
Alexander Rath
Philippe Weier

Philipp Slusallek & Piotr Danilewski

Computer Graphics

- Light Transport -



Overview
• So far

– Nuts and bolts of ray tracing
• Today

– Light
• Physics behind ray tracing
• Physical light quantities
• Perception of light
• Light sources

– Light transport simulation
• Next lecture

– Reflectance properties
– Shading
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LIGHT
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What is Light ?
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What is Light ?
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What is Light ?
• Ray

– Linear propagation
– Geometrical optics

• Vector
– Polarization
– Jones Calculus: matrix representation

• Wave
– Diffraction, interference
– Maxwell equations: propagation of light

• Particle
– Light comes in discrete energy quanta: photons
– Quantum theory: interaction of light with matter

• Field
– Electromagnetic force: exchange of virtual photons
– Quantum Electrodynamics (QED): interaction between particles
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Light in Computer Graphics
• Based on human visual perception

– Macroscopic geometry
– Tristimulus color model
– Psycho-physics: tone mapping, compression, …

• Ray optics
– Macroscopic objects
– Incoherent light
– Light: scalar, real-valued quantity
– Linear propagation
– Superposition principle: light contributions add up linearly
– No attenuation in free space

• Limitations
– Microscopic structures (≈ λ): diffraction, interference
– Polarization
– Dispersion

8



Angle and Solid Angle
• The angle θ (in radians) subtended by a curve in the 

plane is the length of the corresponding arc on the 
unit circle: l = θ r = θ

• The solid angle Ω, dω subtended by an object is the 
surface area of its projection onto the unit sphere
– Units for measuring solid angle: steradian [sr] (dimensionless)
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Solid Angle in Spherical Coords
• Infinitesimally small solid angle dω

– du = r dθ
– dv = r’ dΦ = r sin θ dΦ
– dA = du dv = r2 sin θ dθ dΦ
– dω = dA / r2 = sin θ dθ dΦ

• Finite solid angle
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Solid Angle for a Surface
• The solid angle subtended by a small surface patch S with area dA is 

obtained (i) by projecting it orthogonal to the vector r to the origin:
𝑑𝐴 𝑐𝑜𝑠 𝜃

and (ii) dividing by the distance to the origin squared: d𝜔 = !" #$% &
'!

Ω = ∬!
'⃗⋅*⃗

"!
𝑑𝐴
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Radiometry
• Definition:

– Radiometry is the science of measuring radiant energy transfers. 
Radiometric quantities have physical meaning and can be directly 
measured using proper equipment such as spectral photometers.

• Radiometric Quantities
– Energy [J] Q (Photons Energy = 𝑛 ⋅ ℎ𝜈)
– Radiant power [watt = J/s] Φ (Total Flux)
– Intensity [watt/sr] I
– Irradiance [watt/m2] E
– Radiosity [watt/m2]   B
– Radiance [watt/(m2 sr)] L
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Radiant flux
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100W
in

100W
out

Flux: Total energy in a region
per unit time



Intensity
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all directions
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top hemisphere
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Φ
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𝜔top bottom

Φ

Φ = .
!
𝐼 ⋅ 𝑑𝜔

𝐼 =
dΦ
𝑑𝜔

Intensity: Flux density per solid angle



Irradiance
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Φ

Φ = .
"
𝐸 ⋅ 𝑑𝐴

𝐸 =
dΦ
𝑑𝐴 Irradiance: Incoming flux density per surface



Radiosity
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Φ

B
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Φ

Φ = .
"
𝐵 ⋅ 𝑑𝐴

𝐵 =
dΦ
𝑑𝐴 Radiosity: Outgoing flux density per surface



Radiance
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𝜔

L

𝐴

Φ

Φ = .
!
.
"
𝐿 ⋅ 𝑑𝜔𝑑𝐴# = .

