Computer Graphics

- Clipping -

Philipp Slusallek
Clipping

- **Motivation**
 - Projected primitive might fall (partially) outside of screen window
 - E.g., if standing inside a building
 - Eliminate non-visible geometry early in the pipeline to process visible parts only
 - Happens after transformation from 3D to 2D
 - Must cut off parts outside the window
 - Outside geometry might not be representable (e.g., in fixed point)
 - Cannot draw outside of window (e.g., plotter (hardly exist anymore))
 - Must maintain information properly
 - Drawing the clipped geometry should give the correct results:
 - E.g., correct interpolation of colors across triangle even when clipped
 - Type of geometry might change
 - Cutting off a vertex of a triangle produces a quadrilateral (up to hexagon)
 - Might need to be split into triangles again
 - Polygons must remain closed after clipping
Line Clipping

• **Definition of clipping**
 – Cut off parts of objects which lie outside/inside of a defined region
 – Often clip against viewport (2D) or canonical view-volume (3D)

• **Let’s focus first on lines only**
Brute-Force Method

- Brute-force line clipping at the viewport
 - If both end points p_b and p_e are inside viewport
 - Accept the whole line
 - Otherwise, clip the line at each edge
 - $p_{\text{intersection}} = p_b + t_{\text{line}}(p_e - p_b) = e_b + t_{\text{edge}}(e_e - e_b)$
 - Solve for t_{line} and t_{edge}
 - Intersection within segment if both $0 \leq t_{\text{line}}, t_{\text{edge}} \leq 1$
 - Replace suitable end points for the line by the intersection point
 - Unnecessarily tests many cases that are irrelevant
Cohen-Sutherland (1974)

- **Advantage: divide and conquer**
 - Efficient trivial accept and trivial reject
 - Non-trivial case: divide and test

- **Outcodes of points**
 - Bit encoding (outcode, OC)
 - Each viewport edge defines a half space
 - Set bit if vertex is outside w.r.t. that edge

- **Trivial cases**
 - Trivial accept: both are in viewport
 - \((\text{OC}(p_b) \text{ OR } \text{OC}(p_e)) = 0\)
 - Trivial reject: both lie outside w.r.t. at least one common edge
 - \((\text{OC}(p_b) \text{ AND } \text{OC}(p_e)) \neq 0\)
 - Line has to be clipped to all edges where XOR bits are set, i.e. the points lies on different sides of that edge
 - \(\text{OC}(p_b) \text{ XOR } \text{OC}(p_e)\)

<table>
<thead>
<tr>
<th>OC(p_b)</th>
<th>OC(p_e)</th>
<th>Bit order: top, bottom, right, left</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001</td>
<td>1000</td>
<td>1010</td>
</tr>
<tr>
<td>0001</td>
<td>0000</td>
<td>0010</td>
</tr>
<tr>
<td>0101</td>
<td>0100</td>
<td>0110</td>
</tr>
</tbody>
</table>

Viewport \((x_{min}, y_{min}, x_{max}, y_{max})\)
Cohen-Sutherland

- **Clipping of line (p1, p2)**

\[oc1 = OC(p1); \quad oc2 = OC(p2); \quad edge = 0; \]

\[
do { \begin{align*}
 &\text{if } ((oc1 \text{ AND } oc2) \neq 0) \quad \text{// trivial reject of remaining segment} \\
 &\quad \text{return } \text{REJECT;} \\
 &\text{else if } ((oc1 \text{ OR } oc2) == 0) \quad \text{// trivial accept of remaining segment} \\
 &\quad \text{return } (\text{ACCEPT, p1, p2}); \\
 &\text{if } ((oc1 \text{ XOR } oc2)[edge])\{ \begin{align*}
 &\quad \text{if } (oc1[edge]) \quad \text{// p1 outside} \\
 &\quad \quad \{p1 = \text{cut}(p1, p2, edge); \quad oc1 = OC(p1);\} \\
 &\quad \text{else} \quad \text{// p2 outside} \\
 &\quad \quad \{p2 = \text{cut}(p1, p2, edge); \quad oc2 = OC(p2);\}
 \}
\}
\]

\[
\text{while } (++\text{edge} < 4); \quad \text{// Not the most efficient solution} \\
\text{return } ((oc1 \text{ OR } oc2) == 0) \ ? \ (\text{ACCEPT, p1, p2}) : \text{REJECT;}
\]

- **Intersection calculation for** \(x = x_{\text{min}} \)

\[
\frac{y - y_b}{y_e - y_b} = \frac{x_{\text{min}} - x_b}{x_e - x_b}
\]

\[
y = y_b + (x_{\text{min}} - x_b) \frac{y_e - y_b}{x_e - x_b}
\]
Cyrus-Beck (1978)

- **Parametric line-clipping algorithm**
 - Only convex polygons: max 2 intersection points
 - Use edge orientation, via "normals" pointing out

- **Idea: clipping against polygons**
 - Clip line \(\mathbf{p} = \mathbf{p}_b + t_i (\mathbf{p}_e - \mathbf{p}_b) \) against each edge
 - Intersection points sorted by parameter \(t_i \)
 - Select
 - \(t_{\text{in}} \): entry point \(((\mathbf{p}_e - \mathbf{p}_b) \cdot \mathbf{N}_i < 0) \) with largest \(t_i \)
 - \(t_{\text{out}} \): exit point \(((\mathbf{p}_e - \mathbf{p}_b) \cdot \mathbf{N}_i > 0) \) with smallest \(t_i \)
 - If \(t_{\text{out}} < t_{\text{in}} \), line lies completely outside (akin to ray-box intersect.)

