Computer Graphics

Sampling Theory & Anti-Aliasing

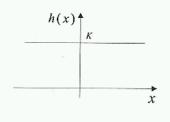
Philipp Slusallek

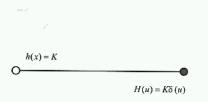
Dirac Comb Function (1)

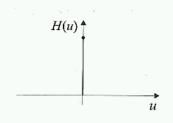
Constant & δ-function

Ortsbereich

Ortsfrequenzbereich

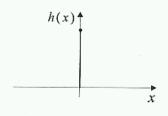


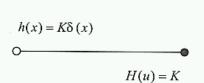


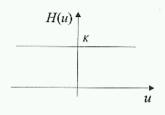


Konstante Funktion

Delta-Funktion



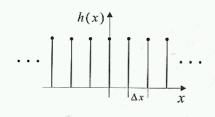




Delta-Funktion

Konstante Funktion

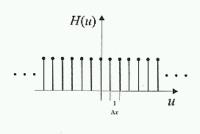
Comb/Shah function



Kamm-Funktion

 $H(u) = \frac{1}{\Delta x} \sum_{k=-\infty}^{\infty} \delta\left(u - \frac{k}{\Delta x}\right)$

 $h(x) = \sum_{k=-\infty}^{\infty} \delta(x - k\Delta x)$



Kamm-Funktion

Dirac Comb (2)

Constant & δ-Function

Duality

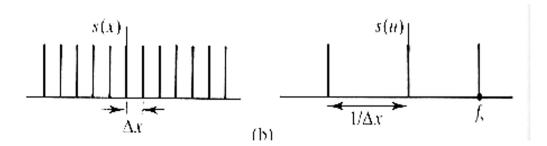
$$f(x) = K$$
$$F(\omega) = K\delta(\omega)$$

And vice versa

Comb function

- Duality: the dual of a comb function is again a comb function
 - Inverse wavelength/distances
 - Amplitude scales with inverse wavelength

$$f(x) = \sum_{k=-\infty}^{\infty} \delta(x - k\Delta x)$$
$$F(\omega) = \frac{1}{\Delta x} \sum_{k=-\infty}^{\infty} \delta\left(\omega - k\frac{1}{\Delta x}\right)$$



Sampling

Continuous function

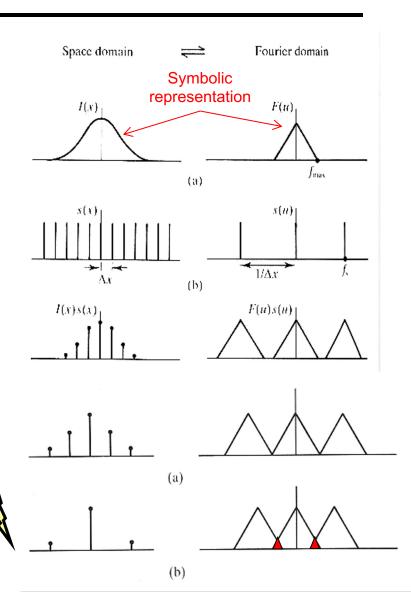
- Assume band-limited
- Finite support of Fourier transform
 - Depicted symbolically here as triangle-shaped finite spectrum (not meant to be a tent function!)

Sampling at discrete points

- Multiplication with Comb function in spatial domain
- Corresponds to convolution in Fourier domain
 - ⇒ Multiple copies of the original spectrum (convolution theorem!)

Frequency bands overlap?

- No : Sampling was high enough (Nyquist limit!)
- Yes: aliasing artifacts !!!



