Computer Graphics

- Material Models -

Philippe Weier Alexander Rath Philipp Slusallek

(Some slides from Prof. Wenzel Jakob)

Computer Graphics WS 2023/24

Overview

- Reflectance Properties
- Bidirectional Reflectance Distribution Function
- BRDF Models

REFLECTANCE PROPERTIES

Computer Graphics WS 2023/24

Conductor vs. Dielectric

Anisotropy

Computer Graphics WS 2023/24

Irridescence

Three different levels of detail

Key idea

- transition from individual interactions to statistical averages

Microscopic Roughness

• Light source at exactly the same position

Computer Graphics WS 2023/24

Reflectance

Depends on

- Wavelength
- Absorption
- Surface micro-geometry
- Micro-scale scattering
- Index of refraction / dielectric constant

BRDF

Representation

Statistical Distribution

- Aggregate distribution of light reflected off an opaque surface

Representation

Bidirectional

- Depends on both view and light directions

Definition

Derivative of Reflected Radiance

 $dL_r(x,\omega_o) = f_r(x,\omega_i,\omega_o)L_i(x,\omega_i)\cos\theta_i\,d\omega_i$

• BRDF

- Ratio of reflected radiance to incident irradiance

$$f_r(x,\omega_i,\omega_o) = \frac{dL_r(x,\omega_o)}{L_i(x,\omega_i)\cos\theta_i d\omega_i} = \frac{dL_r(x,\omega_o)}{dE_i(x,\omega_i)}$$

Properties

Units

– Inverse steradian: sr -1

Values

- Distribution function
 - Positive
 - Not necessarily finite
- Range
 - From 0: absorption
 - To ∞ : reflection, δ -function

Properties

Energy Conservation

- Cannot reflect more light than incident amount
- Can reflect less light than incident amount: absorption

$$\int_{\Omega} f_r(x,\omega_i,\omega_o) \cos \theta_o \, d\omega_o \le 1 \quad \forall \omega_i$$

Albedo

- Directional-hemispherical reflectance
- Reflected radiance in furnace
- Fraction of incident flux density
 - Incoming from given direction
 - That is reflected in all directions
- Dimensionless number in [0,1]
- Depends on single direction

$$\rho(x,w) = \int_{\Omega} f_r(x,w,w_o) \cos \theta_o d\omega_o$$

Properties

Helmholtz Reciprocity

- Swapping incident and reflected directions preserves reflectance

$$f_r(x,\omega_i,\omega_o) = f_r(x,\omega_o,\omega_i)$$

Parameterization

Describes Surface Reflection

- For light incident from direction (θ_i , φ_i)
- Observed from direction (θ_o , φ_o)

Isotropic BRDF – 3D

Invariant with respect to rotation about the normal

- Only depends on azimuth difference to incoming angle
- Only 3 instead of 4 directional degrees of freedom

Homogeneous BRDF – 4D

Bidirectional Reflectance Distribution Function

$$f_r(\omega_i \to \omega_o)$$
$$f_r((\theta_i, \phi_i) \to (\theta_o, \phi_o))$$

Spatially-Varying BRDF – 6D

Heterogeneous Materials

- Dependent on position
- Reflection at point of incidence: xi = xo

$$f_r(x, \omega_i \to \omega_o)$$

Homogeneous BSSRDF – 6D

- Bidirectional Scattering Surface Reflectance
 Distribution Function
 - Assumes a homogeneous and flat surface
 - Only depends on the difference to the outgoing point
 - Subsurface scattering

BSSRDF – 8D

Heterogeneous Materials

- Dependent on positions

$$f_r((x_i, \omega_i) \to (x_o, \omega_o))$$

Generalization – 9D

Wavelength Dependence

$$f_r(\lambda, (x_i, \omega_i) \to (x_o, \omega_o))$$

Generalization – 10D

Fluorescence

- Change to longer wavelength

$$f_r\big((x_i,\omega_i,\lambda_i)\to(x_o,\omega_o,\lambda_o)\big)$$

Generalization – 11D

- Time-Varying Surface Characteristics
 - Weathering

$$f_r(t, (x_i, \omega_i, \lambda_i) \to (x_o, \omega_o, \lambda_o))$$

Generalization – 12D

Phosphorescence

- Temporal storage of light
- Different Path Length

$$f_r((x_i, \omega_i, t_i, \lambda_i) \to (x_o, \omega_o, t_o, \lambda_o))$$

BRDF Measurement

Gonio-Reflectometer

- Point light source position (ϕ_i , ϕ_i)
- Light detector position (ϕ_o , ϕ_o)
- 4 directional degrees of freedom

BRDF Representation

- Quadratic in incident resolution
- Quadratic in exitant resolution
- Quartic memory requirements!!