- **Intersection calculation**

 \[
 \begin{align*}
 (\mathbf{p} - \mathbf{p}_{\text{edge}}) \cdot \mathbf{N}_i &= 0 \\
 t_i (\mathbf{p}_e - \mathbf{p}_b) \cdot \mathbf{N}_i + (\mathbf{p}_b - \mathbf{p}_{\text{edge}}) \cdot \mathbf{N}_i &= 0 \\
 t_i &= \frac{(\mathbf{p}_{\text{edge}} - \mathbf{p}_b) \cdot \mathbf{N}_i}{(\mathbf{p}_e - \mathbf{p}_b) \cdot \mathbf{N}_i}
 \end{align*}
 \]
Liang-Barsky (1984)

- **Cyrus-Beck for axis-aligned rectangles**
 - Using window-edge coordinates (with respect to an edge T)
 \[WEC_T(p) = (p - p_T) \cdot N_T \]

- **Example: top ($y = y_{\text{max}}$)**

\[
N_T = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad p_b - p_T = \begin{pmatrix} x_b - x_{\text{max}} \\ y_b - y_{\text{max}} \end{pmatrix}
\]
\[
t_T = \frac{(p_b - p_T) \cdot N_T}{(p_b - p_e) \cdot N_T} = \frac{WEC_T(p_b)}{WEC_T(p_b) - WEC_T(p_e)} = \frac{y_b - y_{\text{max}}}{y_b - y_e}
\]

- Window-edge coordinate (WEC): decision function for an edge
 - Directed distance to edge
 - Only sign matters, similar to Cohen-Sutherland opcode
 - Sign of the dot product determines whether the point is in or out
 - Normalization unimportant
Line Clipping - Summary

• Cohen-Sutherland, Cyrus-Beck, and Liang-Barsky algorithms readily extend to 3D

• Cohen-Sutherland algorithm
 + Efficient when majority of lines can be trivially accepted / rejected
 • Very large clip rectangles: almost all lines inside
 • Very small clip rectangles: almost all lines outside
 – Repeated clipping for remaining lines
 – Testing for 2D/3D point coordinates

• Cyrus-Beck (Liang-Barsky) algorithms
 + Efficient when many lines must be clipped
 + Testing for 1D parameter values
 – Testing intersections always for all clipping edges (in the Liang-Barsky trivial rejection testing possible)
Polygon Clipping

• Extended version of line clipping
 – Condition: polygons have to remain closed
 • Filling, hatching, shading, ...
Sutherland-Hodgeman (1974)

- **Idea**
 - Iterative clipping against each edge in sequence

 ![Diagram showing iterative clipping against each edge in sequence.]

 - Four different local operations based on sides of p_{i-1} and p_i
Enhancements

• Recursive polygon clipping
 – Pipelined Sutherland-Hodgeman

• Problems
 – Degenerated polygons/edges
 • Elimination by post-processing, if necessary
Other Clipping Algorithms

- **Weiler & Atherton (´77)**
 - Arbitrary concave polygons with holes against each other

- **Vatti (´92)**
 - Also with self-overlap

- **Greiner & Hormann (TOG ´98)**
 - Simpler and faster as Vatti
 - Also supports Boolean operations
 - Idea:
 - Winding number (WN)
 - Intersection with the polygon leads to a change in winding number of ±1
 - Walk along both polygons
 - Alternate winding number value, depending on going in/out
 - Mark point of entry and point of exit
 - Combine results
A in B

B in A

(A in B) \cup (B in A)
3D Clipping agst. View Volume

- **Requirements**
 - Avoid unnecessary rasterization
 - Avoid overflow on transformation at fixed point!

- **Clipping against viewing frustum**
 - Enhanced Cohen-Sutherland with 6-bit outcode
 - After perspective division
 - \(-1 < y < 1\)
 - \(-1 < x < 1\)
 - \(-1 < z < 0\)
 - Clip against side planes of the canonical viewing frustum
 - Works analogously with Liang-Barsky or Sutherland-Hodgeman
3D Clipping agst. View Volume

- Clipping in homogeneous coordinates
 - Use canonical view frustum, but avoid costly division by W
 - Inside test with a linear distance function (WEC)
 - Left: $X / W > -1 \Rightarrow W + X = WEC_L(p) > 0$
 - Top: $Y / W < 1 \Rightarrow W - Y = WEC_T(p) > 0$
 - Back: $Z / W > -1 \Rightarrow W + Z = WEC_B(p) > 0$
 - ...
 - Intersection point calculation (before homogenizing)
 - Test: $WEC_L(p_b) > 0$ and $WEC_L(p_e) < 0$
 - Calculation:

\[
WEC(p_b + t(p_e - p_b)) = 0 \\
W_b + t(W_e - W_b) + X_b + t(X_e - X_b) = 0 \\
t = \frac{W_b + X_b}{(W_b + X_b) - (W_e + X_e)} = \frac{WEC_L(p_b)}{WEC_L(p_b) - WEC_L(p_e)}
\]

• **Negative w**
 – Points with \(w < 0 \) or lines with \(w_b < 0 \) and \(w_e < 0 \)
 • Negate and continue
 – Lines with \(w_b \cdot w_e < 0 \) (NURBS)
 • Line moves through infinity
 – External „line“
 • Clipping two times
 – Original line
 – Negated line
 • Generates up to two segments
Practical Implementations

- **Combining clipping and scissoring**
 - Clipping is expensive and should be avoided
 - Intersection calculation
 - Variable number of new points, new triangles
 - Enlargement of clipping region
 - (Much) larger than viewport, but
 - Still avoiding overflow due to fixed-point representation
 - Result
 - Less clipping
 - Applications should avoid drawing objects that are outside of the viewport/viewing frustum
 - Objects that are still partially outside will be implicitly clipped during rasterization
 - Slight penalty because they will still be processed (triangle setup)