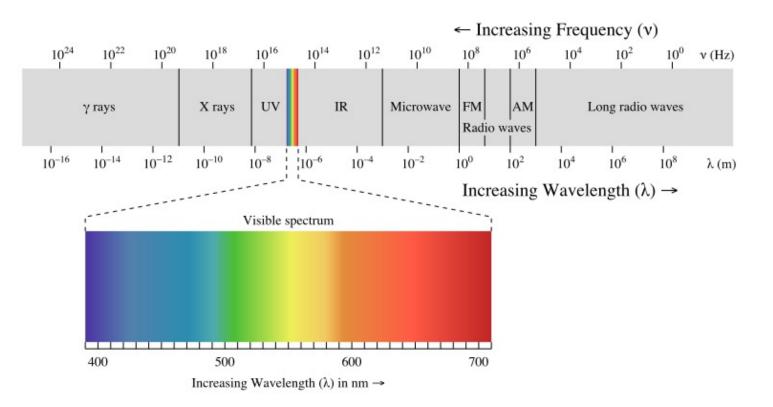
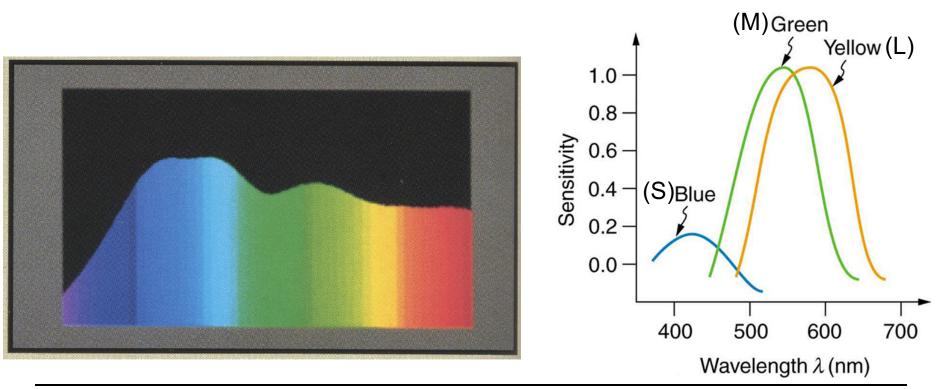
Computer Graphics


Color

Philipp Slusallek

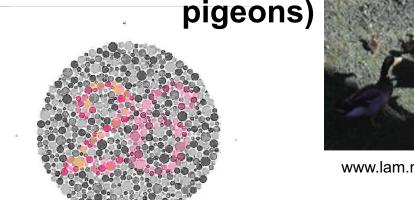
Color Representation


Physics: No notion of "color"

- Light is simply a distribution of photons with different frequencies
- Specified as the "spectrum" of light
- No notion of "white", "saturation", "opposing color", etc.

Eye as a Sensor

- Human color perception
 - Cones in retina: 3 different types
 - Light spectrum is mapped to 3 different signal channels
- Relative sensitivity of cones for different wavelengths
 - Long (L, yellow/red), Medium (M, green), and Short (S, blue)

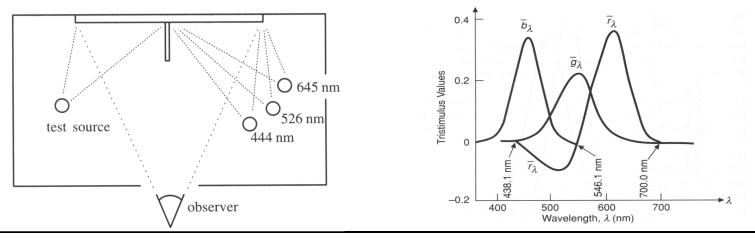

Color Perception

Tri-chromacy (humans, monkeys)

- Red, green, blue
- Color-blindness (most often red-green)
- Di-chromacy (dogs, cats)
 - Yellow & blue-violet
 - Green, orange, red indistinguishable
- Tetra-chromacy (some birds, reptiles)
- Penta-chromacy (some insects,

www.lam.mus.ca.us/cats/color/

www.colorcube.com/illusions/clrblnd.html


Tristimulus Color Representation

Observation

- Any test color (left-hand side test source) can be matched using 3 linear independent reference *primary colors* (right-hand side)
- May require "negative" contribution of primary colors
 positive contribution to test color
- "Matching curves" describe values for a certain set of primaries to match a mono-chromatic spectral test color with a given intensity

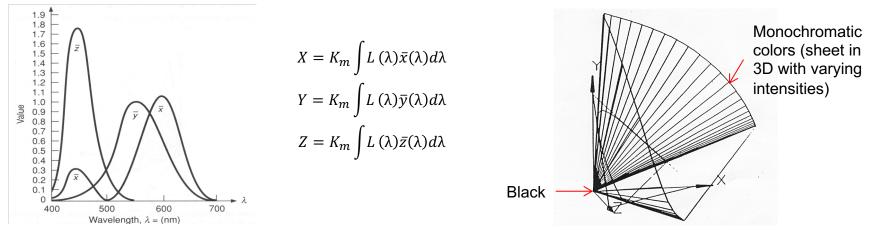
Main results of key Color Matching Experiments

- Color perception forms a linear 3-D vector space
- Superposition holds: Mixing two colors == mixing primaries

Standard Color Space CIE-XYZ

CIE color matching experiments

- First experiment [Guild and Wright, 1931]
 - Group of ~12 people with "normal" color vision (from London area)
 - 2-degree visual field (fovea only)
- Other experiment in 1964
 - Group of ~50 people (with foreigners)
 - 10-degree visual field
 - More appropriate for larger field of view, but rarely used


