Computer Graphics

- Subdivision Surfaces -

Philipp Slusallek
Modeling

• How do we ...
 – Represent 3D objects in a computer?
 – Construct such representations quickly and/or automatically with a computer?
 – Manipulate 3D objects with a computer?

• 3D Representations provide the foundations for
 – Computer Graphics
 – Computer-Aided Geometric Design
 – Visualization
 – Robotics, …

• Different methods for different object representations
3D Object Representations

• **Raw data**
 – Range image
 – Point cloud
 – Polygon soup

• **Surfaces**
 – Mesh
 – Subdivision
 – Parametric
 – Implicit

• **Solids**
 – Voxels
 – BSP tree
 – CSG
Range Image

- **Range image**
 - Acquired from range scanner
 - E.g. laser range scanner, structured light, phase shift approach
 - Structured point cloud
 - Grid of depth values with calibrated camera
 - 2-1/2D: 2D plus depth
Point Cloud

• **Unstructured set of 3D point samples**
 – Often constructed from many range images
 – Or from direct image depth measurements
 – E.g., depth cameras (ToF/Time of Flight) or LIDAR sensors
Polygon Soup

- Unstructured set of polygons
3D Object Representations

• **Raw data**
 – Point cloud
 – Range image
 – Polygon soup

• **Surfaces**
 – Mesh
 – Subdivision
 – Parametric
 – Implicit

• **Solids**
 – Voxels
 – BSP tree
 – CSG
Mesh

- Connected set of polygons (usually triangles)
 - Often arranged in some higher-level structures (strips, fans, meshes, …)
Parametric Surface

- **Tensor product spline patches**
 - Careful constraints to maintain continuity

FvDFH Figure 11.44
Implicit Surface

- Points satisfying: $F(x,y,z) = 0$
Subdivision Surface

- Coarse mesh & subdivision rule
 - Define smooth surface as limit of sequence of refinements
3D Object Representations

- **Raw data**
 - Point cloud
 - Range image
 - Polygon soup

- **Surfaces**
 - Mesh
 - Subdivision
 - Parametric
 - Implicit

- **Solids**
 - Voxels
 - BSP tree
 - CSG
Voxels

- Uniform grid of volumetric samples
 - Acquired from CAT, MRI, etc.
BSP Tree

- Binary space partition with solid cells labeled
 - Constructed from polygonal representations
CSG

- Hierarchy of boolean set operations (union, difference, intersect) applied to simple shapes
Motivation

• **Splines**
 – Traditionally spline patches (NURBS) have been used in production for character animation.

• **Difficult to stitch together**
 – Maintaining continuity is hard

• **Difficult to model objects with complex topology**

Subdivision in Character Animation
Tony Derose, Michael Kass, Tien Troung
(SIGGRAPH ’98)

(Geri’s Game, Pixar 1998)
Motivation

- **Splines (Bézier, NURBS, …)**
 - Easy and commonly used in CAD systems
 - Most surfaces are not made of quadrilateral patches
 - Need to trim surface: Cut off parts
 - Trimming NURBS is expensive and often has numerical errors
 - Difficult to stitch together separate surfaces
 - Hard to hide seams
Why Subdivision Surfaces?

- Subdivision methods have a series of interesting properties:
 - Applicable to meshes of arbitrary topology (non-manifold meshes).
 - No trimming needed
 - Scalability, level-of-detail
 - Numerical stability
 - Fairly simple implementation
 - Compact support
 - Affine invariance
 - Automatic continuity (possibly with some isolated singular points)
 - Still somewhat less well supported by CAD tools
Types of Subdivision

• **Interpolating Schemes**
 – Limit Surfaces/Curve will pass through original set of data points.

• **Approximating Schemes**
 – Limit Surface will not necessarily pass through the original set of data points.
Example: Geri’s Game

• Subdivision surfaces are used for:
 – Geri’s hands and head
 – Clothes: Jacket, Pants, Shirt
 – Tie and Shoes

(Geri’s Game, Pixar 1998)
Subdivision

- **Construct a surface from an arbitrary polyhedron**
 - Subdivide each face of the polyhedron – and recurse
- **The limit will be a smooth surface**
 - Given the right subdivision rules are used
Subdivision Curves and Surfaces

• **Subdivision curves**
 – The basic concepts of subdivision.

• **Subdivision surfaces**
 – Important known methods.
 – Discussion: subdivision vs. parametric surfaces.

Based on slides Courtesy of Adi Levin, Tel-Aviv U.
Curves: Corner Cutting

[George Chaikin, 1974]
Corner Cutting

- A control point
- The limit curve
- The control polygon
The 4-Point Scheme

[Dyn, Levin, Gregory, 1987]
The 4-Point Scheme

A control point

The control polygon

The limit curve
Subdivision Curves

Non interpolatory subdivision schemes
- Corner Cutting

Interpolatory subdivision schemes
- The 4-point scheme
Basic Concepts of Subdivision

• Definition
 – A subdivision curve is generated by repeatedly applying a subdivision operator to a given polygon (called the control polygon)

• The central theoretical questions
 – Convergence:
 Given a subdivision operator and a control polygon, does the subdivision process converge?
 – Smoothness:
 Does the subdivision process converge to a smooth curve? How smooth is it?
Surfaces Subdivision Schemes

• A control net consists of vertices, edges, and face

• Refinement
 – In each iteration, the subdivision operator refines the control net, increasing the number of vertices (approximately) by a factor of 4

• Limit Surface
 – In the limit the vertices of the control net converge to a limit surface

• Topology and Geometry
 – Every subdivision method has a method to generate the topology of the refined net, and rules to calculate the location of the new vertices
Surfaces Subdivision Schemes

• A control net consists of vertices, edges, and faces.

