Computer Graphics

- Splines -

Philipp Slusallek

Curves

- Curve descriptions
- Explicit functions
- $y(x)= \pm \operatorname{sqrt}\left(r^{2}-x^{2}\right), \quad$ restricted domain $(x \in[-1,1])$
- Implicit functions
- $x^{2}+y^{2}=r^{2} \quad$ unknown solution set
- Parametric functions
- $x(t)=r \cos (t), y(t)=r \sin (t), t \in[0,2 \pi]$
- Flexibility and ease of use
- Typically, use of polynomials
- Avoids complicated functions (e.g., pow, exp, sin, sqrt)
- Usually, low degree polynomial

Parametric curves

- Separate function in each coordinate
- Parameterized over an additional variable t (think: time)
- Describes movement over time of a particle along the curve
- But we are mostly interested in the resulting geometry
- In 3D: $f(t)=(x(t), y(t), z(t))$

Monomials

- Monomial basis
- Simple basis: 1, $\mathrm{t}, \mathrm{t}^{2}, \ldots$ (t usually in [0 .. 1])
- Polynomial representation

$$
\underline{P}(t)=(\underline{x}(t) \quad \underline{y}(t) \quad \underline{Z}(t))=\sum_{i=0}^{n} \xrightarrow{n} t^{i} \underline{A}_{i} \longrightarrow \text { Coefficients } \in \mathbf{R}^{3} \text { Monomials }
$$

- Coefficients can be determined from a sufficient number of constraints (e.g., interpolation of given points)
- Given ($n+1$) parameter values t_{i} and points P_{i}
- Solution of a linear system in the A_{i} - possible, but inconvenient
- Matrix representation

$$
\begin{aligned}
& P(t)=(x(t) \quad y(t) \quad z(t))=T(t) A \\
& =\left[\begin{array}{llll}
t^{n} & t^{n-1} & \cdots & 1
\end{array}\right]\left[\begin{array}{ccc}
A_{x, n} & A_{y, n} & A_{z, n} \\
A_{x, n-1} & A_{y, n-1} & A_{z, n-1} \\
& \vdots & \\
A_{x, 0} & A_{y, 0} & A_{z, 0}
\end{array}\right]
\end{aligned}
$$

Derivatives

- Derivative $=$ tangent vector
- Polynomial of degree ($\mathrm{n}-1$)
- Analogously, for higher order derivatives
- Continuity and smoothness between tw parametric curves
- $\mathrm{C}^{0}=\mathrm{G}^{0}=$ same point
- Parametric continuity C^{1}
- Tangent vectors are identical \rightarrow (a)
- Geometric continuity G^{1}
- Same direction of tangent vectors only \rightarrow (b)
- Similar for higher order derivatives

More on Continuity

- Geometric Continuity:
- G0: curves are joined together at that point
- G1: first derivatives are proportional at joint point
- Same direction but not necessarily same length
- G2: first and second derivatives are proportional to each other
- Parametric Continuity:
- C0: curves are joined
- C1: first derivative equal
- C2: first and second derivatives are equal.
- If t is the time, this implies the acceleration is continuous.
-Cn : all derivatives up to and including the $\mathrm{n}^{\text {th }}$ are equal.

Linear Interpolation

- Hat Functions and Linear Splines (CO/G0 continuity)

Can easily be generalized for arbitrary vector of parameters t_{i} to be interpolated with arbitrary control points $y_{i} \in \mathbb{R}^{n}$

Lagrange Interpolation

- Interpolating basis functions
- Lagrange polynomials for a set of parameter values $T=\left\{t_{0}, \ldots, t_{n}\right\}$

$$
\mathrm{L}_{\mathrm{i}}^{\mathrm{n}}(\mathrm{t})=\prod_{\substack{j=0 \\
i \neq j}}^{n} \frac{t-t_{j}}{t_{i}-t_{j}}, \quad \text { with } \quad L_{i}^{n}\left(t_{j}\right)=\delta_{i j}=\left\{\begin{array}{cc}
1 & i=j \\
0 & \text { otherwise }
\end{array}\right.
$$