Reconstruction

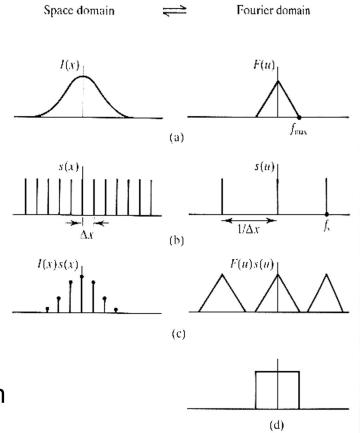
Only original frequency band desired

Filtering

- In Fourier domain:
 - Multiplication with windowing function around origin (low-pass filter)
- In spatial domain
 - Convolution with inverse Fourier transform of windowing function

Optimal filtering function

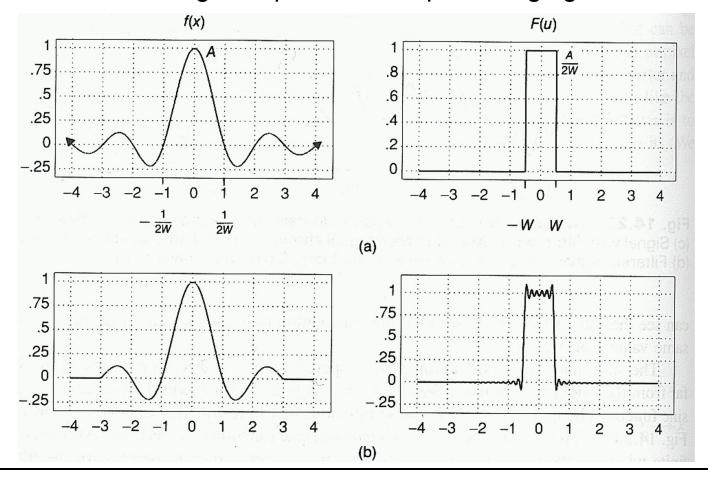
- Box function in Fourier domain
- Corresponds to sinc in spatial domain
 - Unlimited region of support
 - Spatial domain only allows approximations due to finite support of practical filters



(e)

Reconstruction Filter

- Simply cutting off the spatial support of the sinc function to limit support is NOT a good solution
 - Re-introduces high-frequencies ⇒ spatial ringing



Sampling and Reconstruction

Original function and its band-limited frequency spectrum

Signal sampling beyond Nyquist:

Mult./conv. with comb

Frequency spectrum is replicated

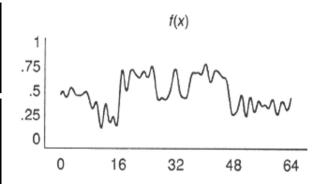
Comb dense enough (sampling rate > 2*bandlimit)

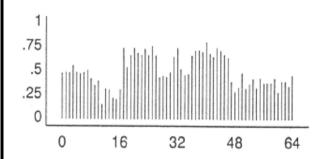
Bands do not overlap

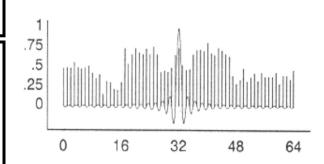
Ideal filtering

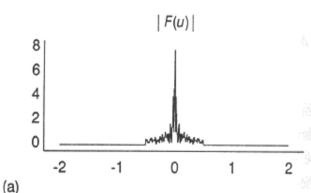
Fourier: box (mult.) Space: sinc (conv.)

