so common, it was built into OpenGL

Coordinate Transformations
• Model transformation

– Object space to world space

– Can be hierarchically nested

– Typically, an affine transformation

– As just discussed

• View transformation
– World space to eye/camera space

– Typically, an affine transformation

• Combination of both: Modelview transformation
– Used by traditional OpenGL, but still in use today (while world

space is conceptually intuitive, it was not exposed in OpenGL)

6

Coordinate Transformations
• Projective transformation

– Eye space to normalized device space

– From frustum to rectilinear space

– Parallel or perspective projection (defined by view frustum)

– 3D to 2D: With preservation of depth (2.5 D)

• Viewport transformation
– Normalized device space to window (raster) coordinates

7

Simple Camera Parameters
• Camera definition (typically used in ray tracers)

– 𝒐 ∈ ℝ𝟑 : center of projection, point of view (PRP)

– 𝑪𝑾 ∈ ℝ𝟑 : vector to center of window

• “Focal length”: projection of vector to CW onto VPN

– 𝑓𝑜𝑐𝑎𝑙 = (𝐶𝑊 − 𝑜) ⋅ 𝑉𝑃𝑁

– 𝒙, 𝒚 ∈ ℝ𝟑: span of half viewing window

• VPN = Τ(𝒚 × 𝒙) (𝒚 × 𝒙)

• VUP = −𝒚

• 𝑤𝑖𝑑𝑡ℎ = 2 𝒙

• ℎ𝑒𝑖𝑔ℎ𝑡 = 2 𝒚

• Aspect ratio: camera𝑟𝑎𝑡𝑖𝑜 = Τ𝑥 𝑦

9

𝒐/PRP

𝑪𝑾

𝒙

𝒚

x

y

𝑽𝑷𝑵
PRP: Projection reference point

VPN: View plane normal

VUP: View up vector

CW: Center of window

Full Camera Transformation
• Goal

– Compute the transformation between points in 3D and
their 2D location on screen

– Required for rasterization algorithms (e.g., OpenGL)

• They project all primitives from 3D to 2D

• So, rasterization can work in 2D (actually, 2.5D: XY plus Z as attribute)

• Given
– Camera pose (pos. & orient.)

• Extrinsic parameters

– Camera configuration

• Intrinsic parameters

– Pixel raster description

• Resolution and placement on screen

• In the following: Stepwise Approach
– Express each transformation step in homogeneous coordinates

– Finally, multiply all 4x4 matrices to get full transformation

10

World space

Camera Transformation
• Need camera position and orientation in world space

– External (extrinsic) camera parameters

• Center of projection: projection reference point (PRP)

• Optical axis: view-plane normal (VPN), towards camera

• View up vector (VUP)

– Not necessarily orthogonal to VPN, but not co-linear

11

PRP

VUP

-VPN

-Z
X´

Y´
VUP

PRP

Camera Transformation
• Goal: Camera at origin, view along –Z, Y upwards

– Assume right-handed coordinate system!

– Translation of PRP to the origin

– Rotation of VPN (is normalized) to Z-axis

– Rotation of projection of VUP to Y-axis

• Build local camera coordinate frame & rotation
– Build orthonormal basis for the camera and compute its inverse

• Z´= VPN, X´= normalize(VUP x VPN), Y´= Z´  X´

• Camera transformation 𝑉
– Translation 𝑇 followed by rotation 𝑅

12

𝑉 = 𝑅𝑇 =

𝑋´𝑥 𝑌´𝑥 𝑍´𝑥 0
𝑋´𝑦 𝑌´𝑦 𝑍´𝑦 0

𝑋´𝑧 𝑌´𝑧 𝑍´𝑧 0
0 0 0 1

𝑇

𝑇 −𝑃𝑅𝑃

x

y

z

-Z´ = -VPNX´

Y´
VUP

PRP

World space

Viewing Transformation
• Define projection (perspective or orthographic)

– Needs internal (intrinsic) camera parameters
– Screen window (Center Window (CW), width, height)

• Window size/position on image plane (relative to VPN intersection)

• PRP to window center determines viewing direction ( VPN)

– Focal length (f)
• Distance of projection plane from camera along VPN, orthogonal to VPN

• Smaller focal length means larger field of view

– Alternative: Field of view (fov) (defines width of view frustum)
• Often used instead of screen window and focal length

– Only valid when screen window is centered around VPN (often the case)

• Vertical (or horizontal) angle plus aspect ratio (width/height)

– Or two angles (both angles may be half or full angles, beware!)