- Properties
- Good for interpolation at given parameter values
- At each t_{i} : One basis function $=1$, all others $=0$
- Polynomial of degree n (n factors linear in t)
- Infinitely continuous derivatives everywhere
- Lagrange Curves
- Use with control points to be interpolated as coefficients

$$
\underline{P}(t)=\sum_{i=0}^{n} L_{i}^{n}(t) \underline{P}_{i}
$$

Lagrange Interpolation

- Simple Linear Interpolation

$$
\begin{array}{r}
-\mathrm{T}=\left\{\mathrm{t}_{0}, \mathrm{t}_{1}\right\} \\
L_{0}^{1}(t)=\frac{t-t_{1}}{t_{0}-t_{1}} \\
L_{1}^{1}(t)=\frac{t-t_{0}}{t_{1}-t_{0}}
\end{array}
$$

- Simple Quadratic Interpolation

$$
-\mathrm{T}=\left\{\mathrm{t}_{0}, \mathrm{t}_{1}, \mathrm{t}_{2}\right\}
$$

$$
L_{0}^{2}(t)=\frac{t-t_{1}}{t_{0}-t_{1}} \frac{t-t_{2}}{t_{0}-t_{2}}
$$

Problems

- Problems with a single polynomial
- Degree depends on the number of interpolation constraints
- Strong overshooting for high degree ($\mathrm{n}>7$)
- Problems with smooth joints
- Numerically unstable
- No local changes

Splines

- Functions for interpolation \& approximation
- Standard curve and surface primitives in 3D modeling \& fonts
- Key frame and in-betweens in animations
- Filtering and reconstruction of images
- Historically
- Name for a tool in ship building

- Flexible metal/wooden strip that minimizes bending energy
- Within computer graphics:
- Piecewise polynomial function (e.g., cubic)
- Decouples continuity, degree, and \#control points

Hermite Interpolation

- Hermite Basis (cubic)
- Interpolation of position P and tangent P information for $t=\{0,1\}$
- Very easy to piece together with G1/C1 continuity

- Basis functions

$$
\begin{gathered}
H_{0}^{3}(t)=(1-t)^{2}(1+2 t) \\
H_{1}^{3}(t)=t(1-t)^{2} \\
H_{2}^{3}(t)=-t^{2}(1-t) \\
H_{3}^{3}(t)=(3-2 t) t^{2}
\end{gathered}
$$

Hermite Interpolation

- Properties of Hermite Basis Functions
- $H_{0}\left(H_{3}\right)$ interpolates smoothly from 1 to 0 (0 to 1)
- H_{0} and H_{3} have zero derivative at $t=0$ and $t=1$
- No contribution to derivative (only via H_{1} and H_{2})
- H_{1} and H_{2} are zero at $t=0$ and $t=1$
- No contribution to position (only via H_{0} and H_{3})
- $H_{1}\left(H_{2}\right)$ has slope 1 at $t=0(t=1)$
- Unit factor for specified derivative vector
- Hermite polynomials

- P_{0}, P_{1} are positions $\in \mathbb{R}^{3}$
- $P_{0}^{\prime}, P_{1}^{\prime}$ are derivatives (tangent vectors) $\in \mathbb{R}^{3}$

$$
\underline{P}(t)=P_{0} H_{0}^{3}(t)+P_{0}^{\prime} H_{1}^{3}(t)+P_{1}^{\prime} H_{2}^{3}(t)+P_{1} H_{3}^{3}(t)
$$

Examples: Hermite Interpolation

Matrix Representation

- Matrix representation

Matrix Representation

- For cubic Hermite interpolation we obtain:

$$
\begin{aligned}
& P_{0}^{T}=\left(\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right) M_{H} G_{H} \\
& P_{1}^{T} \\
& P_{0}^{T}=\left(\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right) M_{H} G_{H} \\
& P_{1}^{T}
\end{aligned} 0_{1}=\left(\begin{array}{llll}
3 & 2 & 1 & 0) M_{H} G_{H}
\end{array} \quad \text { or } M_{H} G_{H} \quad \quad G_{H}=\left(\begin{array}{c}
P_{0}^{T} \\
P_{1}^{T} \\
P_{0}^{\prime T} \\
P_{1}^{\prime T}
\end{array}\right)=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
3 & 2 & 1 & 0
\end{array}\right) M_{H} G_{H}\right.
$$

