Computer Graphics

- Subdivision Surfaces -

Philipp Slusallek

Modeling

• How do we ...

- Represent 3D objects in a computer?
- Construct such representations quickly and/or automatically with a computer?
- Manipulate 3D objects with a computer?

• 3D Representations provide the foundations for

- Computer Graphics
- Computer-Aided Geometric Design
- Visualization
- Robotics, ...

Different methods for different object representations

3D Object Representations

Raw data

- Range image
- Point cloud
- Polygon soup

Surfaces

- Mesh
- Subdivision
- Parametric
- Implicit

- Solids
 - Voxels
 - BSP tree
 - CSG

Range Image

Range image

- Acquired from range scanner
 - E.g. laser range scanner, structured light, phase shift approach
- Structured point cloud
 - · Grid of depth values with calibrated camera
 - 2-1/2D: 2D plus depth

Point Cloud

• Unstructured set of 3D point samples

- Often constructed from many range images
- Or from direct image depth measurements
 - E.g., depth cameras (ToF/Time of Flight) or LIDAR sensors

Polygon Soup

Unstructured set of polygons

3D Object Representations

- Raw data
 - Point cloud
 - Range image
 - Polygon soup

Surfaces

- Mesh
- Subdivision
- Parametric
- Implicit

- Solids
 - Voxels
 - BSP tree
 - CSG

Mesh

- Connected set of polygons (usually triangles)
 - Often arranged in some higher-level structures (strips, fans, meshes, ...)

Parametric Surface

- Tensor product spline patches
 - Careful constraints to maintain continuity

Implicit Surface

• Points satisfying: F(x,y,z) = 0

Polygonal Model

Implicit Model

Subdivision Surface

Coarse mesh & subdivision rule

- Define smooth surface as limit of sequence of refinements

3D Object Representations

- Raw data
 - Point cloud
 - Range image
 - Polygon soup
- Surfaces
 - Mesh
 - Subdivision
 - Parametric
 - Implicit

- Solids
 - Voxels
 - BSP tree
 - CSG

Voxels

Uniform grid of volumetric samples

- Acquired from CAT, MRI, etc.

Stanford Graphics Laboratory

BSP Tree

- Binary space partition with solid cells labeled
 - Constructed from polygonal representations

Binary Tree

Hierarchy of boolean set operations (union, difference, intersect)
applied to simple shapes

H&B Figure 9.9

Motivation

- Splines
 - Traditionally spline patches (NURBS) have been used in production for character animation.

Difficult to stitch together

- Maintaining continuity is hard
- Difficult to model objects with complex topology

Subdivision in Character Animation

Tony Derose, Michael Kass, Tien Troung (SIGGRAPH '98)

(Geri's Game, Pixar 1998)

Motivation

- Splines (Bézier, NURBS, ...)
 - Easy and commonly used in CAD systems
 - Most surfaces are not made of quadrilateral patches
 - Need to trim surface: Cut off parts
 - Trimming NURBS is expensive and often has numerical errors
 - Difficult to stich together separate surfaces
 - Hard to hide seams

Why Subdivision Surfaces?

- Subdivision methods have a series of interesting properties:
 - Applicable to meshes of arbitrary topology (non-manifold meshes).
 - No trimming needed
 - Scalability, level-of-detail
 - Numerical stability
 - Fairly simple implementation
 - Compact support
 - Affine invariance
 - Automatic continuity (possibly with some isolated singular points)
 - Still somewhat less well supported by CAD tools

Types of Subdivision

Interpolating Schemes

- Limit Surfaces/Curve will pass through original set of data points.

Approximating Schemes

 Limit Surface will not necessarily pass through the original set of data points.

Example: Geri's Game

- Subdivision surfaces are used for:
 - Geri's hands and head
 - Clothes: Jacket, Pants, Shirt
 - Tie and Shoes

(Geri's Game, Pixar 1998)

Subdivision

- Construct a surface from an arbitrary polyhedron
 - Subdivide each face of the polyhedron and recurse
- The limit will be a smooth surface
 - Given the right subdivision rules are used

Subdivision Curves and Surfaces

Subdivision curves

- The basic concepts of subdivision.

Subdivision surfaces

- Important known methods.
- Discussion: subdivision vs. parametric surfaces .

Based on slides Courtesy of Adi Levin, Tel-Aviv U.

Curves: Corner Cutting

[George Chaikin, 1974]

[Dyn, Levin, Gregory, 1987]

Subdivision Curves

Basic Concepts of Subdivision

Definition

 A subdivision curve is generated by repeatedly applying a subdivision operator to a given polygon (called the control polygon)

The central theoretical questions

- Convergence:

Given a subdivision operator and a control polygon, does the subdivision process converge?

– Smoothness:

Does the subdivision process converge to a smooth curve? How smooth is it?