Definition of the CIE-XYZ color space

- CIE: Transformation to a set of virtual primaries
 - Transform in 3D color space, with virtual primaries as new basis
- Goals:
 - Abstract from concrete primaries used in an experiment
 - All matching functions should be positive (all colors in one 3D octant)
 - One primary should be roughly proportionally to luminosity

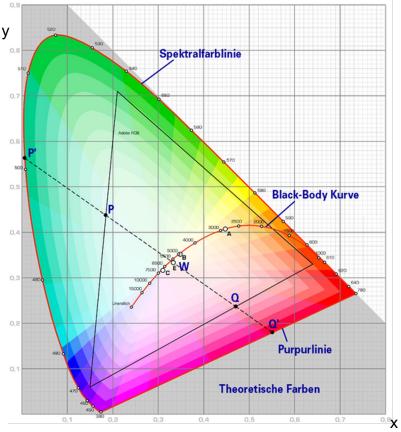
Standard Color Space CIE-XYZ

• Standardized imaginary primaries CIE XYZ (1931)

- Imaginary primaries "more saturated" than monochromatic lights
 - Together can match all physically realizable color stimuli
- Defined via spectral matching fct. for virtual CIE XYZ primaries
 - Virtual red (X), green (Y), blue (Z)
- Y is roughly equivalent to luminance
 - Shape similar to luminous efficiency function $V(\lambda)$
- Monochromatic spectral colors form a curve in 3D XYZ-space
 - Colors: positive mix of monochromatic light \Rightarrow within the curve
 - · "Colors" beyond visible limits ignored since they cannot be realized

CIE xy Chromaticity Diagram

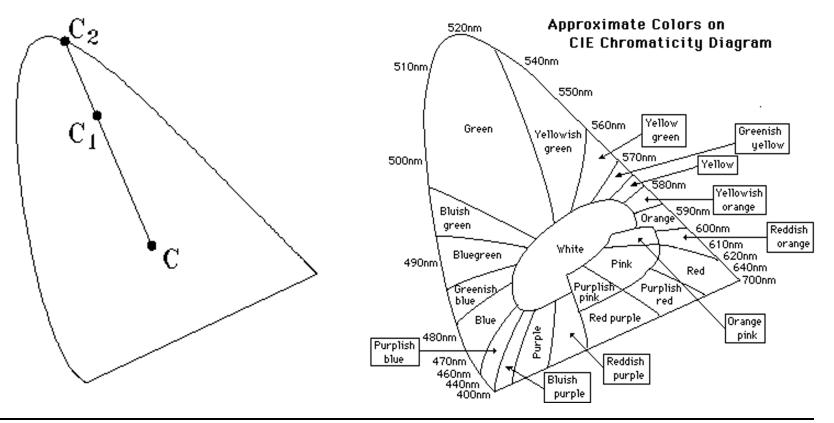
Concentrate on color, not light intensity


Relative coordinates: projection on X+Y+Z = 1 plane (normalize)

$$x = \frac{X}{X + Y + Z}$$
$$y = \frac{Y}{X + Y + Z}$$
$$z = 1 - x - y$$

- Chromaticity diagram
 - 2D plot over x and y
 - 2D points called "color locations"

Locations of interest


- Pure spectral colors (red outline)
- Purple line: interpolate red & violet
- White point: ~(1/3, 1/3)
 - Device dependent / eye adaptation
- Black-body curve
- Gamut: Primaries of HW devices only allow for subset

CIE Chromaticity Diagram

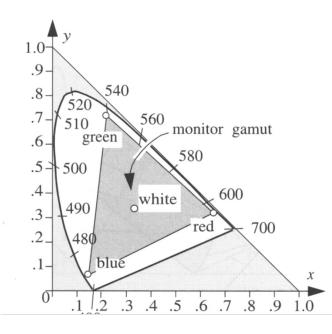
Specifying colors

- Saturation: relative distance between pure color and white point
- Complementary colors: on other side of white point
- Line of purples: closes the color circle (mix of red & blue/violet)

Color Gamut

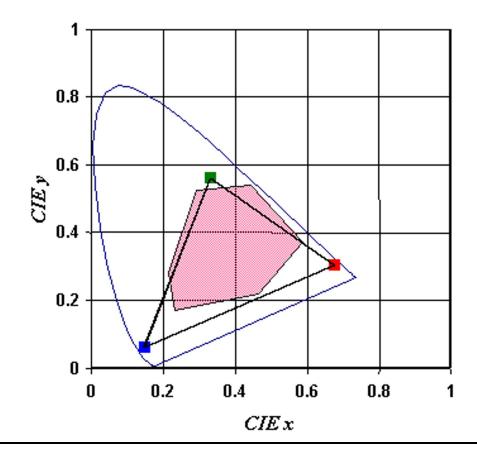
- Color gamut
 - Set of representable colors

CIE XYZ gamut


Device-independent

Device color gamut

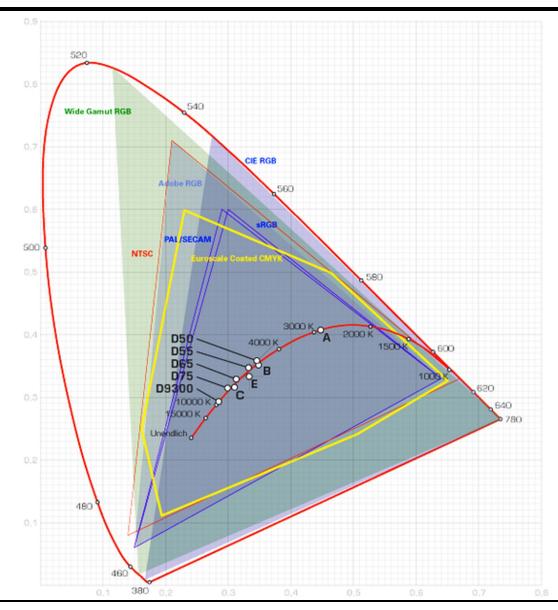
- Set of color location reproducible on a device (typically a triangle)
- Linear combinations of primary colors of the device (w/ additive mixture)