- Solution:
- Two matrices must multiply to unit matrix

$$
M_{H}=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
3 & 2 & 1 & 0
\end{array}\right)^{-1}=\left(\begin{array}{cccc}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

Bézier

- Bézier Basis [deCasteljau 59, Bézier 62]
- Different curve representation
- Start and end point
- 2 point that are approximated by the curve (cubics)
$-P_{0}^{\prime}=3\left(b_{1}-b_{0}\right)$ and $P_{1}^{\prime}=3\left(b_{3}-b_{2}\right)$
- Factor 3 due to derivative of t^{3}

$$
G_{H}=\left[\begin{array}{c}
P_{0^{T}} \\
P_{1}{ }_{1} \\
P_{0^{T}} \\
P_{1^{T}}{ }^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
-3 & 3 & 0 & 0 \\
0 & 0 & -3 & 3
\end{array}\right]\left[\begin{array}{c}
b_{0}^{T} \\
b_{1}^{T} \\
b_{2}^{T} \\
b_{3}^{T}
\end{array}\right]=M_{H B} G_{B}
$$

Basis Transformation

- Transformation
$-P(t)=T M_{H} G_{H}=T M_{H}\left(M_{H B} G_{B}\right)=T\left(M_{H} M_{H B}\right) G_{B}=T M_{B} G_{B}$

$$
\begin{gathered}
M_{B}=M_{H} M_{H B}=\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] \\
P(t)=\sum B_{i}^{3}(t) b_{i}= \\
(1-\mathrm{t})^{3} b_{0}+3 t(1-\mathrm{t})^{2} \mathrm{~b}_{1}+3 t^{2}(1-\mathrm{t}) b_{2}+t^{3} b_{3}
\end{gathered}
$$

- Bézier Curves \& Basis Functions

$$
P(t)=\sum B_{i}^{n}(t) b_{i}
$$

with basis functions $B_{i}^{n}(t)=\binom{n}{i} t^{i}(1-t)^{n-i}$

BernsteinPolynomials

Properties: Bézier Curves

- Advantages:
- End point interpolation
- Tangents explicitly specified
- Smooth joints are simple
- P_{3}, P_{4}, P_{5} collinear $\rightarrow \mathrm{G}^{1}$ continuous
- Geometric meaning of control points
- Affine invariance
$-\forall t: \sum_{i} B_{i}(t)=1$
- Convex hull property
- For $0<t<1: B_{i}(t) \geq 0$
- Symmetry: $B_{i}(t)=B_{n-i}(1-t)$

- Disadvantages
- Smooth joints need to be maintained explicitly
- Automatic in B-Splines (and NURBS), not covered here

DeCasteljau Algorithm

- Direct evaluation of the basis functions
- Simple but expensive
- Use recursion
- Recursive definition of the basis functions

$$
B_{i}^{n}(t)=\mathrm{tB}_{i-1}^{n-1}(t)+(1-t) B_{i}^{n-1}(t)
$$

- Inserting this once yields:

$$
P(t)=\sum_{i=0}^{n} b_{i}^{0} B_{i}^{n}(t)=\sum_{i=0}^{n-1} b_{i}^{1}(t) B_{i}^{n-1}(t)
$$

- with the new Bézier points also given by a recursion:

$$
b_{i}^{k}(t)=\operatorname{tb}_{i+1}^{k-1}(t)+(1-t) b_{i}^{k-1}(t) \text { and } b_{i}^{0}(t)=b_{i}
$$