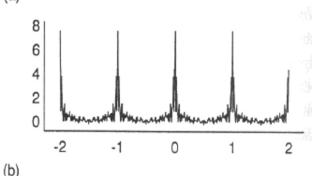
Only one copy

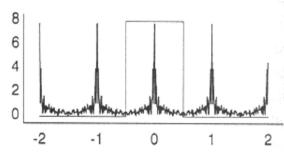












Sampling and Reconstruction

Reconstruction with ideal *sinc*

Identical signal

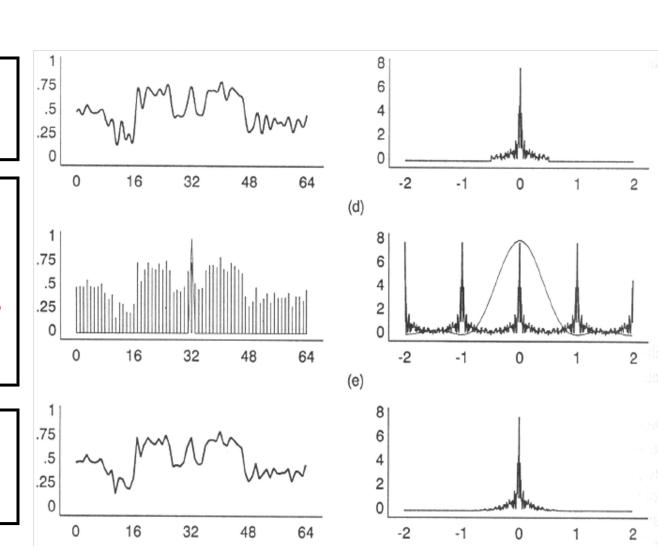
Non-ideal filtering

Fourier: sinc² (mult.) Space: tent (conv.)

Artificial high frequen. are not cut off

⇒ Aliasing artifacts

Reconstruction with tent function (= piecewise linear interpolation)



Sampling at Too Low Frequency

Original function and its band-limited frequency spectrum

Signal sampling below Nyquist:

Mult./conv. with comb

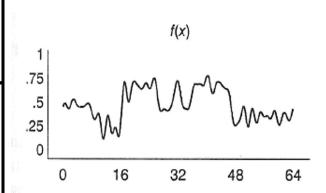
Comb spaced too far (sampling rate ≤ 2*bandlimit)

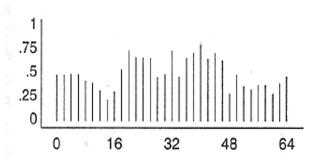
Spectral band overlap: artificial low frequenci.

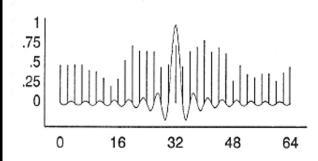
Ideal filtering

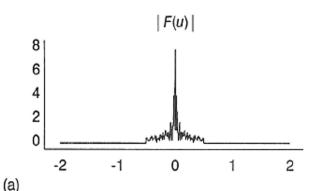
Fourier: box (mult.) Space: sinc (conv.)

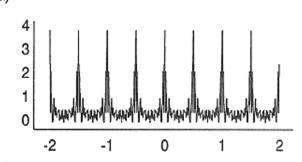
Band overlap in frequency domain cannot be corrected ⇒ Aliasing

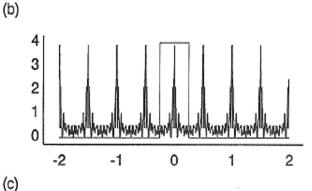












Sampling at Too Low Frequency

Reconstruction with ideal sinc

Reconstruction fails (frequency components wrong due to aliasing!)

Non-ideal filtering

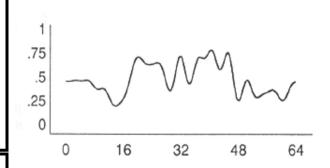
Fourier: *sinc*² (mult.) Space: tent (conv.)

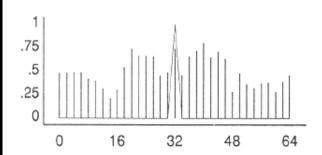
Artificial high frequen. are not cut off

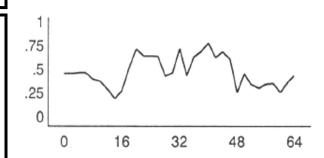
⇒ Reconstr. artifacts

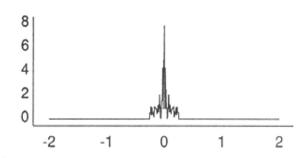
Reconstruction with tent function (= piecewise linear interpolation)