RGB space gamut

- Device (monitor/projector) dependent (!!!)
 - Choice of primaries used (lamps, LEDs)
 - Weighting/intensity of primaries (filters)
- White-point/temperature adjustment
 - Moves white point and thus all other colors *within* the gamut

Printer Color Gamut

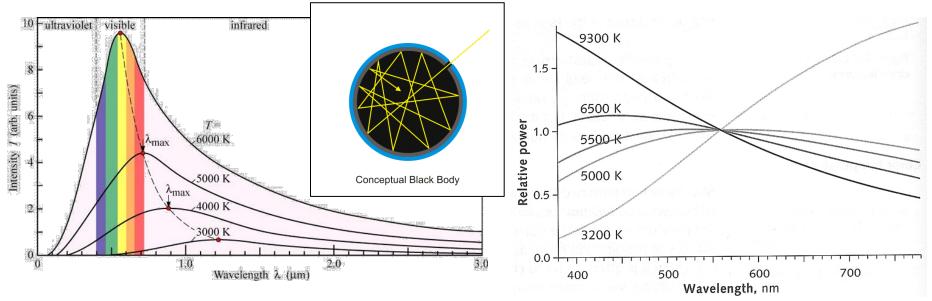
- Complex for printer due to subtractive color mixing
- Complex interactions between printed colors
- Depends on colors, printing technology, paper, …


Different Color Gamuts

Gamut compression/mapping

- What to do if colors lie outside of the printable area?
 - Scaling, clamping, other non-linear mappings
- Each device should replace its out-of-gamut colors with the nearest approximate achievable colors
- Possible significant color distortions in a printed \rightarrow scanned \rightarrow displayed image

See color management later


Different Color Gamuts

Color Temperature

Theoretical light source: A black body radiator

- Perfect emitter: whole energy emitted by thermal excitation only
- Fixed frequency spectrum independent of material (Planck's law)
- Spectrum can be converted into CIE-xy color location
 - Normalizing the spectrum (at 550 nm)
 - Energy relatively shifts from longer (reddish) toward shorter wavelengths (blueish) as the temperature increases
- Allows for white point specification through temperatures

CIE Standard Illuminants

Properties of illuminant (light sources)

- Important in many applications
- Scenes look different under different (real or virtual) illumination

Set of standardized light sources

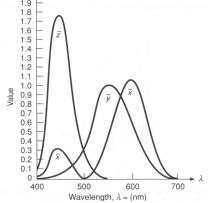
- Illuminant A incandescent lighting conditions with a color temperature of about 2856°K
- Illuminant B direct sunlight at about 4874°K
- Illuminant C indirect sunlight at about 6774°K
- Illuminants D50 and D65 different daylight conditions at color temperatures 5000°K and 6500°K, respectively

Practical use

- Spectral data of CIE standard illuminants available on the web
- Frequently used in the CG applications to compare against welldefined real-world lighting conditions

Color and Linear Operations

Additive color blending is a linear operation


Can represent the operations as a matrix

Calculating primary components of a color

- Measure the spectral distribution (e.g., sample every 5-10 nm)
- Projecting from *m*D to 3D using matching curves (loss of information, reverse mapping is not unique!)

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \boldsymbol{PL} = \begin{bmatrix} \bar{x}(\lambda) \\ \bar{y}(\lambda) \\ \bar{z}(\lambda) \end{bmatrix} L_e(\lambda) = \begin{bmatrix} [x_1, x_2, x_3, \dots, x_m] \\ [y_1, y_2, y_3, \dots, y_m] \\ [z_1, z_2, z_3, \dots, z_m] \end{bmatrix} \begin{bmatrix} l_1 \\ l_2 \\ \vdots \\ l_m \end{bmatrix}$$

$$3 \times m \qquad m \times 1$$

Transformation between color spaces

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = M \begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} X_r & X_g & X_b \\ Y_r & Y_g & Y_b \\ Z_r & Z_g & Z_b \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

Color Transformations

• Computing the transformation matrix M

- Given (e.g., from monitor manufacturer or measured)
 - Primary colors (x_r, y_r) , (x_g, y_g) , (x_b, y_b)
 - White point (x_w, y_w) for given color temperature (R=G=B=1)

- Setting

$$z_r = 1 - x_r - y_r$$

$$C_r = X_r + Y_r + Z_r$$

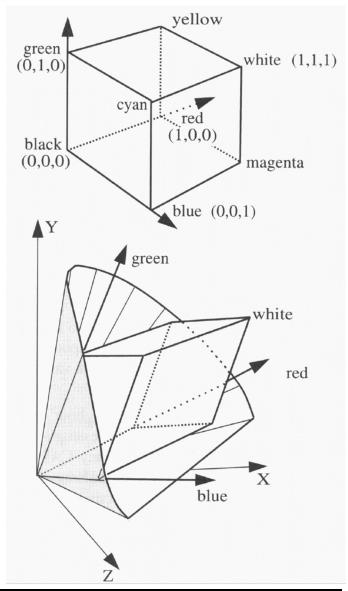
$$x_r = \frac{X_r}{X_r + Y_r + Z_r} = \frac{X_r}{C_r} \rightarrow X_r = x_r C_r$$