 Refinement
 – In each iteration, the subdivision operator refines the control net, increasing the number of vertices (approximately) by a factor of 4.

• Limit Surface
 – In the limit the vertices of the control net converge to a limit surface.

• Topology and Geometry
 – Every subdivision method has a method to generate the topology of the refined net, and rules to calculate the location of the new vertices.
Subdivision Schemes

- There are different subdivision schemes/rules
 - Different methods for refining topology
- **Different rules for positioning vertices**
 - Interpolating versus approximating

![Diagram](image)

Figure 4.1: Different refinement rules.
Triangular Subdivision

- For control nets whose faces are triangular

Every face is replaced by 4 new triangular faces.

The are two kinds of new vertices
- Green vertices are associated with old edges
- Red vertices are associated with old vertices
Loop Subdivision Scheme

- Works on triangular meshes
- Is an Approximating Scheme
- Guaranteed to be smooth everywhere except at extraordianry vertices.
Loop’s Scheme

• Location of New Vertices
 – Every new vertex is a weighted average of the old vertices. The list of weights is called the subdivision mask or the *stencil*.

A rule for new **red** vertices

\[
\alpha_n = \frac{1}{64} \left(40 - \left(3 + 2 \cos \left(\frac{2\pi}{n} \right) \right)^2 \right)
\]

A rule for new **green** vertices

\[
\alpha_n = \begin{cases}
 \frac{3}{8} & n > 3 \\
 \frac{3}{16} & n = 3
\end{cases}
\]

\alpha_n / *n* - the vertex valence
Loop Subdivision Boundaries

- Subdivision Mask for Boundary Conditions

Edge Rule

Vertex Rule
The Original Control Net
After 1st Iteration
After 2nd Iteration
After 3rd Iteration
The limit surfaces of Loop’s subdivision have continuous curvature almost everywhere.
The (Modified) Butterfly Scheme

- **(Modified) Butterfly Scheme**
 - This is an interpolatory scheme
 - The new red vertices inherit the location of the old vertices
 - The new green vertices are calculated by the following stencil

Figure 4.5: Modified Butterfly subdivision. The coefficients s_i are $\frac{1}{k} \left(\frac{1}{4} + \cos \frac{2\pi}{k} + \frac{1}{2} \cos \frac{4\pi}{k} \right)$ for $k > 5$. For $k = 3$, $s_0 = \frac{5}{12}$, $s_{1,2} = -\frac{1}{12}$; for $k = 4$, $s_0 = \frac{3}{8}$, $s_2 = -\frac{1}{8}$, $s_{1,3} = 0$.
The Original Control Net
After 1st Iteration
After 2nd Iteration
After 3rd Iteration
The Limit Surface

The limit surfaces of the Butterfly subdivision are smooth but are nowhere twice differentiable.
Quadrilateral Subdivision

- Works for control nets of arbitrary topology
 - After one iteration, all the faces are quadrilateral.

Every face is replaced by quadrilateral faces.
The are three kinds of new vertices:

- **Yellow** vertices are associated with old faces
- **Green** vertices are associated with old edges
- **Red** vertices are associated with old vertices.
Catmull Clark’s Scheme

Step 1
First, all the yellow vertices are calculated

Step 2
Then the green vertices are calculated using the values of the yellow vertices

Step 3
Finally, the red vertices are calculated using the values of the yellow vertices

\[w_n = n(n - 2) \]

- the vertex valence
The Original Control Net
After 1st Iteration
After 2nd Iteration
After 3rd Iteration
The limit surfaces of Catmull-Clarks’s subdivision have continuous curvature almost everywhere.
Edges and Creases

• Most surface are not smooth everywhere
 – Edges & creases
 – Can be marked in model
 • Weighting is changed to preserve edge or crease

• Generalization to semi-sharp creases (Pixar)
 – Controllable sharpness
 – Sharpness \(s = 0 \), smooth
 – Sharpness \(s = \infty \), sharp
 – Achievable through hybrid subdivision step
 • Subdivision iff \(s = 0 \)
 • Otherwise, parameter is decremented
Edges and Creases

- Increasing sharpness of edges
Edges and Creases

- Can be changed on an edge by edge basis
Adaptive Subdivision

- Not all regions of a model need to be subdivided.
- Idea: Use some criteria and adaptively subdivide mesh where needed.
 - Curvature
 - Screen size
 - Make triangles < size of pixel
 - View dependence
 - Distance from viewer
 - Silhouettes
 - In view frustum
 - Careful!
 - Must avoid “cracks”
Texture mapping

- **Solid color painting is easy, already defined**
- **Texturing is not so easy**
 - Using polygonal methods can result in distortion
- **Solution**
 - Assign texture coordinates to each original vertex
 - Subdivide them just like geometric coordinates
- **Introduces a smooth scalar field**
 - Used for texturing in Geri’s jacket, ears, nostrils
Advanced Topics

- **Hierarchical Modeling**
 - Store offsets to vertices at different levels
 - Offsets performed in normal direction
 - Can change shape at different resolutions while rest stays the same

- **Surface Smoothing**
 - Can perform filtering operations on meshes
 - E.g. (weighted) averaging of neighbors

- **Level-of-Detail**
 - Can easily adjust maximum depth for rendering