MERL Database

Computer Graphics WS 2023/24

Gonio-photometer

EPFL, Switzerland

RGL Database

30 purple-satin

Description: TeckWrap vinyl wrapping film ("Purple Satin CK907") Renderings

BRDF MODELS

Computer Graphics WS 2023/24

Analytical Models

Storage

- Virtually none

Continuous Function

No interpolation

Speed

- No data look up
- Fast evaluation

Parameterization

- Distribution controlled by a few (intuitive) parameters

Lambertian BRDF

Ideal Diffuse Reflection

Perfectly rough surfaces

Constant Distribution

Light uniformly reflected in all output directions

Reflected Radiance

- Independent of viewing direction
- Depends only on illumination direction

L_r(x,
$$\omega_o$$
) = $\frac{1}{\pi} \int_{\Omega_+} L_i(x, \omega_i) \cos \theta_i \, d\omega_i = \frac{E}{\pi}$
nst

Computer Graphics WS 2023/24

 $f_r(x,\omega_i,\omega_o) = \frac{1}{-}$

Lambertian BRDF

Theoretical Model

Assuming all photons undergo multiple scattering events

Experimental Approximations

- Pressed magnesium oxide powder
- Almost never valid at high angles of incidence
- Hard to manufacture ideal diffuse paints

Mirror BRDF

Ideal Specular Reflection

Perfectly smooth surface

Dirac Delta Distribution

- Light entirely reflected in a single output direction

$$f_r(x,\omega_i,\omega_o) = F_r(\theta_i) \frac{\delta(\omega_i - R(\omega_o))}{\cos \theta_i}$$

Reflected Radiance

- Independent of illumination direction
 - No need to loop over light sources
- Depends only on viewing direction
 - Trace 1 secondary ray instead
 - Up to some level of recursion!

$$L_r(x,\omega_o) = \int_{\Omega_+} L_i(x,\omega_i) F_r(\theta_i) \frac{\delta(\omega_i - R(\omega_o))}{\cos \theta_i} \cos \theta_i \, d\omega_i = L_i(x, R(\omega_o)) F_r(\theta_o)$$

Reflection Direction

- Properties
 - Contained in a plane with incident ray and surface normal vector
 - Angle of reflectance equal to angle of incidence

Fresnel

Fresnel Term for Conductors

Electric Conductors (e.g. Metals)

- Reflect light according to Fresnel formula
- Non-reflected light is absorbed

Parameters

- Index of refraction η
- Absorption coefficient κ

Obje	ect	η	k
Gold	l	0.370	2.820
Silver		0.177	3.638
Copper		0.617	2.63
Steel		2.485	3.433

Parallel & Perpendicular Polarized Light

$$r_{\parallel}^{2} = \frac{(\eta^{2} + k^{2})\cos^{2}\theta_{i} - 2\eta\cos\theta_{i} + 1}{(\eta^{2} + k^{2})\cos^{2}\theta_{i} + 2\eta\cos\theta_{i} + 1}$$
$$r_{\perp}^{2} = \frac{(\eta^{2} + k^{2}) - 2\eta\cos\theta_{i} + \cos^{2}\theta_{i}}{(\eta^{2} + k^{2}) + 2\eta\cos\theta_{i} + \cos^{2}\theta_{i}}$$

• Non-Polarized $F_r = \frac{1}{2}(r_{\parallel}^2 + r_{\perp}^2)$ - Fr in [0, 1]

Computer Graphics WS 2023/24

Glass BSDF

Ideal Specular Reflection/Refraction

Perfectly smooth surface

Dirac Delta Distribution

- Light entirely redirected in two output directions

Index of Refraction

- Speed of light in vacuum c
- Speed of light in material v
- n = c / v

Reflected Radiance

- Independent of illumination direction
 - No need to loop over light sources
- Depends only on viewing direction
 - Trace 2 secondary rays instead
 - Up to some level of recursion!

$$L_r(x,\omega_o) = L_i(x,R(\omega_o))F_r(\theta_o) + L_i(x,T(\omega_o))F_t(\theta_o)\frac{n_o^2}{n_i^2}$$

. 2

Refraction Direction

Snell's Law

- $n_1 \sin \theta_1 = n_2 \sin \theta_2$
- $-\sin\theta_2 = \frac{n_1}{n_2}\sin\theta_1$
- $\vec{t} = \sin \theta_2 \vec{b} \cos \theta_2 \vec{n}$

Total Internal Reflection

- $\sin \theta_1 > \frac{n_2}{n_1}$ would yield $\sin \theta_2 > 1$
- Then no refraction occurs
- All light is internally reflected

Computer Graphics WS 2023/24

Fresnel Term for Dielectrics

Dielectrics (e.g. Glass)

- Reflect light according to Fresnel formula
- Rest is transmitted: $F_t = 1 F_r$

Parameters

- Ref. index in incident medium η_i
- Ref. index in transmitted medium η_t

Parallel & Perpendicular Polarized Light

$$r_{\parallel} = \frac{\eta_{t} \cos \theta_{i} - \eta_{i} \cos \theta_{t}}{\eta_{t} \cos \theta_{i} + \eta_{i} \cos \theta_{t}}$$
$$r_{\perp} = \frac{\eta_{i} \cos \theta_{i} - \eta_{t} \cos \theta_{t}}{\eta_{i} \cos \theta_{i} + \eta_{t} \cos \theta_{t}},$$