- Analogous for x_g , x_b
- R,G,B are factors modulating the primaries (X_{rgb} , Y_{rgb} , Z_{rgb})

$$M = \begin{bmatrix} X_r & X_g & X_b \\ Y_r & Y_g & Y_b \\ Z_r & Z_g & Z_b \end{bmatrix} = \begin{bmatrix} x_r C_r & x_g C_g & x_b C_b \\ y_r C_r & y_g C_g & y_b C_b \\ z_r C_r & z_g C_g & z_b C_b \end{bmatrix}$$

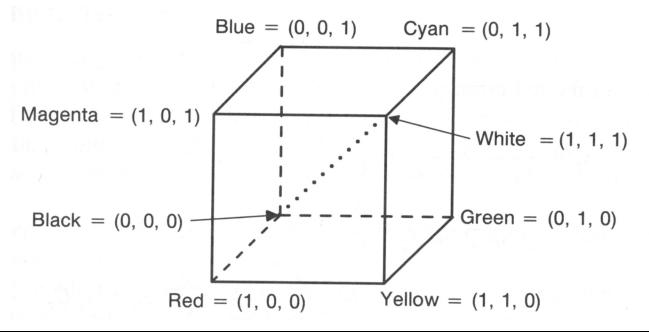
Color Transformations (Cont.)

- Computing the constants C_r , C_g , C_b
 - Per definition the white point is given as (R, G, B) = (1, 1, 1)


•
$$(X_w, Y_w, Z_w) = M * (1,1,1)$$

$$\begin{bmatrix} X_w \\ Y_w \\ Z_w \end{bmatrix} = \begin{bmatrix} x_r C_r & x_g C_g & x_b C_b \\ y_r C_r & y_g C_g & y_b C_b \\ (1 - x_r - y_r) C_r & (1 - x_g - y_g) C_g & (1 - x_b - y_b) C_b \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

- (X_w, Y_w, Z_w) can be computed from (x_x, y_x)
 - Unspecified brightness
 - Use the normalization constant $Y_w = 1$
- Can now compute conversion between any two linear color spaces of different devices by intermediate mapping to CIE XYZ
 - May result in out of gamut colors and require gamut mapping!


Geometric Interpretation

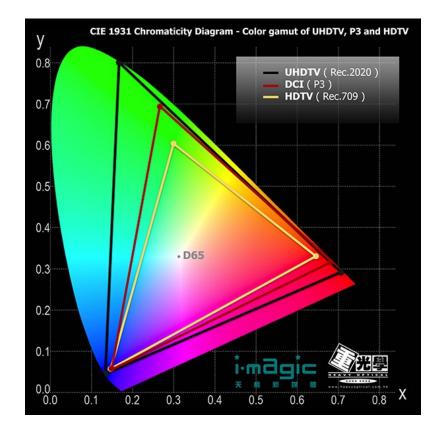
- RGB embedded in XYZ space
- Basis change bet. RGB spaces
- Possibly need to handle out-of-gamut colors
- Changes of color temperature/ white point
 - Cannot change color locations of primaries (defined by material)
 - \rightarrow Changing intensities of primaries
 - Scales the length of the basis vectors
 - Moves the tip of the cube
 - And thus, the entire interior

RGB Color Model

- RGB:
 - Simplest model for computer graphics
 - Defined by primary colors of the device
 - Natural for devices additively mixing colors (e.g., monitors)
 - Device dependent (!!!), due to different choices of primaries
 - Most display applications still do not correct for it!!!!
 - Many image formats do not allow color space to be specified

sRGB Color Space

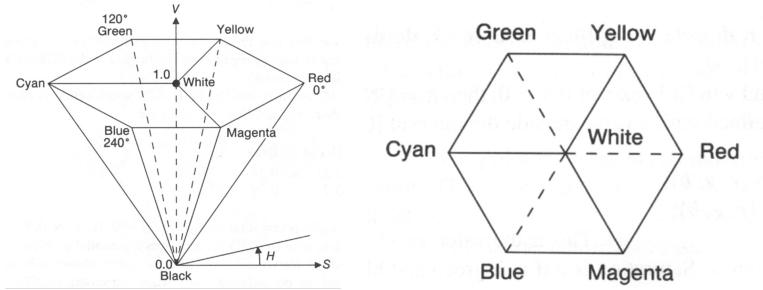
Standardized RGB color space


- RGB for standardized primaries and white point (and gamma)
- Specification of default CIE-XYZ values for monitors
 - Red: 0.6400, 0.3300
 - Green: 0.3000, 0.6000
 - Blue: 0.1500, 0.0600
 - White: 0.3127, 0.3290 (D65)
 - Gamma: 2.2
- Same values as HDTV and digital video (ITU-R 709)
- http://www.color.org

Utilization:

- sRGB is a standard replacement profile of Int. Color Consortium
- Assume all image data without ICC profile implicitly lie in sRGB
 - Generating: ICC-Profile or writing sRGB
 - Reading/output : using ICC-Profile or assume sRGB