– Near and far clipping planes
• Given as distances from the PRP along VPN

• Near clipping plane avoids singularity at origin (division by zero)

• Far clipping plane restricts the depth for fixed-point representation in HW

13

Shearing Transformation
• Step 1: VPN may not go through center of window

– Possible oblique viewing configuration

• Shear
– Shear space such that window center is along Z-axis

– Window center CW (in 3D view coordinates)

• Shear matrix

14

𝐻 =

1 0 −
𝐶𝑊𝑥

𝐶𝑊𝑧
0

0 1 −
𝐶𝑊𝑦

𝐶𝑊𝑧
0

0 0 1 0
0 0 0 1

-z

x
CW

f

View from top

right

left

Image plane

Normalizing
• Step 2: Scaling to canonical viewing frustum

– Goal: Scale in X and Y such that screen window boundaries open
at 45-degree angles

– Scale in Z such that far clipping plane is at Z= -1

• Scaling matrix

– 𝑆 = 𝑆𝑓𝑎𝑟𝑆𝑥𝑦 =

1

𝑓𝑎𝑟
0 0 0

0
1

𝑓𝑎𝑟
0 0

0 0
1

𝑓𝑎𝑟
0

0 0 0 1

2𝑓𝑜𝑐𝑎𝑙

𝑤𝑖𝑑𝑡ℎ
0 0 0

0
2𝑓𝑜𝑐𝑎𝑙

ℎ𝑒𝑖𝑔ℎ𝑡
0 0

0 0 1 0
0 0 0 1

15

45°

-near

-far
-1

-near
far

-focal -focal
far

-z-z

Perspective Transformation
• Step 3: Perspective transformation

– From canonical perspective viewing frustum (= cone at origin
around -Z-axis, 45° opening) to regular box [-1 .. 1]2 x [0 .. 1]

• Mapping of X and Y
– Lines through the origin are mapped to lines parallel to the Z-axis

• x´= x/-z and y´= y/-z (coordinate given by slope with respect to -z!)

– Do not change X and Y additively (first two rows stay the same)

– Set W to –z so we divide by it when converting back to 3D

• Determines last row

• Perspective transformation

– 𝑃 =

1 0 0 0
0 1 0 0
𝐴 𝐵 𝐶 𝐷
0 0 −1 0

– Note: Perspective projection =
perspective transformation + parallel projection

16

Still unknown

45° (-1, 1)

-z

(-1, -1)

Perspective Transformation
• Computation of the coefficients A, B, C, D

– No shear of Z with respect to X and Y

• A = B = 0

– Mapping of two known points

• Computation of the two remaining parameters C and D

– n = near / far (due to previous scaling by 1/far)

• Following mapping must hold

– 0,0, −1, 1 𝑇 = 𝑃 0,0, −1,1 𝑇 and 0,0,0, 1 𝑇 = 𝑃 0,0, −𝑛, 1 𝑇

• Resulting Projective transformation

– 𝑃 =

1 0 0 0
0 1 0 0

0 0
1

1−𝑛

𝑛

1−𝑛

0 0 −1 0

– Transforms Z non-linearly (in 3D)

• 𝑧′= −
𝑧+𝑛

𝑧(1−𝑛)

17

45°

-z

-n -1 0 -1

Parallel Projection to 2D
• Parallel projection 𝑷𝒑𝒂𝒓𝒂𝒍𝒍𝒆𝒍 to [-1 .. 1]2

– Formally scaling in Z with factor 0

– Typically, still maintains Z in [0,1] for depth buffering

• As a vertex attribute (see OpenGL later)

• Normalizing Transform 𝑵
– From [-1 .. 1]2 to NDC ([0 .. 1]2)

– Scaling (by 1/2 in X and Y) and translation (by (1/2,1/2))

𝑃𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 =

1 0 0 0
0 1 0 0
0 0 0 or 1 0
0 0 0 1

𝑁 =

Τ1 2 0 0 Τ1 2
0 Τ1 2 0 Τ1 2
0 0 1 0
0 0 0 1

18

Viewport Transformation
• Normalized Device Coordinates (NDC)

– Intrinsic camera parameters transform to NDC

• [0,1]2 for x, y across the screen window

• [0,1] for z (depth)

• Mapping NDC to raster coordinates on the screen
– 𝑥𝑟𝑒𝑠, 𝑦𝑟𝑒𝑠 : Size of window in pixels