• Non-Polarized $F_r = \frac{1}{2}(r_{\parallel}^2 + r_{\perp}^2)$ - Fr in [0, 1]

Medium	Index of refraction n
Vacuum	1.0
Air at sea level	1.00029
Ice	1.31
Water (20° C)	1.333
Fused quartz	1.46
Glass	1.5–1.6
Sapphire	1.77
Diamond	2.42

Computer Graphics WS 2023/24

Phong BRDF

- Glossy Reflection
 - Shiny surface due to variable roughness
- Phenomenological Distribution
 - Light mainly reflected around reflection direction

Reflected Radiance

- Depends on viewing direction
- Depends on illumination direction

$$f_r(x,\omega_i,\omega_o) = \frac{\alpha+2}{2\pi} \max(0,w_i \cdot R(w_o))^{\alpha}$$

Computer Graphics WS 2023/24

Phong Exponent

Cosine Lobe Spread

- Determines size of highlight

Computer Graphics WS 2023/24

Cook-Torrance BRDF

Glossy Reflection

Shiny surface due to variable roughness

Physical Distribution

- Assume surface is composed of perfectly specular microfacets
- Light mainly reflected around off-specular reflection direction

Reflected Radiance

- Depends on viewing direction
- Depends on illumination direction

Microfacet Distribution

Microfacet Distribution

- Models the statistical distribution of slopes
- Roughness controls the shape of the distribution

Shadowing and Masking

Microfacets can be shadowed and/or masked

Cook-Torrance BRDF

Formulation

$$f_r(x,\omega_i,\omega_o) = \frac{D(\omega_h)G(\omega_h,\omega_i,\omega_o)F_r(\angle \omega_o,\omega_h)}{4(n\cdot\omega_o)(n\cdot\omega_i)}$$

- D : Microfacet distribution
- G : Geometric attenuation factor
- F_r: Fresnel term
- $n \cdot \omega_o$: Accounts for grazing viewing angles
- $n \cdot \omega_i$: Accounts for grazing illumination angles

Half-direction transformation

Mirror Microfacets

- Light from ω_i reflected into ω_o
- Only by facets whose normal ω_h is halfway between ω_i and ω_o
- Also called the half-vector or halfway vector

Microfacet Distribution

- Definition
 - Statistical distribution of microfacet orientations

Blinn Microfacet Distribution

- Isotropic collection of microfacets
 - Only depends on $\angle w_h$, n
- Cosine power lobe
 - Exponent controls roughness/specularity

Extension

- Anisotropic collection of microfacets
 - ϕ_h determined by "tangent" vector

$$D(\omega_{\rm h}) = \frac{\sqrt{(e_x + 2)(e_y + 2)}}{2\pi} (\omega_{\rm h} \cdot \mathbf{n})^{e_x} \cos^2 \phi + e_y \sin^2 \phi$$

$$D(\omega_h) = \frac{e+2}{2\pi} (w_h \cdot n)^e$$

Geometric Attenuation Factor

- Definition
 - Models self-masking and shadowing effects of microfacets
 - Assumes V-shaped grooves
- Fully illuminated and visible

G = 1

Partial masking of reflected light

$$G = \frac{2(n \cdot \omega_h)(n \cdot \omega_o)}{(\omega_o \cdot \omega_h)}$$

Partial shadowing of incident light

$$G = \frac{2(n \cdot \omega_h)(n \cdot \omega_i)}{(\omega_i \cdot \omega_h)}$$

Final

$$G = \min\left\{1, \frac{2(n \cdot \omega_h)(n \cdot \omega_o)}{(\omega_o \cdot \omega_h)}, \frac{2(n \cdot \omega_h)(n \cdot \omega_i)}{(\omega_i \cdot \omega_h)}\right\}$$

Phong vs. Cook-Torrance

Off-Specular Lobe

(a)

(c)

(b)

(d)

Computer Graphics WS 2023/24

Combining BRDFs

Linear Combination

- Combine simple BRDFs
- Model complex BRDF
- Wavelength-dep. weights

Application

- Diffuse, specular and glossy terms
- Energy conservation: $k_d(x) + k_s(x) + k_g(x) \le 1$

 $f_r(x,\omega_i,\omega_o) = k_d(x)f_{rd}(x,\omega_i,\omega_o) + k_s(x)f_{rs}(x,\omega_i,\omega_o) + k_g(x)f_{rg}(x,\omega_i,\omega_o)$

Diffuse

Specular

Multi-Layered Materials

Weidlich et al. [2007], Arbitrarily Layered Micro-Facet Surfaces

Pearlescent Materials

Guillén et al. [2020], A General Framework for Pearlescent Materials