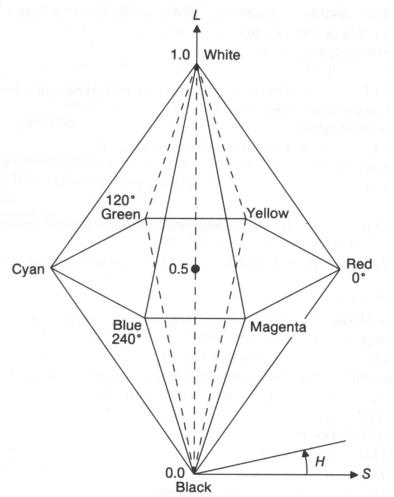
ITU Rec.-2020 / BT-2020


- Standardization of 4K and 8K video format
 - Resolution, frequency, digital representation
 - Color gamut, gamma
- Specification of default CIE-xy values (Wide Gamut)
 - Primaries are monocromatic!
 - Red: 0.708, 0.292
 - Green: 0.170, 0.797
 - Blue: 0.131, 0.046
 - White: 0.3127, 0.3290 (D65)
 - Gamma similar to sRGB but more accurate depending on bitdepth

HSV/HSB Model

HSV/HSB (Hue, Saturation, Value/Brightness)

- Motivated from artistic use and intuitive color definition (vs. RGB)
 - · H is equivalent to tone
 - S is equivalent to saturation (H undefined for S == 0)
 - V/B is equivalent to the gray value
- Pure tones for S == 1 and V == 1
- Intuitive model for color blending
- Builds on RGB


HLS Model

HLS (Hue, Lightness, Saturation)

- Similar to HSV/HSB
- Slightly less intuitive

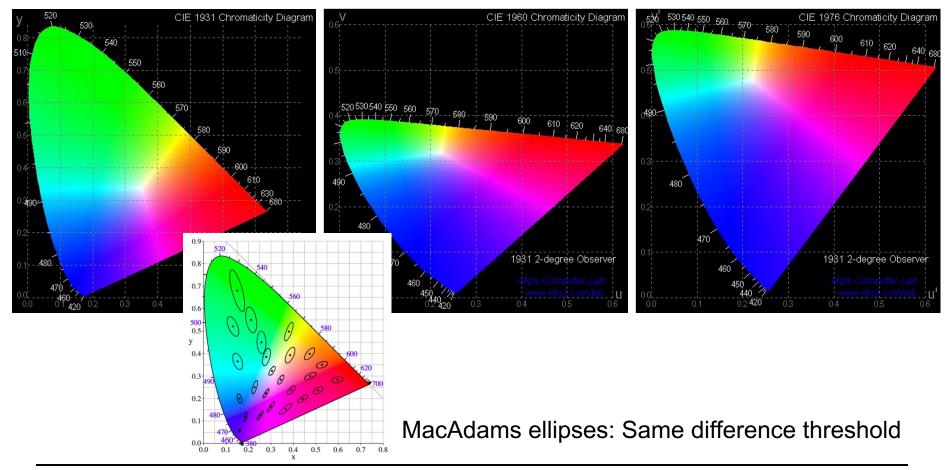
Many other color models

- TekHVC
 - Developed by Tektronix
 - Perceptually uniform color space
- Video-processing
 - Y', B-Y, R-Y
 - Y'IQ
 - Y'PrPb
 - Y'CrCb
 - . .
- Non-linear color spaces

Color Model: In Practice

Interpolation (shading, anti-aliasing, blending)

- RGB:0.5 red + 0.5 green = dark yellow 0.5*(1,0,0) + 0.5*(0,1,0) = (0.5,0.5,0)
- HSV:0.5 red + 0.5 green = pure yellow 0.5*(0°,1,1) + 0.5*(120°,1,1) = (60°,1,1)

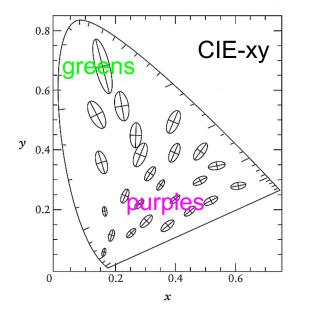

Interpretation

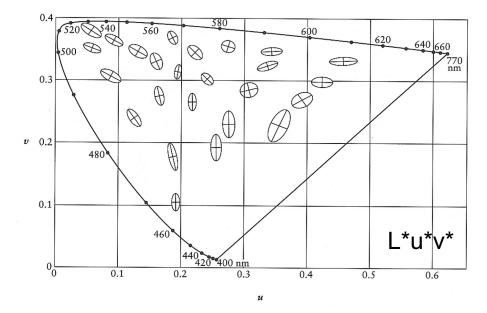
- Interpolation in RGB
 - Physical interpretation: linear mapping \rightarrow interpolation in XYZ space
- Interpolation in HSV
 - Intuitive color interpretation: "yellow lies between red and green"

Color Differences

Distance threshold until perceptible color difference

Very inhomogeneous ⇒ alternate transformations
 CIE-xy (1931)
 CIE-uv (1960)
 CIE-u'v' (1976)


