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Motivation
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Digital Signal ProcesingImage Processing and Rendering

[Egan et al. 2009]



Fourier Transformation:
Audio Signal Analogy
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Pressure

Time



Fourier Transformation
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Spatial Frequency
• Inverse of  period length of  some structure in an image

• Unit [1/pixel]

...

Lowest frequency
Image average

Highest frequency
½ of image resolution

Nyquist frequency
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Spatial Frequency

Low Frequency

High Frequency

DECORILLA
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Fourier Transformation
𝐹𝐹 𝑘𝑘 = 𝐹𝐹𝑥𝑥 𝑓𝑓 𝑥𝑥 𝑘𝑘 = �

−∞

∞

𝑓𝑓 𝑥𝑥 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑑𝑑𝑥𝑥

𝑓𝑓(𝑥𝑥) = 𝐹𝐹𝑥𝑥−1 𝐹𝐹 𝑘𝑘 𝑥𝑥 = �
−∞

∞

𝐹𝐹 𝑘𝑘 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑑𝑑𝑘𝑘

Analysis:
Fourier Transformation

Synthesis:
Inverse Fourier Transformation

Representation via complex exponential:
• eix = cos(x) + i sin(x) (see Taylor expansion)
• Use to describe phase information: shifting of the pattern.
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Division into odd and even parts
Division into even and odd parts
◦ Even: f(x) = f(-x)  (symmetry about y axis): Described by cosine

◦ Odd:  f(x) = -f(-x) (symmetry about origin): Described by sine.

𝑓𝑓 𝑥𝑥 =
1
2
𝑓𝑓 𝑥𝑥 + 𝑓𝑓 −𝑥𝑥 +

1
2
𝑓𝑓 𝑥𝑥 − 𝑓𝑓 −𝑥𝑥 = 𝐸𝐸 𝑥𝑥 + 𝑂𝑂(𝑥𝑥)
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𝐹𝐹 𝑘𝑘 = �
−∞

∞

𝑓𝑓 𝑥𝑥 cos −2𝜋𝜋𝑘𝑘𝑥𝑥 + 𝑖𝑖 sin −2𝜋𝜋𝑘𝑘𝑥𝑥 𝑑𝑑𝑥𝑥 = 𝑏𝑏 𝑘𝑘 − 𝑖𝑖 𝑎𝑎(𝑘𝑘)

𝑏𝑏 𝑘𝑘 = �
−∞

∞

𝑓𝑓 𝑥𝑥 cos 2𝜋𝜋𝑘𝑘𝑥𝑥 𝑑𝑑𝑥𝑥 = �
−∞

∞

(𝐸𝐸 𝑥𝑥 + 𝑂𝑂(𝑥𝑥)) cos 2𝜋𝜋𝑘𝑘𝑥𝑥 𝑑𝑑𝑥𝑥 = �
−∞

∞

𝐸𝐸 𝑥𝑥 cos 2𝜋𝜋𝑘𝑘𝑥𝑥 𝑑𝑑𝑥𝑥

𝑎𝑎 𝑘𝑘 = �
−∞

∞

𝑓𝑓 𝑥𝑥 sin 2𝜋𝜋𝑘𝑘𝑥𝑥 𝑑𝑑𝑥𝑥 = �
−∞

∞

(𝐸𝐸 𝑥𝑥 + 𝑂𝑂(𝑥𝑥)) sin 2𝜋𝜋𝑘𝑘𝑥𝑥 𝑑𝑑𝑥𝑥 = �
−∞

∞

𝑂𝑂 𝑥𝑥 sin 2𝜋𝜋𝑘𝑘𝑥𝑥 𝑑𝑑𝑥𝑥

𝑓𝑓 𝑥𝑥 = �
−∞

∞

𝐹𝐹 𝑘𝑘 cos 2𝜋𝜋𝑘𝑘𝑥𝑥 + 𝑖𝑖 sin 2𝜋𝜋𝑘𝑘𝑥𝑥  𝑑𝑑𝑘𝑘 = 𝐸𝐸 𝑥𝑥 + 𝑂𝑂(𝑥𝑥)
𝐸𝐸 𝑥𝑥 = �

−∞

∞

𝐹𝐹 𝑘𝑘 cos 2𝜋𝜋𝑘𝑘𝑥𝑥 𝑑𝑑𝑘𝑘 = �
−∞

∞

𝑏𝑏 𝑘𝑘 − 𝑖𝑖 𝑎𝑎(𝑘𝑘) cos 2𝜋𝜋𝑘𝑘𝑥𝑥 𝑑𝑑𝑘𝑘 = �
−∞

∞

𝑏𝑏 𝑘𝑘 cos 2𝜋𝜋𝑘𝑘𝑥𝑥 𝑑𝑑𝑘𝑘

𝑂𝑂 𝑥𝑥 = �
−∞

∞

𝐹𝐹 𝑘𝑘  𝑖𝑖 sin 2𝜋𝜋𝑘𝑘𝑥𝑥 𝑑𝑑𝑘𝑘 = �
−∞

∞

𝑏𝑏 𝑘𝑘 − 𝑖𝑖 𝑎𝑎(𝑘𝑘)  𝑖𝑖 sin 2𝜋𝜋𝑘𝑘𝑥𝑥 𝑑𝑑𝑘𝑘 = �
−∞

∞

𝑎𝑎 𝑘𝑘 sin 2𝜋𝜋𝑘𝑘𝑥𝑥 𝑑𝑑𝑘𝑘

Analysis

Synthesis

Even term

Even term
Odd term

Odd term



Spatial vs Frequency Domain:
Important basis functions

Box ↔ (normalized) sinc

sinc 𝒙𝒙 =
𝐬𝐬𝐬𝐬𝐬𝐬 𝒙𝒙𝒙𝒙
𝒙𝒙𝒙𝒙

sinc(𝟎𝟎)= 𝟏𝟏

�sinc(𝒙𝒙)𝑑𝑑𝑥𝑥 = 𝟏𝟏

• Negative values

• Infinite support!

