Computer Graphics

The Human Visual System (HVS)

Philipp Slusallek

Light

Electromagnetic (EM) radiation

- From long radio waves to ultra short wavelength gamma rays

Visible spectrum: ~400 to 700 nm (all animals)

- Likely due to development of early eyes in water
 - Only very small window that lets EM radiation pass though

Plenoptic Function

Physical model for light

- Wave/particle-dualism
 - Electromagnetic radiation wave model
 - Photons: $E_{ph} = hv \rightarrow$ particle model & ray optics (h: Planck constant)
- Plenoptic function defined at any point in space

Radiometric Units

Specification	Definition	Symbol	Unit	Quantity
Energy		Q _e	[J = W ⋅s] (joule)	Radiant energy
Power, flux	dQ/dt	Φ_{e}	[W = J/s] (watt)	Radiant flux
Flux density	dQ/dAdt	E _e	[W/m ²]	Irradiance
Flux density	dQ/dAdt	B _e	[W/m ²]	Radiosity
Intensity	dQ/dωdt	l _e	[W/sr]	Radiant intensity
	dQ/dAdωdt	L _e	[W/(m²·sr)]	Radiance

Photometry

Equivalent units to radiometry

- Weighted with luminous efficiency function $V(\lambda)$
- Considers the spectral sensitivity of the human eye
 - Measured across different sets of humans
- Spectral or (typically) "total" units
 - Integrate over the entire spectrum and deliver a single scalar value

$$\Phi_{v} = K_{m} \int V(\lambda) \Phi_{e}(\lambda) d\lambda$$
$$K_{m} = 680 \, lm/W$$

- Simple distinction (in English!):
 - Names of radiometric quantities contain "radi"
 - Names of photometric quantities contain "lumi"

Photometric Units (total)

Specification	Definition	Symbol	Unit	Quantity
Energy		Q _v	[T = lm ⋅s] (talbot)	Luminous energy
Power, flux	dQ/dt	Φν	[lm = T/s] (lumen)	Luminous flux (e.g., emitted power of lamp)
Flux density	dQ/dAdt	Ev	[lx = lm/m ²] (lux)	Illuminance (e.g., illumination on desk)
Flux density	dQ/dAdt	B _v	[lx = lm/m ²] (lux)	Luminosity (e.g., reflection off desk)
Intensity	dQ/dωdt	۱ _v	[cd = lm/sr] (candela)	Luminous intensity (e.g., intensity of a point light)
	dQ/dAdωdt	L _v	[lm/(m ² ·sr)] (nits)	Luminance (e.g., brightness of a monitor)

With luminous efficiency function weighted units

Illumination: Examples

Typical illumination intensities

Light source	Illuminance [lux]	
Direct solar radiation	25,000 – 110,000	
Day light	2,000 – 27,000	
Sunset	1 – 108	
Moon light	0.01 – 0.1	
Starry night	0.0001 – 0.001	
TV studio	5,000 – 10,000	
Shop lighting	1,000 – 5,500	
Office lighting	200 – 550	
Home lighting	50 – 220	
Street lighting	0.1 – 20	

Luminance Range

Contrast (Dynamic Range)

High Dynamic Range (HDR)

- How to display computed/measured HDR values on an LDR device ?
 - Tone mapping (\rightarrow RIS course)

Percept. Effects: Vision Modes

• Simulation requires:

- Control over color reproduction
- Local reduction of detail visibility (computationally expensive)

Visual Acuity and Color Perception

Simulation, (c) Cornell

Percept. Effects: Temp. Adaptati.

Adaptation to dark much slower

I sudden change in illumination

- Simulation requires:
 - Time-dependent filtering of light adaptation

HVS - Relationships

Human Visual System

- Physical structure well established
- Percept. behavior complex & less understood process

Optic chiasm

Optical Chiasm

- Right half of the brain operates on left half of the field of view
 - From both eyes!!
- And vice versa
 - Damage to one half of the brain can results in loss of one half of the field of view

Perception and Eye

Human Visual Perception

early vision (eyes)

- Determines how real-world scenes appear to us
- Understanding of visual perception is necessary to reproduce appearance, e.g., in tone mapping

Distribution of Rods and Cones

- High-res. foveal region with highest cone density
- Poisson-disc-like distribution

Retina

- Receptors on opposite side of incoming light
- Early cellular processing between receptors & nerves
 - Mainly for rods

Eye as a Sensor

Relative sensitivity of cones to photons

Eye

• Fovea (centralis):

- Ø 1-2 visual degrees
- 50,000 cones each covering ~0.5 arcminutes angle (~2.5 µm wide)
- No rods in central fovea, but three different cone types:
 - L(ong, 64%), M(edium, 32%), S(hort wavelength, 4%), varies individ.
 - \Rightarrow Varying resolution: 10 arcminutes for S vs. 0.5 arcminutes for L & M
- Mostly linked directly with optical nerves and visual cortex (1:1),
 - 1% of retina area but covers 50% of visual cortex in brain
- Adaptation to light intensity only through cones

Periphery:

- 75-150 M. rods: night vision (B/W)
- 5-7 M. cones (color)
- Rods: Response to stimuli by even a single photon (@ 500 nm)
 - 100x better than cones, integrating over 100 ms
- Signals from many rods are combined before linking with nerves
 - Bad resolution, high flicker sensitivity

This is a text in red

This is a text in green

This is a text in blue

This is a text in red

This is a text in green

This is a text in blue

This is a text in red

This is a text in green

This is a test in blue

Resolution of the Eye

Resolution-experiments

- Line pairs: eye ~ 50-60 p./degree \rightarrow resolution of 0.5 arcminutes
- Line offset: 5 arcseconds (hyperacuity)

