Computer Graphics

Camera \& Projective Transformations
Philipp Slusallek

- Rasterization works on 2D primitives (+ depth)
- Need to project 3D world onto 2D screen
- Based on
- Positioning of objects in 3D space
- Positioning and parameters of the virtual camera

Coordinate Systems

- Local (object) coordinate system (3D)
- Object vertex positions
- Can be hierarchically nested in each other (scene graph, transf. stack)
- World (global) coordinate system (3D)
- Scene composition and object placement
- Mostly rigid objects: translation, rotation per object, (scaling)
- Animated objects: time-varying transformation in world or local space
- Illumination can be computed in this space
- Camera/view/eye coordinate system (3D)
- Coordinates relative to camera pose (position \& orientation)
- Camera itself specified relative to world space
- Illumination can also be done in this space
- Normalized device coordinate system (2.5D)
- After perspective transformation, rectilinear, in [0, 1] ${ }^{3}$
- Normalization to view frustum (for rasterization and depth buffer)
- Rasterization \& shading done here (e.g., interpolation across triangle)
- Window/screen (raster) coordinate system (2D)
- 2D transformation to place image in window on the screen

Hierarchical Coordinate Systems

- Used in Scene Graphs
- Group objects hierarchically
- Local coordinate system is relative to parent coordinate system
- Apply transformation to the parent to change the whole sub-tree (or sub-graph)

Hierarchical Coordinate Systems

- Hierarchy of transformations

T_root
\bar{T} _ShoulderR
T_ShoulderRJoint
T_UpperArmR
T_ElbowRJoint
T_LowerArmR
T_WristRJoint
T_ShoulderL
T_ShoulderLJoint
T_UpperArmL
T_ElbowLJoint T_LowerArmL

Positions the character in the world
Moves to the right shoulder
Rotates in the shoulder (3 DOF) \leftarrow User
Moves to the Elbow
Rotates in the Elbow (1 DOF) \leftarrow User
Moves to the wrist
Rotates in the wrist (1 DOF) \leftarrow User
Further for the right hand and the fingers
Moves to the left shoulder
Rotates in the shoulder (3 DOF) \leftarrow User
Moves to the Elbow
Rotates in the Elbow (1 DOF) \leftarrow User
Moves to the wrist

Further for the left hand and the fingers

- Each transformation is relative to its parent
- Concatenated by multiplying (from right) and pushing onto a stack
- Going back by poping from the stack
- This transformation stack was so common, it was built into OpenGL

Coordinate Transformations

- Model transformation
- Object space to world space
- Can be hierarchically nested
- Typically an affine transformation
- As just discussed
- View transformation
- World space to eye space
- Typically an affine transformation

- Combination of both: Modelview transformation
- Used by traditional OpenGL (although world space is conceptually intuitive, it was not explicitly exposed in OpenGL)

Coordinate Transformations

- Projective transformation
- Eye space to normalized device space
- Parallel or perspective projection (defined by view frustum)
- 3D to 2D: With preservation of depth (2.5 D)
- Viewport transformation
- Normalized device space to window (raster) coordinates

Camera Parameters: Rend.Man

- RenderMan camera specification
- Distance of Screen Window from origin given by "field of view" (fov)
- fov: Full angle of segment $(-1,0)$ to $(1,0)$, when seen from origin
- CW given implicitly
- No offset on screen
- Note: Left-handed coordinate system!
- All geometry is assumed to be in camera coordinates!
- Or needs to be transformed into it

Simple Camera Parameters

- Camera definition (typically used in ray tracers)
- o $\in \mathbb{R}^{3}$: center of projection, point of view (PRP)
- $\boldsymbol{C W} \in \mathbb{R}^{\mathbf{3}}$: vector to center of window
- "Focal length": projection of vector to CW onto VPN
- focal $=|(C W-o) \cdot V P N|$
$-\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{3}$: span of half viewing window
- VPN $=(y \times x) /|(y \times x)|$
- VUP $=-\boldsymbol{y}$
- width $=2|x|$
- height $=2|\boldsymbol{y}|$
- Aspect ratio: camera $_{\text {ratio }}=|x| /|y|$

PRP: Projection reference point
VPN: View plane normal
VUP: View up vector
CW: Center of window

Fulll Camera Transformation

- Goal
- Compute the transformation between points in 3D and pixels on the screen
- Required for rasterization algorithms (e.g., OpenGL)
- They project all primitives from 3D to 2D
- Rasterization happens in 2D (actually 2.5D, XY plus Z attribute)
- Given
- Camera pose (pos. \& orient.)
- Extrinsic parameters
- Camera configuration
- Intrinsic parameters
- Pixel raster description
- Resolution and placement on screen

- In the following: Stepwise Approach
- Express each transformation step in homogeneous coordinates
- Multiply all 4×4 matrices to combine transformations

