

Curves and splines

Upcoming lectures

- Some more advanced geometry (today & Thursday)
- GPU / Real-time rendering
	- Camera models and clipping
		- How to encode perspective cameras as a matrix and project your geometry on the screen
	- Rasterization
		- How to compute pixel occupancy from projected triangles
	- Graphics APIs
		- How to interface with your GPU and get it to do stuff
	- Shader programming
		- How to program the GPU
	- Shadow algorithms
		- How to get shadows if you cannot afford ray tracing

Today and Thursday: some more advanced geometry

Curves

What are curves?

- A line that is not straight
- Sequence of points that takes you from a to b

Fun fact

• If you look for info online, search engines are slightly more helpful if you search for the singular "curve" rather than its plural form

Parametric curves

• A useful way to describe a curve

 \cdot t is the "travel distance" or "time" along the curve

A familiar example

• The ray equation you have used this whole time is a parametric curve

 $r(t) = o + td$

• e.g.,

Wait, what do we even need those curves for?

Example: Modelling hair and fibers

- With curves, we can describe intricate geometries like these with a few control points
- With triangle meshes, this would be millions of vertices

Example: Modelling smooth surfaces

- Curve / spline: A few control points
- Mesh: requires millions of triangles for similar result

Example: Interpolating keyframes in animations

Keyframes only and the settlement of the Bézier interpolation

Example: 2D vector graphics and fonts

Smoothness

C^0 continuity

• $c(t)$ is continuous, but not differentiable

C^1 continuity

• first derivative $\frac{d}{dt}$ dt $c(t)$ is \mathcal{C}^0 continuous

- And so on: For C^n , the nth derivative has to be C^{n-1} continuous
- Typically, C^2 is desired for a perceptually smooth result

Defining and modelling curves

Control point interpolation

Cubic Bézier curves

- Polynomial interpolation
- 4 control points $P_1 ... P_4$, $t \in [0,1]$

$$
c(t) = (1-t)^3 P_1 + 3(1-t)^2 t P_2 + 3(1-t) t^2 P_3 + t^3 P_4
$$

- Interpolate smoothly from P_1 to P_4
- P_2 and P_3 "act like magnets" to steer the curve in-between
- Explicit tangents:
	- $P_2 P_1$ is the tangent at P_1
	- Allows smoothly connecting curves
- Convex hull property:
	- All points $c(t)$ inside convex hull of $\{P_1, P_2, P_3, P_4\}$

de Casteljau's algorithm (here for cubic Bézier curves)

- Faster & numerically stable compared to direct computation
- Recursive linear interpolation

- 1. Compute $Q_1 = tP_1 + (1 t)P_2$
	- Same for Q_2 and Q_3
- 2. Compute $R_1 = tQ_1 + (1-t)Q_2$
	- Same for R_2
- 3. Compute result as $tR_1 + (1 t)R_2$

de Casteljau's algorithm

Splines

Stitching curves together

A "spline" is a piecewise polynomial function

- We *could* use a single high-degree polynomial curve
- But:
	- Difficult to fit / model
	- Numerical issues

- Splines stitch low-order polynomial curves instead
	- Simple
	- Numerically stable (if done well)

Piecewise Bézier spline

Quiz time! How smooth is this Bézier spline?

And what about this one?

Smoothness of piecewise cubic Bézier splines

- The "handles" (control polygon edges) have to
	- Align (C^1)
	- Be of same length (C^2)

Bézier curves and splines are popular, but not the only option

- B-Splines
- Catmull-Rom splines
- Hermite splines

Rendering splines: Fibers

Hair, fur, grass, ...

Defining a fiber with a curve and a width

• e.g., "thicken" a Bézier curve

Flat fibers

• Always face the ray

Cylinder fibers

• Sweep a circle along the curve

Ribbon fibers

• Flat, orientation is fixed and interpolated between control points

Ray-tracing a fiber

- Same root-finding problem as always:
	- take the ray equation
	- substitute into the spline equation
	- solve
- Expensive, so some clever culling (using the convex hull) is beneficial

• <https://pbr-book.org/4ed/Shapes/Curves>

The curve lies inside the convex hull of the control points

The convex hull of a point-set / mesh / polygon is the smallest polygon / polyhedron that contains all points

Rendering splines: Smooth surfaces

Tensor product surface

• "Extrudes" a curve into a surface, by following another curve

• The hair curves we discussed just now are special cases of this idea

Example: bilinear patch

- Tensor product of two linear curves
- Useful shape for modelling:
	- Connects 4 vertices
	- But does not force them to be coplanar

Example: Bézier surface

- Same idea as a bilinear patch
- But with Bézier curves

- Aligning Bézier patches nicely is harder than curves
	- **→ NURBS (non-uniform rational B-spline surface)**
	- ➔ Dedicated modelling tools (used by CAD software)

Ray-tracing a spline surface

- We *can* directly intersect a ray and a spline patch
- This is a root-finding problem
	- Substitute ray equation into spline equation and solve
	- Same as any other ray-object intersection test
- But: For higher-degree polynomials, this is *expensive*

Tessellation

- Approximate the spline surface with a triangle mesh
- For a 2D tensor product surface:
	- Subdivide the $u \times v$ domain with a regular grid
	- Evaluate spline position for each grid corner
	- Create triangles (or bilinear patches) with those vertices

Summary

Today: Curves and splines

- Smooth interpolation of control points
- Many uses (2D vector graphics, fonts, key-frame interpolation in animation, ...)
- In our focus area (static-scene rendering):
	- Modelling hair, grass, and similar fine structures
	- Modelling smooth surfaces

Next up: Subdivision surfaces

- Uses ideas from curves and splines
- Subdivide coarse geometry so it becomes more smooth