DeCasteljau Algorithm

- DeCasteljau-Algorithm:
- Recursive degree reduction of the Bezier curve by using the recursion formula for the Bernstein polynomials

$$
\begin{aligned}
& P(t)=\sum_{i=0}^{n} b_{i}^{0} B_{i}^{n}(t)=\sum_{i=0}^{n-1} b_{i}^{1}(t) B_{i}^{n-1}(t)=\cdots=b_{i}^{n}(t) \cdot 1 \\
& b_{i}^{k}(t)=\mathrm{tb}_{i+1}^{k-1}(t)+(1-t) b_{i}^{k-1}(t)
\end{aligned}
$$

- Example:

DeCasteljau Algorithm

- Subdivision using the deCasteljau-Algorithm
- Take boundaries of the deCasteljau triangle as new control points for left/right portion of the curve split at t
- Extrapolation
- Backwards subdivision
- Reconstruct full triangle from just one side

Catmull-Rom-Splines

- Goal
- Smooth (C^{1})-joints between (cubic) spline segments
- Algorithm
- Tangent at P_{i} given by vector from neighboring points P_{i-1} to P_{i+1}
- Can easily construct (cubic) Hermite spline between control points
- Advantage
- Arbitrary number of control points
- Interpolation without overshooting
- Local control

Matrix Representation

- Catmull-Rom-Spline
- Piecewise polynomial curve
- Four control points per segment
- For n control points we obtain ($\mathrm{n}-3$) polynomial segments

$$
\underline{P}^{i}(t)=T M_{C R} G_{C R}=T \frac{1}{2}\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
2 & -5 & 4 & 1 \\
-1 & 0 & 1 & 0 \\
0 & 2 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\underline{P}_{i}^{T} \\
\frac{P_{i+1}^{T}}{\underline{P}_{i+2}^{T}} \\
\underline{P}_{i+3}^{T} \\
\underline{P_{i+3}}
\end{array}\right]
$$

- Application
- Smooth interpolation of a given sequence of points
- Key frame animation, camera movement, etc.
- Only G ${ }^{1}$-continuity
- Control points should be roughly equidistant in time

Choice of Parameterization

- Problem
- Often only the control points are given
- How to obtain a suitable parameterization with t_{i} ?
- Example: Chord-Length Parameterization

$$
\begin{gathered}
t_{0}=0 \\
t_{i}=\sum_{j=1}^{i} \operatorname{dist}\left(P_{i}-P_{i-1}\right)
\end{gathered}
$$

- Arbitrary up to a constant factor
- Warning
- Distances are not affine invariant!
- Shape of curves changes under transformations !!

Parameterization

- Chord-Length versus uniform Parameterization
- Analog: Think $\mathrm{P}(\mathrm{t})$ as a moving object with mass that may overshoot

Spline Surfaces

Parametric Surfaces

- Same Idea as with Curves
$-\mathrm{P}: R^{2} \rightarrow R^{3}$
- $\underline{P}(u, v)=(x(u, v), y(u, v), z(u, v))^{\top} \in R^{3}\left(\right.$ also $\left.P\left(R^{4}\right)\right)$
- Different Approaches
- Triangular Splines
- Single polynomial in (u,v) via barycentric coordinates with respect to a reference triangle (e.g., B-Patches)
- Tensor Product Surfaces
- Separation into polynomials in u and in v
- Subdivision Surfaces
- Start with a triangular mesh in R^{3}
- Subdivide mesh by inserting new vertices
- Depending on local neighborhood
- Only piecewise parameterization (in each triangle)

Tensor Product Surfaces

- Idea
- Create a "curve of curves"
- Simplest case: Bilinear Patch
- Two lines in space

$$
\begin{aligned}
& \frac{P^{1}}{P^{2}}(v)=(1-v) \underline{P}_{00}+v \underline{P}_{10} \\
& \underline{P}^{2}(1-v) \underline{P}_{01}+v \underline{P}_{11}
\end{aligned}
$$

