
Philipp Slusallek

Computer Graphics

- Shadow Algorithms -

Recap: Shadows
• Lightsource contributes to shading if the lightsource

is visible from the sampling point
• Contributions of lightsources are added

Color shade(Point surfacePosition, Direction toCamera)
{

Color outgoing = black;
for (light : lightsources)

if (! occluded(surfacePosition, light.position))
{

Color incoming = light.illuminate(surfacePosition);
Direction toLight = light.position – surfacePoint;
outgoing += brdf(incoming, toCamera, toLight);

}
return totalColor;

}
2/

Recap: Visibility Queries
• Visibility queries

– Simplified ray tracing operations

• Normal ray-scene intersection:
– Find first intersection with scene

• Visibility Query:
– Find any intersection with scene (slightly faster)

• Rasterization context
– Ray-scene intersection operation is not available
– No access to other triangles from within the pipeline

Shadowing in Rasterization
• Direct (subtractive) shadow rendering (historic)

– Render scene without shadows
– „Add“ shadows later by subtracting light (e.g. via geometry)
– No consistent interpretation in terms of rendering equation

• Shadow Volumes (Hard Shadows)
– Precompute volume representation of light visibility
– Use visibility information during rendering

• Shadow Maps (Hard Shadows)
– Precompute a discrete representation of light visibility
– Use visibility information during rendering

• Hybrid Rendering Techniques (Soft Shadows)
– Use cone-tracing in a scene approximation

SHADOW VOLUMES

5/

Shadow Volumes
Point Light

Source

Triangle
Shadow
Volume

Shadow Volumes

Camera

back-faces
away from camera

count -1

front-faces
to camera
count +1

0

0

1

1

Shadow Volume Algorithm

1. fill z-buffer as seen from camera (disable writing to FB)
2. fill color buffer to black
3. for (light : lightsources)

4. initialize stencil buffer to zero
5. compute all front facing shadow volume surfaces
6. render to stencil buffer with value 1
7. compute all back facing shadow volume surfaces
8. render stencil buffer with value -1
9. render scene from camera only, adding illum

where shadow volume buffer != 0

8/

Properties
§ Pro

§ Per pixel accurate shadows without aliasing problems
§ Maps moderat well to hardware

§ Con
§ Needs major changes to how scene is rendered

§ Performance
§ Generate 3 faces per triangle-light combination
§ Poor performance for geometrically complex shadow casters
§ Very bandwidth intensive

9

Optimization: Silhouettes

silhouette
edges

§ Mesh as seen from light source

§ Only silhouette edges are relevant

Optimization: Silhouettes

Light
Source

Camera

Silhouette
edges

+1/-1

+1/-1

+1/-1

+1/-1

+1/-1

-1

+1

Finding silhouettes
• Brute force approach (convex objects)

for (light: scene)
for (edge : mesh)
{

normal1 = edge.face1.normal;
normal2 = edge.face2.normal;
camera = directionToCamera;
direction1 := sign(dotProduct(normal1, camera));
direction2 := sign(dotProduct(normal2, camera));
isSilhouette[light, edge] := (direction1 != direction2);

}

– Finding general silhouettes is a difficult topic in itself

– Possible optimization
• Edges between coplanar triangles can be disregarded

12

Further Reading
Approximate approach:
Markosian, Lee et. al. Real-Time Nonphotorealistic

Rendering, Proceedings of SIGGRAPH 1997, pp.
415-420

Using Gauss Maps:
Gooch, Amy, et. al. „A Non-Photorealistic Lighting Model for

Automatic Technical Illustrations“, Proceedings of
SIGGRAPH 1998, pp. 447-452

13

Shadow Volumes Example

14

SHADOW MAPS

15/

Shadow Mapping

• Idea: Use Z-Buffer to store occlusion information

• First pass: Render scene from position of light source
– For each pixel: Store distance from lightsource to object
– Resulting data structure is called shadow map

• Second pass: Render scene from position of camera
– For each pixel: Compare distance to lightsource with corresponding

pixel in shadow map

16

Shadow Mapping
Light

Source

Shadow Map

Shadow Mapping
Light

Source

Camera

ba

Properties
• Pro

– Very flexible: can handle arbitrary shadow casters
– Can handle semi-transparent shadow casters
– Maps well to hardware

• Con
– Aliasing problems occur as shadow map samples are in general

not at same positions as camera samples
– Aliasing is a principal problem of shadow maps – can be reduced

but not avoided
– Difficult question where to place the shadow map

• Performance
– One additional render pass per light source
– Moderate memory consumption for shadow maps

19

Dueling Frustra and Aliasing

Light
Source Camera

§ Types of Aliasing
§ Projective aliasing: light ray almost parallel to surface
§ Perspective aliasing: perspective shortening of view frustrum

worst case:
duelling frustra

Quantifying Sampling Error

21

rs

dS

α

shadow
map

𝑑 = 𝑑!
𝑟"
𝑟#
cos 𝛽
cos 𝛼

ri

image

d
β

di

Shadow Map Filtering
• Percentage-Closer Filtering

– Map area representing pixel to texture space
– Stochastically sample pixel to find percentage of surface in light