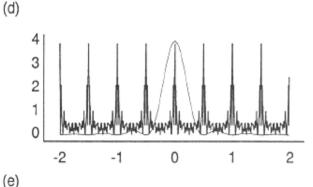
Even worse reconstruction

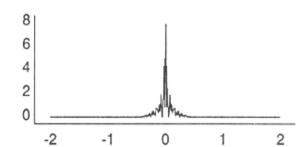






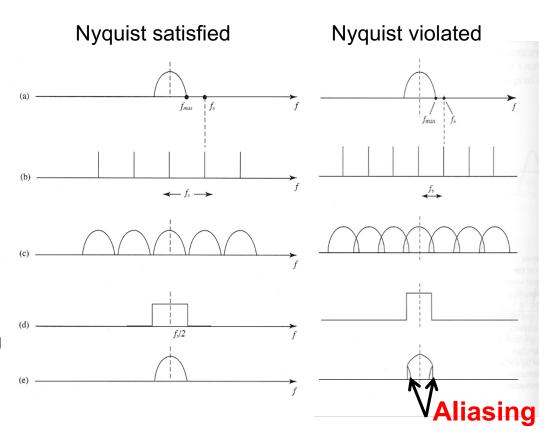




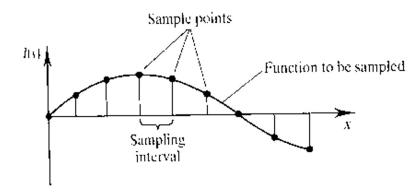


Aliasing

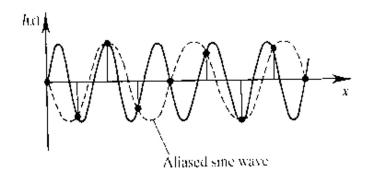
- High frequency components from the copies appear as low frequencies for the reconstruction process
- In Fourier space:
 - Original spectrum
 - Sampling comb
 - Resulting spectrum
 - Reconstruction filter
 - Reconstructed spectrum



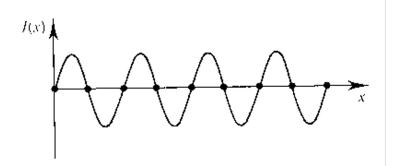
Aliasing in 1D



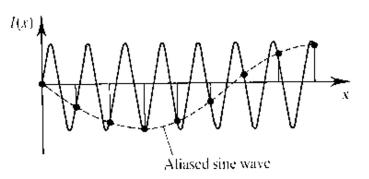
Spatial frequency < Nyquist



Spatial frequency > Nyquist

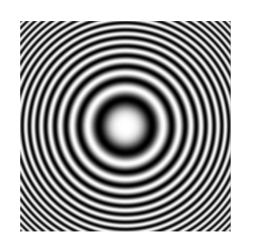


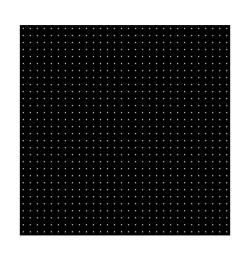
Spatial frequency = Nyquist 2 samples / period

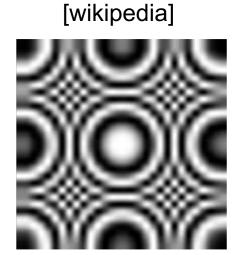


Spatial frequency >> Nyquist

Aliasing in 2D



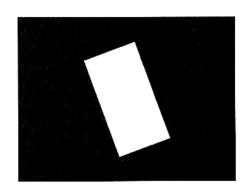




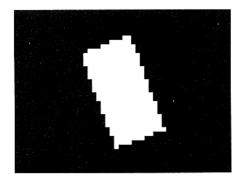
This original image sampled at these locations yields this reconstruction.