L*u*v* / L*a*b*- Color Spaces

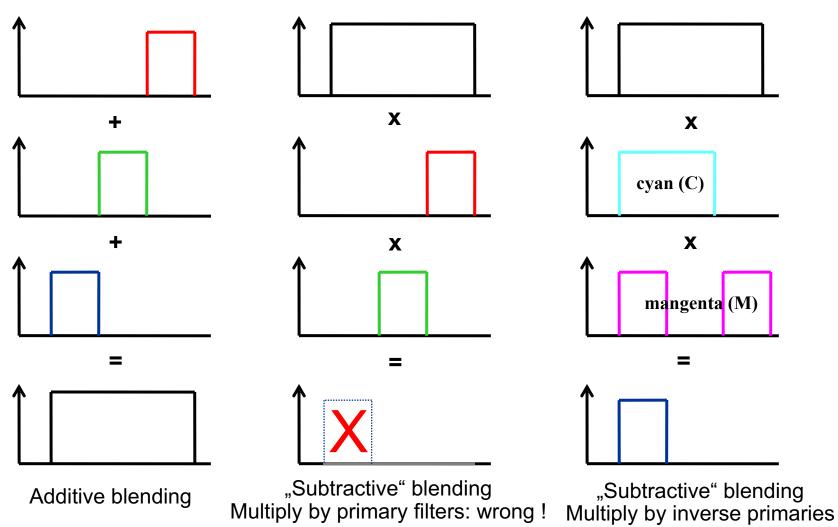

CIE-XYZ is perceptually non-uniform

- Same perceived differences lead to very inhomogeneous differences of xy (purples tightly packed, greens stretched out)
- L*u*v* / L*a*b* are device-independent color spaces

Computing difference between colors

- Transform colors to uniform color space (similarly to gamma)
- Measure color difference there

L*u*v* / L*a*b*- Color Spaces


- Transformation:
 - Converting to XYZ (Y incidental luminance)
 - Non-linear transformation on Y (Y_n is Y of the white point)

$$L^* = \begin{cases} Y/Y_n \ge 0.008856: & 116(Y/Y_n)^{1/3} - 16\\ Y/Y_n < 0.008856: & 903.3(Y/Y_n)\\ L^* \in \{0, ..., 100\} \end{cases}$$

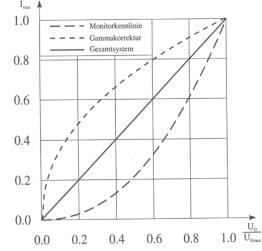
- Transformation of color differences
 - u' = 4X/(X + 15Y + 3Z)v' = 9Y/(X + 15Y + 3Z) $u^* = 13L * (u' - u'_n)$ $v^* = 13L * (v' - v'_n)$ $d^* = 13L * (v' - v'_n)$ $d^* = 500L * [f(X/X_n) - f(Y/Y_n)]$ $b^* = 500L * [f(Y/Y_n) - f(Z/Z_n)]$ $f(x) = \begin{cases} x \ge 0.008856 & x^{1/3} \\ x < 0.008856 & 7.787x + 16/116 \end{cases}$
- Limited applicability to HDR

"Subtractive" Color Blending

• Corresponds to stacked color filters (idealized)

"Subtractive" Color Blending

- Primarily used for printers
- CMYK (Cyan, Magenta, Yellow, Black)
 - In theory:
 - (C, M, Y) = 1 (R, G, B) // Hence "subtractive" color space
 - K = min(C, M, Y) // BlacK (B already used for blue!)
 - (C, M, Y, K) = (C-K, M-K, Y-K, K)
 - In practice: profoundly non-linear transformation
 - Other primary colors
 - Interaction of the color pigments among each other during printing
 - · Covering and/or blending between semitransparent layers
 - Etc, etc...


Subtractive primary colors:

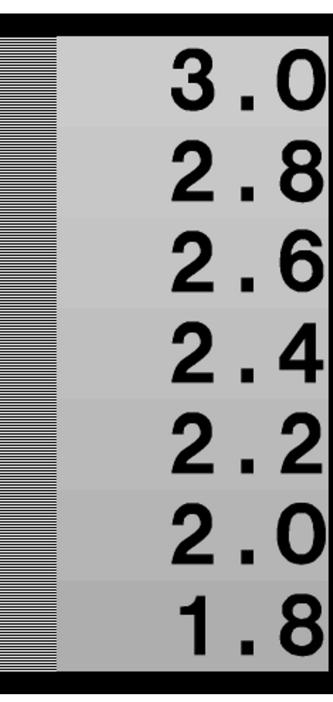
- Product of all primary colors must be black
- Any number of colors (CMY, CMYK, 6-color-print, etc...)
- It does not need to obtain (CMY) = 1 (RGB)

Gamma

Display-Gamma

- Intensity *I* of electron beam in CRT monitors is non-linear with respect to the applied voltage *U*
- Best described as power law: $L = U^{\gamma}$
- Gamma-Factor γ = ~ 2.5 due to physics of CRT monitor (e-beam)
- For *compatibility* also in other displays (LCD, OLED, etc.)

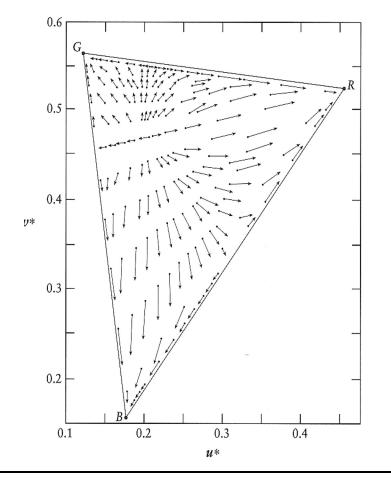
Gamma correction


- Pre-correct values with inverse to achieve a linear curve overall
- Quantization loss if value represented with <12 bits
 - · Hardly ever implemented this way in apps and HW

/=2

γ=1 (original)