22

Pixel
(in texture space)
possibly enlarged

Shadow Map

Percentage-Closer Filtering

23

Properties
• Pro

– Display undersampled data in shadow map in a less disturbing
way

– Fools our perception: Blurring easily mistaken for penumbra in
many situations

• Con
– Not geometrically correct soft shadows with penumbra, just

blurred, undersampled shadow map
– Computationally more expensive than normal shadow maps

24

z

Parallel Split Shadow Maps (PSSM)
• Shadow map reparametrization

– Optimize distribution of shadow map texels

• Idea of PSSM: Split depth range
– Use different shadow map for every layer

2525

y

near
plane

C1 C2 far
plane

Split Plane Positioning

26

𝐶!
"#!$%&' = 𝑛 +

𝑓 − 𝑛 𝑖
𝑚

𝐶!
(%) = 𝑛

𝑓
𝑛

!
'

𝐶! =
𝐶!
(%) + 𝐶!

"#!$%&'
2

C0

C1

C2

C0

C1

C2

C0

C1

C2

Properties
• Pro

– All advantages of shadow maps
– n=3 or 4 mostly solves issues with perspective shadow map

aliasing

• Con
– Projective aliasing remains a problem

• Performance
– n additional render pass per light source

(but can use multiple render targets)
– n times memory consumption for shadow maps

(but can compensate by reducing resolution due to better usage)

27

Further Reading
Perspective Shadow Maps:
Marc Stamminger and George Drettakis, Perspective

Shadow Maps, Proceedings of SIGGRAPH 2002, pp.
557-562

Volumetric Objects:
Tom Lokovic and Eric Veach „Deep Shadow Maps“,

Proceedings of SIGGRAPH 2000, pp. 385-392

28

HYBRID RENDERING

29/

Hybrid Rendering Techniques
• Rasterization for primary rendering

– Efficiently maps to hardware
– Resolve visibility using z-buffer

• Ray-tracing for lighting computation
– Ray-scene intersection often too slow for real-time applications
– Particularly true when sampling large area lights or large opening

angles (=many rays per pixel are needed for soft shadows)

• Core idea
– Approximate large number of ray-scene intersections by a small

number (often one) cone-scene intersections
– Intersect against approximate representation of scene that allows

fast cone intersection
– Sufficiently accurate for many lighting purposes

30

Overview of Techniques
§ Screen Space Ambient Occlusion

§ Consider z-buffer as a surface that approximates the scene
§ Use ray-tracing in the z-buffer to determine ambient occlusion

§ Sparse Voxel Octree Cone Tracing
§ Convert entire scene to a view-dependent sparse voxel

representation
§ Build mip-map like pyramid over the voxel structure
§ Use „diagonal ray-tracing“ in the voxel pyramid to approximate

cone-scene intersection

§ Distance Field Ray Traced Shadows
§ Build view-dependent voxelized scene representation where

voxel contains the distance to the nearest mesh
§ Can be used as acceleration structure for approximate ray-tracing
§ Can be used to calculate ambient occlusion

31

Ambient Occlusion
• Calulates shadows against assumed constant

ambient illumination
– Idea: in most environments, multiple light bounces lead to a very

smooth component in the overall illumination
– For this component, incident light on a point is proportional to the

part of the environment (opening angle) visible from the point
– Describes well contact shadows, dark corners

32

N

r assume constant light
outside radius r

α

Ambient Occlusion

AO Using Ray-Tracing
§ Computation using Ray-Tracing straight forward

§ Start at point P
§ Sample N directions (D1-DN) from upper hemisphere
§ Shoot shadow rays from P to Di with maximum length r
§ Count how many rays reach the environment
§ Gives correct result in the limit, but requires many rays to avoid

noise (i.e., slow)

34

N

r assume constant light
outside radius r

AO Using Ray-Tracing

35

Screen Space Ambient Occlusion
• Can we approximate ambient occlusion in real-time?
• Ray-scene intersection too slow

• Idea: Use z-buffer as scene approximation
– Horizontal and vertical position give position of point in x,y-

direction (camera space)
– Z-buffer content gives position of point in z-direction (camera

space)
– Contains discrete representation of all visible geometry
– Use ray-tracing against this simplified scene

Screen Space Ambient Occlusion

37

camera

z-buffer

corner

fake
corner ?

geometry
outside

viewport ?

Properties
§ Pro

§ Allows approximate computation of ambient occlusion in real-time
on consumer hardware

§ Replaced „ambient term“ of Phong model in most real-time
applications (practically highly relevant)

§ Con
§ Relies on scene approximation that may generate artifacts

38

Further Reading
Tobias Ritschel, Thorsten Grosch, Hans-Peter Seidel,

“Approximating Dynamic Global Illumination in Image
Space”, ACM SIGGRAPH Symposium on Interactive
3D Graphics and Games 2009

Louis Bavoil, Miguel Sainz and Rouslan Dimitrov, „Image-
Space Horizon-Based Ambient Occlusion“,
Presentation at SIGGRAPH 2008

Louis Bavoil, Miguel Sainz, “Multi-Layer Dual-Resolution
Screen-Space Ambient Occlusion”, Presentation at
SIGGRAPH 2009

39