Aliasing in 2D

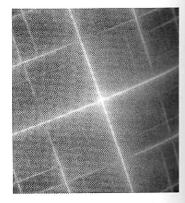
- Spatial sampling ⇒ repeated frequency spectrum
- Spatial conv. with box filter ⇒ spectral mult. with sinc



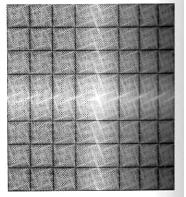
(a) Simulation of a perfect line



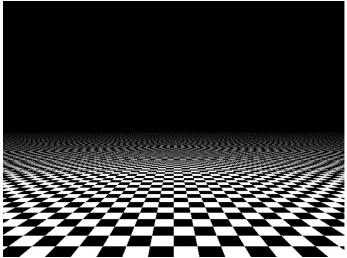
(c) Simulation of a jagged line

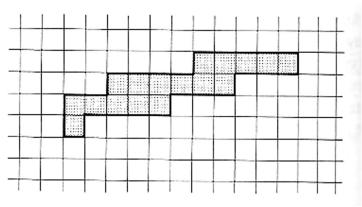


(b) Fourier transform of (a)



(d) Fourier transform of (c)





Causes for Aliasing

- It all comes from sampling at discrete points
 - Multiplication with comb function
 - Comb function: replicates the frequency spectrum
- Issue when using non-band-limited primitives
 - E.g., hard edges → infinitely high frequencies
- In reality, integration over finite region necessary
 - E.g., finite pixel size in sensor, integrates in the analog domain
- Computer: analytic integration often not possible
 - No analytic description of radiance or visible geometry available
- Only way: numerical integration
 - Estimate integral by taking multiple point samples, average
 - · Leads to aliasing
 - Computationally expensive & approximate
- Important:
 - Distinction between sampling errors and reconstruction errors

Sampling Artifacts

Spatial aliasing

Staircases, Moiré patterns (interference), etc...

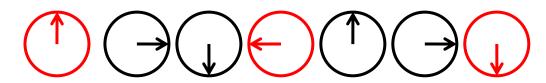
Solutions

- Increasing the sampling rate
 - OK, but we have infinite frequencies at sharp edges
- Post-filtering (after reconstruction)
 - Too late, does not work only leads to blurred artifacts!
- Pre-filtering (blurring) of sharp features in analog domain (edges)
 - Slowly make geometry "fade out" at the edges?
 - Correct solution in principle, but blurred images might not be useful
 - Analytic low-pass filtering hard to implement
- Super-sampling (see later)
 - On the fly re-sampling: densely sample, filter, down sample

Sampling Artifacts in Time

Temporal aliasing

Video of cartwheel, ...



Solutions

- Increasing the frame rate
 - OK
- Post-filtering (averaging several frames)
 - Does not work creates replicas of details
- Pre-filtering (motion blur)
 - Should be done on the original analog signal
 - Possible for simple geometry (e.g., cartoons)
 - Problems with texture, etc...
- Super-sampling (see later)

Antialiasing by Pre-Filtering

Filtering before sampling

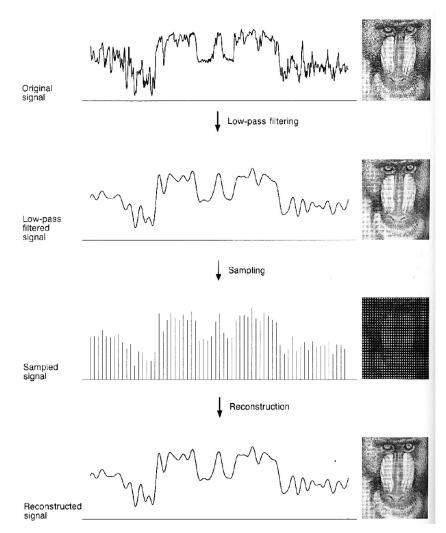
- Analog/analytic original signal
- Band-limiting the signal
- Reduces Nyquist frequency for chosen sampling-rate

Ideal reconstruction

Convolution with sinc

Practical reconstruction

- Convolution with
 - Box filter, Bartlett (tent)
 - → Reconstruction error



Sources of High Frequencies

Geometry

- Edges, vertices, sharp boundaries
- Silhouettes (view dependent)
- **–** ...