Camera Transformation

- Need camera position and orientation in world space
- External (extrinsic) camera parameters
- Center of projection: projection reference point (PRP)
- Optical axis: view-plane normal (VPN)
- View up vector (VUP)
- Not necessarily orthogonal to VPN, but not co-linear
- Needed Transformations

1) Translation of PRP to the origin (-PRP)
2) Rotation such that viewing direction is along negative Z axis

2a) Rotate such that VUP is pointing up on screen

Camera Transformation

- Goal:Camera: at origin, view along -Z, Y upwards
- Assume right-handed coordinate system!
- Translation of PRP to the origin
- Rotation of VPN to Z-axis
- Rotation of projection of VUP to Y-axis
- Rotations
- Build orthonormal basis for the camera and form inverse
- $Z^{\prime}=\mathrm{VPN}, \mathrm{X}^{\prime}=$ normalize(VUP $\left.\times V P N\right), \mathrm{Y}^{\prime}=\mathrm{Z}^{\prime} \times \mathrm{X}^{\prime}$
- Viewing transformation V
- Translation T followed by rotation R

$$
V=R T=\left(\begin{array}{cccc}
X_{x}^{\prime} & Y_{x}^{\prime} & Z_{x}^{\prime} & 0 \\
X_{y}^{\prime} & Y_{y}^{\prime} & Z_{y}^{\prime} & 0 \\
X_{z}^{\prime} & Y_{z}^{\prime} & Z_{z}^{\prime} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)^{T} T(-P R P)
$$

Viewing Transformation

- Define projection (perspective or orthographic)
- Needs internal (intrinsic) camera parameters
- Screen window (Center Window (CW), width, height)
- Window size/position on image plane (relative to VPN intersection)
- Window center relative to PRP determines viewing direction ($\neq \mathrm{VPN}$)
- Focal length (f)
- Distance of projection plane from camera along VPN
- Smaller focal length means larger field of view
- Alternative: Field of view (fov) (defines width of view frustum)
- Often used instead of screen window and focal length
- Only valid when screen window is centered around VPN (often the case)
- Vertical (or horizontal) angle plus aspect ratio (width/height)
- Or two angles (both angles may be half or full angles, beware!)
- Near and far clipping planes
- Given as distances from the PRP along VPN
- Near clipping plane avoids singularity at origin (division by zero)
- Far clipping plane restricts the depth for fixed-point representation in HW

Shearing Transformation

- Step 1: VPN may not go through center of window
- Possible oblique viewing configuration
- Shear
- Shear space such that window center is along Z-axis
- Window center CW (in 3D view coordinates)
- RenderMan: CW = ((right+left)/2, (top+bottom)/2, -focal) ${ }^{\top}$
- Shear matrix

$$
H=\left(\begin{array}{cccc}
1 & 0 & -\frac{C W_{x}}{C W_{z}} & 0 \\
0 & 1 & -\frac{C W_{y}}{C W_{z}} & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

View from top

Normalizing

- Step 2: Scaling to canonical viewing frustum
- Goal: Scale in X and Y such that screen window boundaries open at 45-degree angles (at focal plane)
- Scale in Z such that far clipping plane is at $Z=-1$

Perspective Transformation

- Step 3: Perspective transformation
- From canonical perspective viewing frustum (= cone at origin around -Z-axis, 45° opening) to regular box $\left[-1\right.$.. 1] ${ }^{2} \times[0$.. 1]
- Mapping of X and Y
- Lines through the origin are mapped to lines parallel to the Z-axis
- $x^{\prime}=x /-z$ and $y^{\prime}=y /-z$ (coordinate given by slope with respect to $-z!$)
- Do not change X and Y additively (first two rows stay the same)
- Set W to -z so we divide by it when converting back to 3D
- Determines last row
- Perspective transformation
$-P=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ A & B & C & D \\ 0 & 0 & -1 & 0\end{array}\right)$ Still unknown

- Note: Perspective projection = perspective transformation + parallel projection

Perspective Transformation

- Computation of the coefficients A, B, C, D
- No shear of Z with respect to X and Y
- $A=B=0$
- Mapping of two known points
- Computation of the two remaining parameters C and D
- $\mathrm{n}=$ near / far (due to previous scaling by $1 / f a r$)
- Following mapping must hold

$$
-(0,0,-1,1)^{T}=P(0,0,-1,1)^{T} \text { and }(0,0,0,1)^{T}=P(0,0,-n, 1)^{T}
$$

- Resulting Projective transformation
$-P=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{1-n} & \frac{n}{1-n} \\ 0 & 0 & -1 & 0\end{array}\right)$
- Transforms Z non-linearly (in 3D)