- Connected by lines

$$
\begin{gathered}
\underline{P}(u, v)=(1-u) \underline{P}^{1}(v)+u \underline{P}^{2}(v)= \\
(1-u)\left((1-v) \underline{P}_{00}+v \underline{P}_{10}\right)+u\left((1-v) \underline{P}_{01}+v \underline{P}_{11}\right)
\end{gathered}
$$

- Bézier representation (symmetric in u and v)

$$
\underline{P}(u, v)=\sum_{i, j=0}^{1} B_{i}^{1}(u) B_{j}^{1}(v) \underline{P}_{i j}
$$

- Control mesh given by P_{ij}

Tensor Product Surfaces

- General Case
- Arbitrary basis functions in u and v
- Tensor Product of the function space in u and v
- Commonly same basis functions and same degree in u and v

$$
\underline{P}(u, v)=\sum_{i=0}^{m} \sum_{j=0}^{n} B_{i}^{m}(u) B_{j}^{n}(v) \underline{P}_{i j}
$$

- Interpretation
- Curve defined by curves

$$
\underline{P}(u, v)=\sum_{i=0}^{m} B_{i}^{\prime}(u) \underbrace{\sum_{j=0}^{n} B_{j}(v) \underline{P}_{i j}}_{P_{i}^{\prime}(v)}
$$

- Symmetric in u and v

Matrix Representation

- Similar to Curves
- Geometry now in a „tensor" ($\mathrm{m} \times \mathrm{n} \times 3$)

$$
\begin{gathered}
\underline{P}(u, v)=U G_{\text {monom }} V^{T}=\left(\begin{array}{llll}
u^{m} & \cdots & u & 1
\end{array}\right)\left(\begin{array}{ccc}
G_{n n} & \cdots & G_{n 0} \\
\vdots & \ddots & \vdots \\
G_{0 n} & \cdots & G_{00}
\end{array}\right)\left(\begin{array}{c}
v^{n} \\
\vdots \\
v \\
1
\end{array}\right)= \\
U B_{U} G_{U V} B_{V}^{T} V^{T}
\end{gathered}
$$

- Degree
- u:

m

- V :
n
- Along the diagonal $(u=v)$: $\quad m+n$
- Not nice \rightarrow „Triangular Splines"

Tensor Product Surfaces

- Properties Derived Directly From Curves
- Bézier Surface:
- Surface interpolates corner vertices of mesh
- Vertices at edges of mesh define boundary curves
- Convex hull property holds
- Simple computation of derivatives
- Direct neighbors of corners vertices define tangent plane
- Similar for Other Basis Functions

Tensor Product Surfaces

- Modifying a Bézier Surface

Tensor Product Surfaces

- Representing the Utah Teapot as a set continuous Bézier patches
- http://www.holmes3d.net/graphics/teapot/

(a)

(b)

Operations on Surfaces

- deCausteljau/deBoor Algorithm
- Once for u in each column
- Once for v in the resulting row
- Due to symmetry also in other order
- Similarly, we can derive the related algorithms
- Subdivision
- Extrapolation
- Display
- ...

Ray Tracing of Spline Surfaces

- Several approaches

- Tessellate into many triangles (using deCasteljau or deBoor)
- Often the fasted method
- May need enormous amounts of memory
- Recursive subdivision
- Simply subdivide patch recursively
- Delete parts that do not intersect ray (Pruning)

- Fixed depth ensures crack-free surface
- May cache intermediate results for next rays
- Direct Intersection of Spline, e.g., Bézier Clipping [Sederberg et al.]
- Find two orthogonal planes that intersect in the ray
- Project the surface control points into these planes
- Intersection must have distance zero
\rightarrow Root finding
\rightarrow Can eliminate parts of the surface where convex hull does not intersect ray
- Must deal with many special cases - rather slow

Bézier Clipping

Bézier Clipping

Higher Dimensions

- Volumes
- Spline: $\mathrm{R}^{3} \rightarrow \mathrm{R}$
- Volume density
- Rarely used
- Spline: $\mathrm{R}^{3} \rightarrow \mathrm{R}^{3}$
- Modifications of points in 3D
- Displacement mapping
- Free Form Deformations (FFD)

FFD