Texture

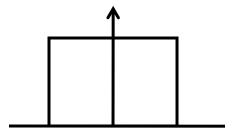
E.g., checkerboard pattern, other discontinuities, ...

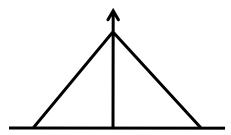
Illumination

Shadows, lighting effects, projections, ...

Analytic filtering almost impossible

Even with the simplest filters





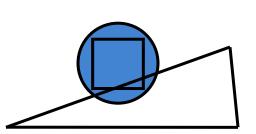
Comparison

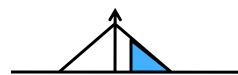
Analytic low-pass filtering (pixel/triangle overlap)

- Ideally eliminates aliasing completely
- Complex to implement
 - Compute distance from pixel to a line
 - Weighted or unweighted area evaluation
 - Filter values can be stored in look-up tables
 - Fails at corners
 - Possibly taking into account slope

Over-/Super-sampling

- Very easy to implement
- Does not eliminate aliasing completely
 - Sharp edges contain infinitely high frequencies
- But it helps: ...





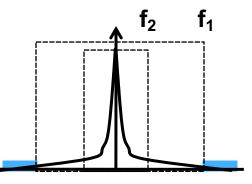
Re-Sampling Pipeline

Assumption

- Energy in higher frequencies typically decreases quickly
- Idea: Reduced aliasing by sampling at higher frequency

Algorithm

- Super-sampling
 - Sample continuous signal with high frequency f_1
 - Aliasing (only here!) with energy beyond f_1 (assumed to be small)
- Reconstruction of signal
 - Filtering with $g_1(x)$: e.g., convolution with $sinc_{f1}$
 - Exact representation with sampled values !!
- Analytic low-pass filtering of signal
 - Filtering with filter $g_2(x)$ where $f_2 << f_1$
 - Signal is now band-limited w.r.t. f_2
- Re-sampling with a sampling frequency that is compatible with f_2
 - · No additional aliasing
- Filters $g_1(x) \& g_2(x)$ can be combined!

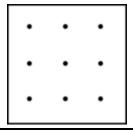


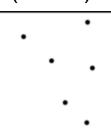
Super-Sampling in Practice

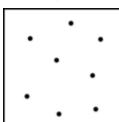
Regular super-sampling

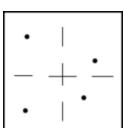
- Averaging of N samples per pixel
- N: 4 (quite good already), 16 (often sufficient)
- Samples: rays, z-buffer, motion, reflection, ...
- Filter weights
 - Box filter
 - Others: B-spline, pyramid (Bartlett), hexagonal, ...

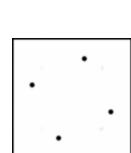
- Regular: aliasing likely
- Random: often clumps, incomplete coverage
- Poisson Disc: close to perfect ("blue noise"), but can be costly
- Jittered: randomized regular sampling, avoid biggest issues
- Most often (in HW): rotated grid pattern

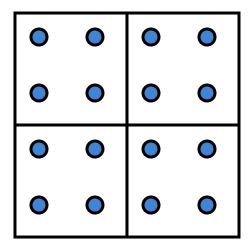












Super-Sampling Caveats

Popular mistake

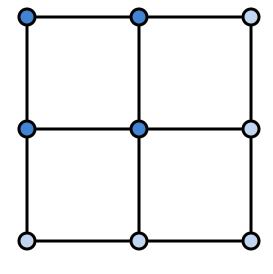
- Sampling at the corners of every pixel
- Pixel color by averaging from corners
- Free super-sampling ???