- $z^{\prime}=-\frac{z+n}{z(1-n)}$

Parallel Projection to 2D

- Parallel projection $P_{\text {parallel }}$ to [-1 .. 1] ${ }^{2}$
- Formally scaling in Z with factor 0
- Typically still maintains Z in $[0,1]$ for depth buffering
- As a vertex attribute (see OpenGL later)
- Normalizing Transform N
- From [-1 .. 1] ${ }^{2}$ to NDC ([0 .. 1] ${ }^{2)}$
- Scaling (by $1 / 2$ in X and Y) and translation (by (1/2,1/2))

$$
P_{\text {parallel }}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 \text { or } 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad N=\left(\begin{array}{cccc}
1 / 2 & 0 & 0 & 1 / 2 \\
0 & 1 / 2 & 0 & 1 / 2 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Viewport Transformation

- Normalized Device Coordinates (NDC)
- Intrinsic camera parameters transform to NDC
- $[0,1]^{2}$ for x, y across the screen window
- $[0,1]$ for z (depth)
- Mapping NDC to raster coordinates on the screen
- xres, yres : Size of window in pixels
- Should have same aspect ratios to avoid distortion

$$
- \text { camera }_{\text {ratio }}=\frac{\text { xres }}{\text { yres }} \frac{\text { pixelspacing }}{x} \text { pixelspacing },
$$

- Horizontal and vertical pixel spacing (distance between pixel centers)
- Today, typically the same but can be different e.g. for some video formats
- Position of window on the screen
- Offset of window from origin of screen
- posx and posy given in pixels
- Depends on where the origin is on the screen (top left, bottom left)
- "Scissor box" or "crop window" (region of interest)
- No change in mapping but limits which pixels are rendered

Viewport Transformation

- Scaling and translation in 2D
- Scaling matrix to map to entire window on screen
- $S_{\text {raster }}$ (xres,yres)
- No distortion if aspect ratios have been handled correctly earlier
- I.e. aspect ratio of window in world space == aspect ratio of raster window
- In some cases, one needs to reverse direction of y
- Some formats have screen origin at bottom left, some at top left
- Needs additional translation/scaling
- Positioning on the screen
- Translation $T_{\text {raster }}$ (xpos,ypos)
- May be different depending on raster coordinate system
- Origin at upper left or lower left

Orthographic Projection

- Step 2a: Translation (orthographic)
- Bring near clipping plane into the origin
- Step 2b: Scaling to regular box [-1 .. 1] ${ }^{2} \times[0$.. -1]
- Mapping of X and Y
$-P_{o}=S_{x y z} T_{\text {near }}=\left(\begin{array}{cccc}\frac{2}{\text { width }} & 0 & 0 & 0 \\ 0 & \frac{2}{\text { height }} & 0 & 0 \\ 0 & 0 & \frac{1}{\text { far-near }} & 0 \\ 0 & 0 & 0 & 1\end{array}\right)\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & \text { near } \\ 0 & 0 & 0 & 1\end{array}\right)$

Full Camera Transformation

- Complete transformation (combination of matrices)
- Perspective Projection
- $T_{\text {camera }}=T_{\text {raster }} S_{\text {raster }} N P_{\text {parallel }} P_{\text {persp }} S_{\text {far }} S_{x y} H R T$
- Orthographic Projection
- $T_{\text {camera }}=T_{\text {raster }} S_{\text {raster }} N P_{\text {parallel }} S_{x y z} T_{\text {near }} \cdot H R T$
- Other representations
- Other literature uses different conventions
- Different camera parameters as input
- Different canonical viewing frustum
- Different normalized coordinates
- $[-1 \text {.. 1] }]^{3}$ versus [0 ..1 $]^{3}$ versus ...
- ...
\rightarrow Results in different transformation matrices - so be careful !!!

Per-Vertex Transformations

- Traditional OpenGL pipeline
- Hierarchical modeling
- Modelview matrix stack
- Projection matrix stack
- Each stack can be
 independently pushed/popped
- Matrices can be applied/multiplied to top stack element
- Today
- Arbitrary matrices as attributes to vertex shaders that apply them as they wish (later)
- All matrix stack handling must now be done by application

OpenGL

- Modern OpenGL
- Transformation provided by app, applied by vertex shader
- Vertex or Geometry shader must output clip space vertices
- Clip space: Just before perspective divide (by w)
- Viewport transformation
- gIViewport(x, y, width, height)
- Now can even have multiple viewports
- glViewportIndexed(idx, x, y, width, height)
- Controlling the depth range (after Perspective transformation)
- glDepthRangelndexed(idx, near, far)

Discussion

- Pinhole camera model
- Linear in homogeneous coordinates
- A lot of things that we ignored
- Complex lenses distortion, aberrations
- Flare
- Depth-of-field
- Vignetting