Gamma Testing Chart

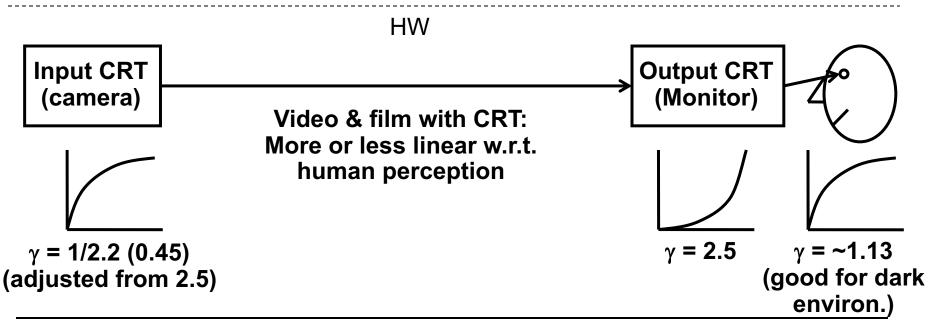

- Gamma of monitors not always correct
- Testing:
 - 50% intensity should give 50% grey (half black-white)
 - Match actual gray with true black/white average $\rightarrow \gamma$

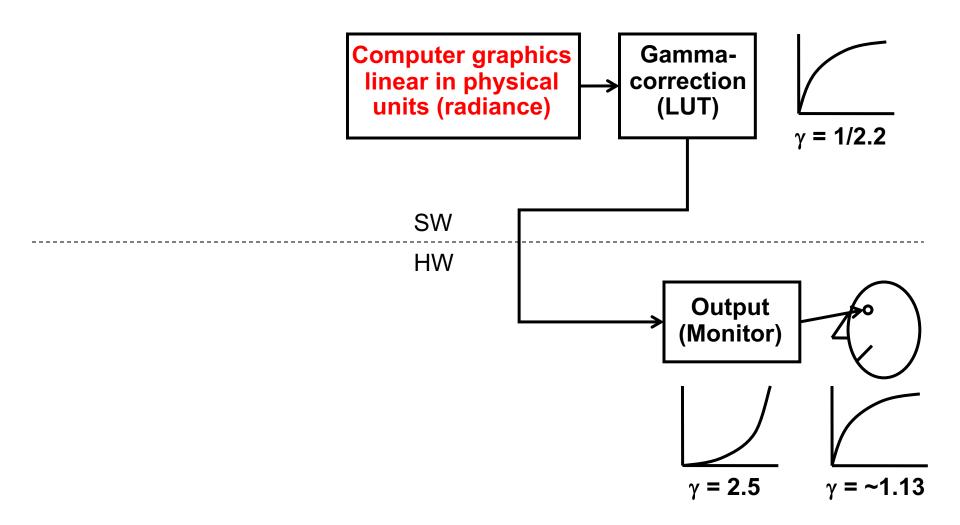
1.8 1.6 1.4 1.2 **1**.0 0.8

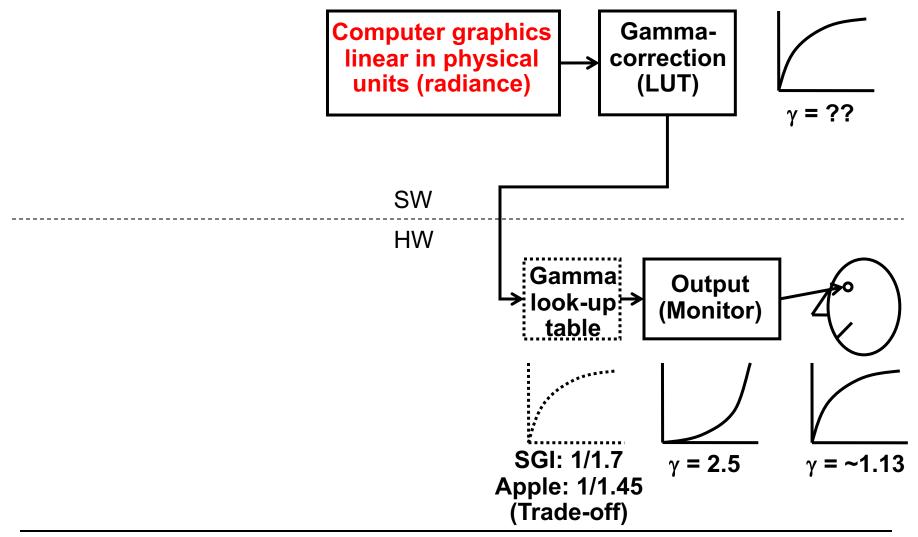
Gamma Correction

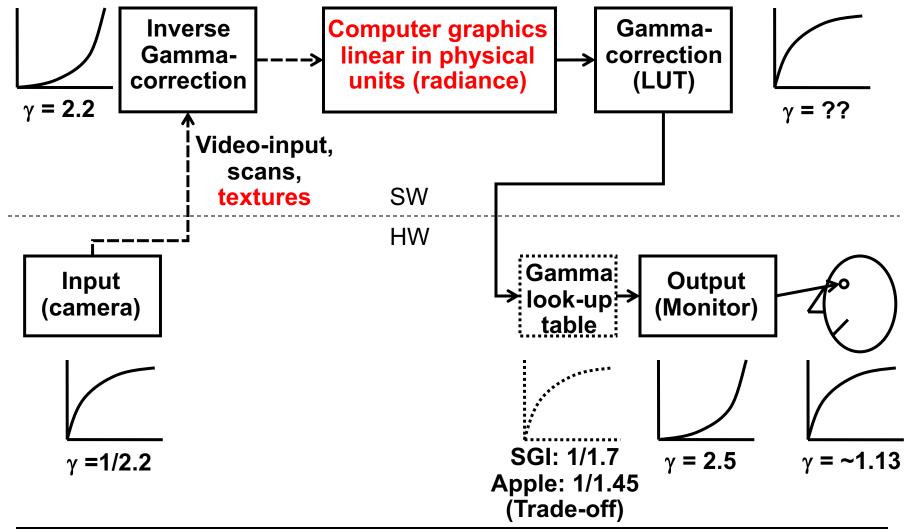
- Problem:
 - Non-linear operator: RGB components not uniformly scaled by a constant factor ⇒ strong color corruptions

Shifts in reproduced chromaticities resulting from uncompensated gamma of 1.273 (such a gamma is desirable to compensate the contrast lowering in the dim surround).