Problem

- Wrong reconstruction filter !!!
- Same sampling frequency, but post-filtering with a tent function
- Blurring: loss of information

Post-reconstruction blur

1x1 Sampling, 3x3 Blur



1x1 Sampling, 7x7 Blur

There is no "free" super-sampling/lunch

Adaptive Super-Sampling

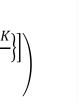
- Idea: locally adapt sampling density
 - Slowly varying signal (mostly low frequencies): low sampling rate
 - Strong changes (mostly high frequencies): high sampling rate
- Decide sampling density locally
- Decision criterion:
 - Differences of pixel values
 - Contrast (relative difference)
 - |A-B| / (|A|+|B|)
 - Others

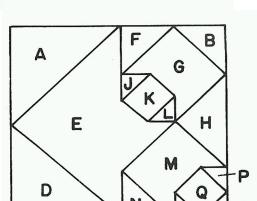
Adaptive Super-Sampling

Recursive algorithm

- Sampling at pixel corners and center
- Decision criterion for corner-center pairs
 - Differences, contrast, object/shader-IDs, ...
- Subdivide quadrant by adding 3 diag. points
- Filtering with weighted averaging
 - Tile: 1/4 from each quadrant
 - Leaf quadrant: ½ (center + corner)
- Box filter with final weight proport. to area →

$$\frac{1}{4} \left(\frac{A+E}{2} + \frac{D+E}{2} + \frac{1}{4} \left[\frac{F+G}{2} + \frac{B+G}{2} + \frac{H+G}{2} + \frac{1}{4} \left\{ \frac{J+K}{2} + \frac{G+K}{2} + \frac{L+K}{2} + \frac{E+K}{2} \right\} \right] + \frac{1}{4} \left[\frac{E+M}{2} + \frac{H+M}{2} + \frac{N+M}{2} + \frac{1}{4} \left\{ \frac{M+Q}{2} + \frac{P+Q}{2} + \frac{C+Q}{2} + \frac{R+Q}{2} \right\} \right]$$





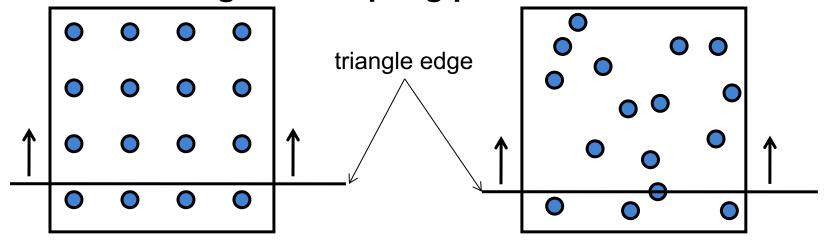
KO

Extension

Jittering of sample points

Stochastic Super-Sampling

- Problems with regular super-sampling
 - Nyquist frequency for aliasing only shifted
 - Expensive: e.g., 4-fold or 16-fold effort
 - Non-adaptive: same effort everywhere
 - Too regular: reduction of effective number of axis-aligned levels
- Introduce irregular sampling pattern



Only 5 levels $0 \to 4/16 \to 8/16 \to 12/16 \to 16/16$:

Up to 17 levels: better, but noisy

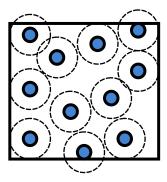
Stochastic Sampling

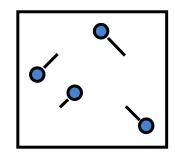
Requirements

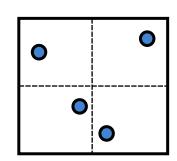
- Even sample distribution: no clustering
- Little correlation between positions: no alignment
- Blue noise property: Shift error to higher frequencies
- Incremental generation: on demand as needed