• Should have same aspect ratios to avoid distortion

– 𝑐𝑎𝑚𝑒𝑟𝑎𝑟𝑎𝑡𝑖𝑜 =
𝑥𝑟𝑒𝑠

𝑦𝑟𝑒𝑠

𝑝𝑖𝑥𝑒𝑙𝑠𝑝𝑎𝑐𝑖𝑛𝑔𝑥

𝑝𝑖𝑥𝑒𝑙𝑠𝑝𝑎𝑐𝑖𝑛𝑔𝑦
,

• Horizontal and vertical pixel spacing (distance between pixel centers)

– Today, typically the same but can be different e.g. for some video formats

– Position of window on the screen

• Offset of window from origin of screen

– 𝑝𝑜𝑠𝑥 and 𝑝𝑜𝑠𝑦 given in pixels

• Depends on where the origin is on the screen (top left, bottom left)

– “Scissor box” or “crop window” (region of interest)

• No change in mapping but limits which pixels are rendered

19

Viewport Transformation
• Scaling and translation in 2D

– Scaling matrix to map to entire window on screen

• 𝑆𝑟𝑎𝑠𝑡𝑒𝑟(𝑥𝑟𝑒𝑠, 𝑦𝑟𝑒𝑠)

• No distortion if aspect ratios have been handled correctly earlier

– I.e. aspect ratio of window in world space == aspect ratio of raster window

• In some cases, one needs to reverse direction of y

– Some formats have screen origin at bottom left, some at top left

– Needs additional translation/scaling

– Positioning on the screen

• Translation 𝑇𝑟𝑎𝑠𝑡𝑒𝑟(𝑥𝑝𝑜𝑠, 𝑦𝑝𝑜𝑠)

• May be different depending on raster coordinate system

– Origin at upper left or lower left

20

Alternative: Orthographic Projection

• Step 2a: Translation (orthographic)
– Bring near clipping plane into the origin

• Step 2b: Scaling to regular box [-1 .. 1]2 x [0 .. -1]

• Mapping of X and Y

– 𝑃𝑜 = 𝑆𝑥𝑦𝑧𝑇𝑛𝑒𝑎𝑟 =

2

𝑤𝑖𝑑𝑡ℎ
0 0 0

0
2

ℎ𝑒𝑖𝑔ℎ𝑡
0 0

0 0
1

𝑓𝑎𝑟−𝑛𝑒𝑎𝑟
0

0 0 0 1

1 0 0 0
0 1 0 0
0 0 1 near
0 0 0 1

21

Full Camera Transformation
• Complete transformation (combination of matrices)

– Perspective Projection

• 𝑇𝑐𝑎𝑚𝑒𝑟𝑎 = 𝑇𝑟𝑎𝑠𝑡𝑒𝑟 𝑆𝑟𝑎𝑠𝑡𝑒𝑟 𝑁 𝑃𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑃𝑝𝑒𝑟𝑠𝑝 𝑆𝑓𝑎𝑟 𝑆𝑥𝑦 𝐻 𝑅 𝑇

– Orthographic Projection

• 𝑇𝑐𝑎𝑚𝑒𝑟𝑎 = 𝑇𝑟𝑎𝑠𝑡𝑒𝑟 𝑆𝑟𝑎𝑠𝑡𝑒𝑟 𝑁 𝑃𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑆𝑥𝑦𝑧 𝑇𝑛𝑒𝑎𝑟 ⋅ 𝐻 𝑅 𝑇

• Other representations
– Other literature uses different conventions

• Different camera parameters as input

• Different canonical viewing frustum

• Different normalized coordinates

– [-1 .. 1]3 versus [0 ..1]3 versus ...

– ...

→ Results in different transformation matrices – so be careful !!!

22

	Slide 1: Computer Graphics Camera & Projective Transformations
	Slide 2: Motivation
	Slide 3: Coordinate Systems
	Slide 4: Hierarchical Coordinate Systems
	Slide 5: Hierarchical Coordinate Systems
	Slide 6: Coordinate Transformations
	Slide 7: Coordinate Transformations
	Slide 9: Simple Camera Parameters
	Slide 10: Full Camera Transformation
	Slide 11: Camera Transformation
	Slide 12: Camera Transformation
	Slide 13: Viewing Transformation
	Slide 14: Shearing Transformation
	Slide 15: Normalizing
	Slide 16: Perspective Transformation
	Slide 17: Perspective Transformation
	Slide 18: Parallel Projection to 2D
	Slide 19: Viewport Transformation
	Slide 20: Viewport Transformation
	Slide 21: Alternative: Orthographic Projection
	Slide 22: Full Camera Transformation