- Eye micro-tremor: 60-100 Hz, 5 µm (2-3 photoreceptor spacing)
 - Allows to create super-resolution (w/ Poisson pattern)
- Together corresponds to 19" display at 60 cm away from viewer: 3,000² without hyperacuity – 18,000² pixels with hyperacuity

Fixation of eye onto (moving) region of interest

- Automatic gaze tracking, autom. compensation of head movement
- Apparent overall high resolution of fovea

Visual acuity increased by

- Brighter objects and high contrast

Contrast Sensitivity

Human visual system

- Perception very sensitive to regular structures
- Insensitive against (high-frequency) noise
- Campbell-Robson sinusoidal contrast sensitivity chart —

Luminance Contrast Sensitivity

- Sensitivity: inverse of perceptible contrast threshold
- Maximum acuity at 5 cycles/degree (0.2 %)
 - Decrease toward low frequencies: lateral inhibition
 - Decrease toward high frequencies: sampling rate (Poisson disk)
 - Upper limit: 60 cycles/degree

Medical diagnosis

- Glaucoma (affects peripheral vision: low frequencies)
- Multiple sclerosis (affects optical nerve: notches in contrast sensitivity)

Color Contrast Sensitivity

Color vs. luminance vision system

- Similar but slightly different curves
- Higher sensitivity at lower frequencies
- High frequencies less visible
- Image compression
 - Exploit color sensitivity in lossy compr.

Threshold Sensitivity Function

• Weber-Fechner law (Threshold Versus Intensity, TVI)

- Perceived brightness varies linearly with log(radiant intensity)
 - E = K + c log l
- Perceivable intensity difference

Weber-Fechner Examples

Mach Bands

"Overshooting" along edges

- Extra-bright rims on left sides
- Extra-dark rims on right sides

Due to "lateral inhibition"

Mach Bands

"Overshooting" along edges

- Extra-bright rims on left sides
- Extra-dark rims on right sides

Due to "lateral inhibition"

Lateral Inhibition

Pre-processing step within retina

- Surrounding brightness level weighted negatively
 - A: high stimulus, maximal bright inhibition
 - B: high stimulus, reduced inhibition \rightarrow stronger response
 - D: low stimulus, maximal dark inhibition
 - C: low stimulus, increased inhibition \rightarrow weaker response

High-pass filter

- Enhances contrast along edges
- Differential operator (Laplacian/difference of two Gaussian)

Lateral Inhibition: Hermann Grid

Apparent dark spots at perip. crossings

- Weakly if within foveal Ω (B): smaller filter extent
- Strongly within periphery (A): larger filter extent

Explanation

- Crossings (C): more surround stimulation
 - More inhibition \Rightarrow weaker response
- Streets (D): less surround stimulation
 - Less inhibition \Rightarrow greater response

Simulation

- Convolution with differential kernel
- Darker at crossings, brighter in streets

Periphery

Fovea

Some Further Weirdness

High-Level Contrast Processing

High-Level Contrast Processing

Cornsweet Illusion

Apparent contrast between inner and outer shades

В

Cornsweet Illusion

- Apparent contrast between inner and outer shades
 - Due to gradual darkening/brightening towards a contrasting edge
 - Causes B to be perceived similarly to A

Optical Effects – Veiling Glare

- Internal scattering/blur of sources of high luminance
- Blur around the bright object makes it appear brighter!

Shape Perception

Depends on surrounding primitives

- Size emphasis
- Directional emphasis

Geometric Cues

Automatic geometrical interpretation

- 3D perspective
- Implicit scene depth

Visual "Proofs"

HVS: High-Level Scene Analysis

Experience & expectation

- Pictures usually horizontal
- Local cue consistency
 - Eyes and mouth look right, but actually are upside-down

HVS: High-Level Scene Analysis

Experience & expectation

- Pictures usually horizontal
- Local cue consistency
 - Eyes and mouth look right, but actually are upside-down

Impossible Scenes

• Escher et al.

- Confuse HVS by presenting contradicting visual cues
- Locally consistent but not globally

Single Image Random Dot Stereograms

- Vergence: Cross eyers to look at the same 3D spot
- Accommodation: Focusing at a particular depth plane

SIRDS Construction

- Assign arbitrary color to pixel p₀ in image plane
- Trace from eye points through p₀ to object surface
- Trace back from object to corresponding other eye
- Assign color at p₀ to intersection points p_{1L},p_{1R} with image plane
- Trace from eye points through p_{1L},p_{1R} to object surface
- Trace back to eyes
- Assign p₀ color to p_{2L},p_{2R}
- Repeat until image plane is covered

Asahi Illusion

Asahi Illusion

Motion Illusion

Appearance of movement in static image

- Due to cognitive effects of interacting color contrast & shape pos.
- Saccades \rightarrow diff. in neural signals between dark and bright areas

Motion Illusion

Motion Illusion

Ames Window Illusion

https://www.youtube.com/watch?v=dBap_Lp-0oc

Negative Afterimages

Cones excited by color eventually lose sensitivity

- Photoreceptors adapt to overstimulation and send a weak signal

Negative Afterimages

When switching to grey background

- Colors corresponding to adapted cones remain muted
- Other freshly excited cones send out a strong signal
- Same perceived signal as when looking at the inverse color

Another Optical Illusion

• If staring for ~ 15 sec., you may see a giraffe appear