Gaussian ↔ Gaussian
• Inverse width

Tent ↔ sinc2

• Tent is convolution of  box 
function with itself

Spatial Domain Frequency Domain
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Spatial vs Frequency Domain:
Transform behavior
Fourier transform of a box function

Box Sinc

Wide box Narrow sinc

Narrow box Wide sinc

Spatial Domain Frequency Domain
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Example: Fourier Synthesis (Inverse 
Fourier Transformation)
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Discreate Fourier Transformation
Periodic in space ⇔ discrete in frequency (vice ver.)
◦ Any periodic, continuous function can be expressed as the sum of  an (infinite) number of  sine or 

cosine waves:

    f(x) = Σk ak sin(2π*k*x) + bk cos(2π*k*x)

Decomposition of signal into different frequency bands: spectral analysis
◦ Frequency band: k (must be an integer)

◦ k = 0 : mean value

◦ k = 1 : function period, lowest possible frequency

◦ kmax ? : band limit, no higher frequency present in signal

◦ Fourier coefficients: ak, bk (real-valued, as before)
◦ Even function f(x) =  f(-x) : ak = 0

◦ Odd function f(x) = -f(-x) : bk = 0
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Discrete Fourier Transformation
Equally-spaced function samples (N samples)
◦ Function values known only at discrete points, e.g.

◦ Idealized Physical measurements
◦ Pixel positions in an image!

◦ Represented via sum of  Delta distribution (Fourier integrals → sums)

Fourier analysis

◦ Sum over all N measurement points
◦ k = 0,1,2,…? Highest possible frequency?

◦ Nyquist frequency: highest frequency that can be represented
◦ Defined as 1/2 the sampling frequency
◦ Sampling rate N: determined by image resolution (pixel size)
◦ 2 samples / period ↔ 0.5 cycles per pixel ⇒ kmax ≤ N / 2

𝑎𝑎𝑖𝑖 = �
𝑖𝑖

sin
2π𝑘𝑘𝑖𝑖
𝑁𝑁 𝑓𝑓𝑖𝑖

𝑏𝑏𝑖𝑖 = �
𝑖𝑖

cos
2π𝑘𝑘𝑖𝑖
𝑁𝑁 𝑓𝑓𝑖𝑖
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Spatial vs. Frequency Domain: 
Examples
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cycles per pixelpixels 

Sine wave with 
positive offset

Square wave                                                                  

Scanline of  an 
image



2D Fourier Transformation
•2D Fourier Transformation can be separated into two 1D Fourier 
transformations along x and y directions.

•Discontinuities: orthogonal direction in Fourier domain!

Rendered Image Fourier Transform
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Power Spectra
With Sneak Peak into Realistic Image Synthesis
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𝟏𝟏
𝑵𝑵
�
𝑵𝑵
𝒇𝒇(𝒙𝒙)
𝒑𝒑(𝒙𝒙)

Result

Monte Carlo 
Renderer

Samples

Power Spectra Power Spectra

𝟏𝟏
𝑵𝑵
�
𝑵𝑵
𝒇𝒇(𝒙𝒙)
𝒑𝒑(𝒙𝒙)

Result

Monte Carlo 
Renderer

Samples

Power Spectra Power Spectra

Power spectrum describes the distribution of  power into frequency components.

Zero Frequency
White 
Noise

Blue 
Noise



Convolution: Motivation
Describes many natural processes:
◦ Room Impulse Measurement in Acoustics

Jochen Schulz Raw MC Image Filtered Image

• Image Processing: Filtering
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Convolution

Expensive operation in image space
◦ For each x integrate over non-zero domain

𝑓𝑓 ⊗ 𝑔𝑔 𝑥𝑥 = �
−∞

∞

𝑓𝑓 τ 𝑔𝑔 𝑥𝑥 − τ 𝑑𝑑τ
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Convolution: Fourier vs Image Space

=.

Image Domain Fourier domain

Convolution → Multiplication

Multiplication → Convolution

Multiplication in transformed Fourier domain is cheaper than direct convolution in image domain!
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Convolution and Filtering
Technical realization
◦ In image domain

◦ Pixel mask with weights

Problems (e.g. sinc)
◦ Large filter support

◦ Large mask (resolution of  the image)

◦ A lot of computation

◦ Negative weights might 
introduce problems if not 
handled properly
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Filtering
Low-pass filtering
◦ Multiplication with box in frequency 

domain

◦ Convolution with sinc in spatial domain

High-pass filtering
◦ Multiplication with (1 - box) in frequency 

domain

◦ Only high frequencies

Band-pass filtering
◦ Only intermediate 
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Low Pass Filtering: Blurring
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High-Pass Filtering
Enhances discontinuities in image
◦ Useful for edge detection
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Anything Clear?
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