Gamma


Camera-gamma


- Old cameras (electron tube) also had a gamma
- Essentially the inverse of the monitor gamma (due to physics) → Display did correct for the camera
- For better brightness perception in dark environments cameras are typically corrected to gamma of 1/2.2 for a total gamma of ~1.13


"Human-gamma"

- Human brightness perception exhibits a log response
- Roughly follows a gamma of $\sim 1/3$ (formula) to ~ 0.45
- Old cameras encoded light in a roughly perceptually uniform way
 - Optimal for compression and transmission
- New cameras generate the same output for *compatibility* reasons (!)

Problems

- Color coordinate system often unknown
 - No support in image formats
 - Assume sRGB!
- Multiple color-space transformations
 - Loosing accuracy through quantization
 - Unless floats or many bits are used
- Gamma-correction depends on application
 - Non-linear:
 - Video-/image editing (but not all operations!)
 - Linear:
 - Image syntheses, interpolation, color blending, rendering, ...

ICC Profiles

International Color Consortium

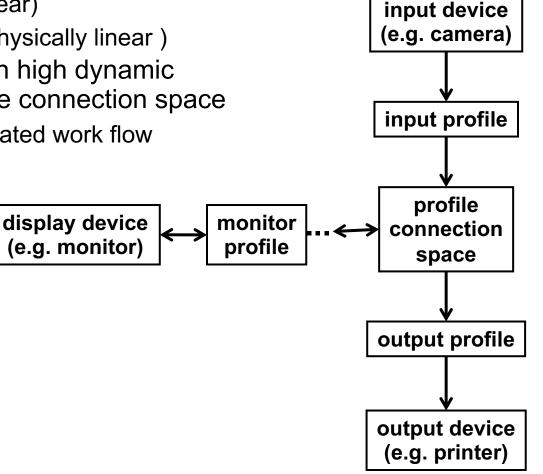
- Standardized specification of color spaces
- Profile Connection Space (PCS) intermediate, device-independent color space (CIELAB and CIEXYZ supported)
- ColorDevice #1 \rightarrow PCS \rightarrow ColorDevice #2

ICC profile

- A file with data describing the color characteristics of a device (such as a scanner, printer, monitor) or an image
- Simple matrices, transformation formulas (if necessary proprietary)
- Conversion tables

ICC library

- Using profiles for color transformations
- Optimizes profile-sequences transformations, but no standard-API


Problems

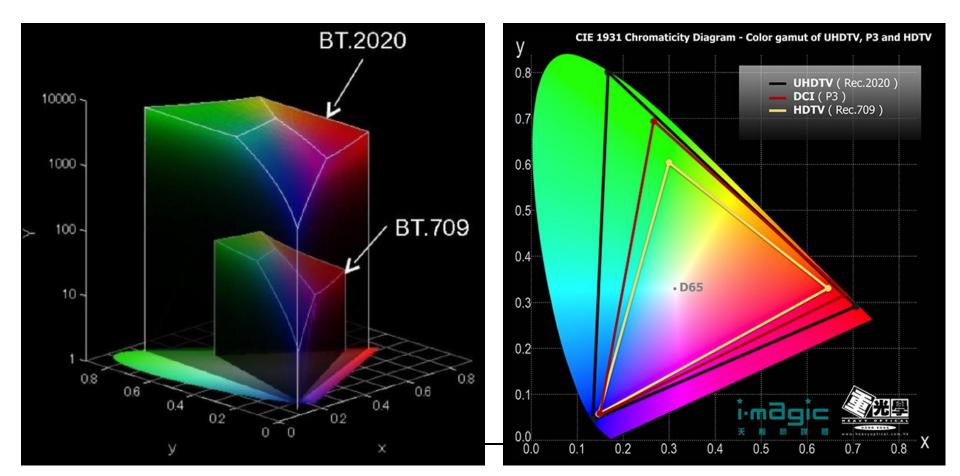
- Inaccurate specifications, interoperability
- Profiles difficult to generate

ICC Profiles and HDR Images

ICC processing

- Typical profile connection spaces
 - CIELAB (perceptual linear)
 - CIEXYZ color space (physically linear)
- Can be used to create an high dynamic range image in the profile connection space
 - Allows for a color calibrated work flow

Issues: HDR Image Formats


- History
 - Usually little *user data*, mostly data curated professionally
 - Color issues with Web images due to different color displays
 - "Solved" by sRGB color space and better monitors (LCD/OLED)

Big confusion: HDR Format (HDR10(+) vs. Dolby Vision)

- Quantization (10 vs. 12 bit/sample)
- Color spaces (DCI-P3 vs. Rec. 2020)
- Maximum brightness (1 000 vs. 10 000 nits)
- Transfer functions (Perceptual Quantizer vs. Hybrid Log Gamma)
- Frame rate (!)
- Issue of "best" reconstruction filter during rendering
- Little support for still images (e.g. OpenEXR, JPEG-XR)
- Varying support in consumer displays, cameras
- No good support for interactive applications (yet)

Issues: HDR Image Formats

- Need for tone and gamut mapping
 - Because each display may be different
- What's the expected behavior? What about reverse?

