

Curves and splines

Upcoming lectures

- Some more advanced geometry (today & Thursday)
- GPU / Real-time rendering
 - Camera models and clipping
 - How to encode perspective cameras as a matrix and project your geometry on the screen
 - Rasterization
 - How to compute pixel occupancy from projected triangles
 - Graphics APIs
 - How to interface with your GPU and get it to do stuff
 - Shader programming
 - How to program the GPU
 - Shadow algorithms
 - How to get shadows if you cannot afford ray tracing

Today and Thursday: some more advanced geometry

Curves

What are curves?

- A line that is not straight
- Sequence of points that takes you from *a* to *b*

Fun fact

• If you look for info online, search engines are slightly more helpful if you search for the singular "curve" rather than its plural form

Parametric curves

• A useful way to describe a curve

• *t* is the "travel distance" or "time" along the curve

A familiar example

• The ray equation you have used this whole time is a parametric curve

r(t) = o + td

• e.g.,

Wait, what do we even need those curves for?

Example: Modelling hair and fibers

- With curves, we can describe intricate geometries like these with a few control points
- With triangle meshes, this would be millions of vertices

Example: Modelling smooth surfaces

- Curve / spline: A few control points
- Mesh: requires millions of triangles for similar result

Example: Interpolating keyframes in animations

Keyframes only

Bézier interpolation

Example: 2D vector graphics and fonts

Smoothness

C⁰ continuity

• c(t) is continuous, but not differentiable

C¹ continuity

• first derivative $\frac{d}{dt}c(t)$ is C^0 continuous

- And so on: For C^n , the *n*th derivative has to be C^{n-1} continuous
- Typically, C^2 is desired for a perceptually smooth result

Defining and modelling curves

Control point interpolation

Cubic Bézier curves

- Polynomial interpolation
- 4 control points $P_1 \dots P_4$, $t \in [0,1]$

$$c(t) = (1-t)^3 P_1 + 3(1-t)^2 t P_2 + 3(1-t)t^2 P_3 + t^3 P_4$$

- Interpolate smoothly from P_1 to P_4
- P_2 and P_3 "act like magnets" to steer the curve in-between
- Explicit tangents:
 - $P_2 P_1$ is the tangent at P_1
 - Allows smoothly connecting curves
- Convex hull property:
 - All points c(t) inside convex hull of $\{P_1, P_2, P_3, P_4\}$

de Casteljau's algorithm (here for cubic Bézier curves)

- Faster & numerically stable compared to direct computation
- Recursive linear interpolation

- 1. Compute $Q_1 = tP_1 + (1-t)P_2$
 - Same for Q_2 and Q_3
- 2. Compute $R_1 = tQ_1 + (1-t)Q_2$
 - Same for R_2
- 3. Compute result as $tR_1 + (1 t)R_2$

de Casteljau's algorithm

Splines

Stitching curves together

A "spline" is a piecewise polynomial function

- We *could* use a single high-degree polynomial curve
- But:
 - Difficult to fit / model
 - Numerical issues

- Splines stitch low-order polynomial curves instead
 - Simple
 - Numerically stable (if done well)

Piecewise Bézier spline

Quiz time! How smooth is this Bézier spline?

And what about this one?

Smoothness of piecewise cubic Bézier splines

- The "handles" (control polygon edges) have to
 - Align (*C*¹)
 - Be of same length (C^2)

Bézier curves and splines are popular, but not the only option

- B-Splines
- Catmull-Rom splines
- Hermite splines

Rendering splines: Fibers

Hair, fur, grass, ...

Defining a fiber with a curve and a width

• e.g., "thicken" a Bézier curve

Flat fibers

• Always face the ray

Cylinder fibers

• Sweep a circle along the curve

Ribbon fibers

• Flat, orientation is fixed and interpolated between control points

Ray-tracing a fiber

- Same root-finding problem as always:
 - take the ray equation
 - substitute into the spline equation
 - solve
- Expensive, so some clever culling (using the convex hull) is beneficial

<u>https://pbr-book.org/4ed/Shapes/Curves</u>

The curve lies inside the convex hull of the control points

The convex hull of a point-set / mesh / polygon is the smallest polygon / polyhedron that contains all points

Rendering splines: Smooth surfaces

Tensor product surface

• "Extrudes" a curve into a surface, by following another curve

• The hair curves we discussed just now are special cases of this idea

Example: bilinear patch

- Tensor product of two linear curves
- Useful shape for modelling:
 - Connects 4 vertices
 - But does not force them to be coplanar

Example: Bézier surface

- Same idea as a bilinear patch
- But with Bézier curves

- Aligning Bézier patches nicely is harder than curves
 - → NURBS (non-uniform rational B-spline surface)
 - → Dedicated modelling tools (used by CAD software)

Ray-tracing a spline surface

- We can directly intersect a ray and a spline patch
- This is a root-finding problem
 - Substitute ray equation into spline equation and solve
 - Same as any other ray-object intersection test
- But: For higher-degree polynomials, this is *expensive*

Tessellation

- Approximate the spline surface with a triangle mesh
- For a 2D tensor product surface:
 - Subdivide the $u \times v$ domain with a regular grid
 - Evaluate spline position for each grid corner
 - Create triangles (or bilinear patches) with those vertices

Summary

Today: Curves and splines

- Smooth interpolation of control points
- Many uses (2D vector graphics, fonts, key-frame interpolation in animation, ...)
- In our focus area (static-scene rendering):
 - Modelling hair, grass, and similar fine structures
 - Modelling smooth surfaces

Next up: Subdivision surfaces

- Uses ideas from curves and splines
- Subdivide coarse geometry so it becomes more smooth