Surfaces Subdivision Schemes

• A control net consists of vertices, edges, and face

Refinement

 In each iteration, the subdivision operator refines the control net, increasing the number of vertices (approximately) by a factor of 4

Limit Surface

- In the limit the vertices of the control net converge to a limit surface

Topology and Geometry

 Every subdivision method has a method to generate the topology of the refined net, and rules to calculate the location of the new vertices

• A control net consists of vertices, edges, and face

SRefifiencents Subdivision operator refines the control net,

increasing the number of vertices (approximately) by a factor of 4

Limit Surface

- In the limit the vertices of the control net converge to a limit surface

Topology and Geometry

 Every subdivision method has a method to generate the topology of the refined net, and rules to calculate the location of the new vertices

Subdivision Schemes

- There are different subdivision schemes/rules
 Different methods for refining topology
- Different rules for positioning vertices
 - Interpolating versus approximating

Face split for triangles

Figure 4.1: Different refinement rules.

Triangular Subdivision

• For control nets whose faces are triangular

- Every face is replaced by 4 new triangular faces.
- The are two kinds of new vertices
 - Green vertices are associated with old edges
 - Red vertices are associated with old vertices

Loop Subdivision Scheme

- Works on triangular meshes
- Is an Approximating Scheme
- Guaranteed to be smooth everywhere except at extraordinary vertices.

Loop's Scheme

Location of New Vertices

 Every new vertex is a weighted average of the old vertices. The list of weights is called the subdivision mask or the *stencil*

Loop Subdivision Boundaries

Subdivision Mask for Boundary Conditions

The Original Control Net

After 1st Iteration

After 2nd Iteration

After 3rd Iteration

The Limit Surface

The limit surfaces of Loop's subdivision have continuous curvature almost everywhere

The (Modified) Butterfly Scheme

(Modified) Butterfly Scheme

- This is an interpolatory scheme
- The new red vertices inherit the location of the old vertices
- The new green vertices are calculated by the following stencil

Figure 4.5: Modified Butterfly subdivision. The coefficients s_i are $\frac{1}{k} \left(\frac{1}{4} + \cos \frac{2i\pi}{k} + \frac{1}{2} \cos \frac{4i\pi}{k} \right)$ for k > 5. For k = 3, $s_0 = \frac{5}{12}$, $s_{1,2} = -\frac{1}{12}$; for k = 4, $s_0 = \frac{3}{8}$, $s_2 = -\frac{1}{8}$, $s_{1,3} = 0$.

The Original Control Net

After 1st Iteration

After 2nd Iteration

After 3rd Iteration

The Limit Surface

The limit surfaces of the Butterfly subdivision are smooth but are nowhere twice differentiable.

Quadrilateral Subdivision

- Works for control nets of arbitrary topology
 - After one iteration, all the faces are quadrilateral.

Every face is replaced by quadrilateral faces. The are three kinds of new vertices:

- Yellow vertices are associated with old faces
- Green vertices are associated with old edges
- Red vertices are associated with old vertices.

Catmull Clark's Scheme

The Original Control Net

After 1st Iteration

After 2nd Iteration

After 3rd Iteration

The Limit Surface

The limit surfaces of Catmull-Clarks's subdivision have continuous curvature almost everywhere

Edges and Creases

- Most surface are not smooth everywhere
 - Edges & creases
 - Can be marked in model
 - Weighting is changed to preserve edge or crease

Generalization to semi-sharp creases (Pixar)

- Controllable sharpness
- Sharpness (s) = 0, smooth
- Sharpness (s) = inf, sharp
- Achievable through hybrid subdivision step
 - Subdivision iff s==0
 - Otherwise, parameter is decremented

Edges and Creases

Increasing sharpness of edges

Edges and Creases

• Can be changed on a edge by edge basis

Adaptive Subdivision

- Not all regions of a model need to be subdivided.
- Idea: Use some criteria and adaptively subdivide mesh where needed.
 - Curvature
 - Screen size
 - Make triangles < size of pixel
 - View dependence
 - Distance from viewer
 - Silhouettes
 - In view frustum
 - Careful!
 - Must avoid "cracks"

Texture mapping

- Solid color painting is easy, already defined
- Texturing is not so easy
 - Using polygonal methods can result in distortion
- Solution
 - Assign texture coordinates to each original vertex
 - Subdivide them just like geometric coordinates
- Introduces a smooth scalar field
 - Used for texturing in Geri's jacket, ears, nostrils

Advanced Topics

Hierarchical Modeling

- Store offsets to vertices at different levels
- Offsets performed in normal direction
- Can change shape at different resolutions while rest stays the same

Surface Smoothing

- Can perform filtering operations on meshes
 - E.g. (weighted) averaging of neighbors

Level-of-Detail

- Can easily adjust maximum depth for rendering