Generation of samples

- Poisson-disk sampling
 - Random generation of samples
 - Rejection if closer than min distance to other samples
- Jittered sampling
 - Random perturbation from regular positions
- Stratified sampling
 - Subdivision into areas with one random sample in each
 - Improves even distribution
- Quasi-random numbers (Quasi-Monte Carlo)
 - E.g., Halton sequence
 - Advanced feature: see RIS course for more details





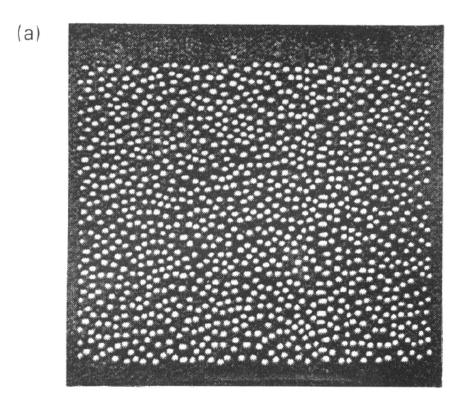


Poisson-Disk Sample Distribut.

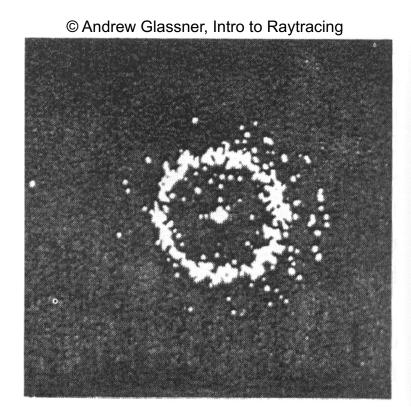
Motivation

Distribution of the optical receptors on the retina (here: ape)

(b)



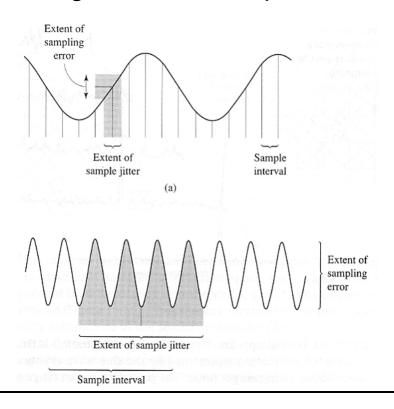
Distribution of the photo-receptors



Fourier analysis

Stochastic Sampling

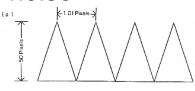
- Slowly varying function in sample domain
 - Closely reconstructs target value with few samples
- Quickly varying function in sample domain
 - Transforms energy in high-frequency bands into noise
 - Reconstructs average value as sample count increases



Examples

Spatial sampling: triangle comb

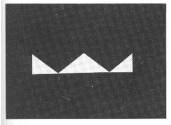
- (c) 1 sample/pixel, no jittering: aliasing
- (d) 1 spp, jittering: noise
- (e) 16 spp, no jittering: less aliasing
- (f) 16 spp, jittering: less noise



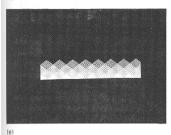
0	•	R	0	۸°	0	10
0			0	1/0	0	10
0	% •		0		0/	6
· //		WX.	0		0	
0	0 0		0		0	
0 1/1	Ø 01	V/A/X	0		d	

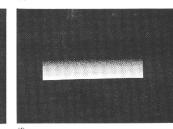
Temporal sampling: motion blur

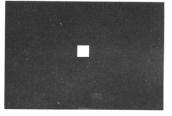
- (a) 1 time sample, no jittering: aliasing
- (b) 1 time sample, jittering/pixel: noise
- (c) 16 samples, no jittering: less aliasing
- (d) 16 samples, jittering/pixel: less noise



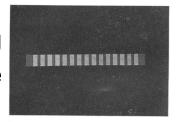












Comparison

Regular, 1x1

• Regular, 3x3

Regular, 7x7

Jittered, 3x3

Jittered, 7x7