!
.
"
𝐿cos𝜃 ⋅ 𝑑𝜔𝑑𝐴#

𝐿 =
d$Φ
𝑑𝜔𝑑𝐴#

=
d$Φ

𝑑𝜔𝑑𝐴cos𝜃

Radiosity: Outgoing flux density
per surface

per solid angle

ω

dA



Radiance

18

Radiant Flux

Intensity

Irradiance
Radiosity

Radiance

Φ = .
!
𝐼 ⋅ 𝑑𝜔

Φ = .
"
𝐸 ⋅ 𝑑𝐴 𝐸 = .

!
𝐿cos𝜃 ⋅ 𝑑𝜔

𝐼 = .
"
𝐿cos𝜃 ⋅ 𝑑𝐴



Radiometric Quantities: Radiance
• Radiance is used to describe radiant energy transfer
• Radiance L is defined as

– The power (flux) traveling at some point x
– In a specified direction ω = (θ, φ)
– Per unit area perpendicular to the direction of travel
– Per unit solid angle

• Thus, the differential power d2Φ radiated through the 
differential solid angle dω, from the projected 
differential area dA cosθ is:
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ω

dA

𝑑(Φ = 𝐿 𝑥,𝜔 𝑑𝐴 cos 𝜃 𝑑𝜔



Radiometric Quantities: Irradiance
• Irradiance E is defined as the total power per unit area

(flux density) incident onto a surface. To obtain the total 
flux incident to dA, the incoming radiance Li is integrated 
over the upper hemisphere Ω+ above the surface:

𝐸 ≡ :;
:"

𝑑Φ = -
<"
𝐿=(𝑥, 𝜔) cos 𝜃 𝑑𝜔 𝑑𝐴

𝐸 = -
<"
𝐿=(𝑥, 𝜔) cos 𝜃 𝑑𝜔 =6

>>

?
@@?

𝐿= 𝑥, 𝜔 cos 𝜃 sin 𝜃 𝑑𝜃𝑑𝜙
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Radiometric Quantities: Radiosity
• Irradiance E is defined as the total power per unit area

(flux density) incident onto a surface. To obtain the total 
flux incident to dA, the outgoing radiance Lo is integrated 
over the upper hemisphere Ω+ above the surface:

𝐵 ≡ :;
:"

𝑑Φ = -
<"
𝐿A(𝑥, 𝜔) cos 𝜃 𝑑𝜔 𝑑𝐴

𝐵 = -
<"
𝐿A(𝑥, 𝜔) cos 𝜃 𝑑𝜔 =6

>>

?
@@?

𝐿A 𝑥, 𝜔 cos 𝜃 sin 𝜃 𝑑𝜃𝑑𝜙

21

Radiosity B
exitant from



Spectral Properties
• Wavelength

– Light is composed of electromagnetic waves
– These waves have different frequencies and wavelengths
– Most transfer quantities are continuous functions of wavelength

• In graphics
– Each measurement L(x,ω) is for a discrete band of wavelength 

only
• Often some abstract R, G, B (but see later)
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Photometry
– The human eye is sensitive to a limited range of wavelengths

• Roughly from 380 nm to 780 nm
– Our visual system responds differently to different wavelengths

• Can be characterized by the Luminous Efficiency Function V(λ)
• Represents the average human spectral response
• Separate curves exist for light and dark adaptation of the eye

– Photometric quantities are derived from radiometric quantities by 
integrating them against this function
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Radiometry vs. Photometry
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Physics-based quantities Perception-based quantities



Perception of Light
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The eye detects radiance

f

rod sensitive to flux

angular extent of rod = resolution (» 1 arcminute2) W

W
r

22 /' lr×»W pangular extent of pupil aperture (r £ 4 mm) = solid angle

'W

l

A

projected rod size = area W×» 2lA

radiance = flux per unit area per unit solid angle
A

L
×W
F

=
'

'A W=F Lflux proportional to area and solid angle

As l increases: const2

2
2

0 ×=×W××=F L
l
rlL p

photons / second = flux = energy / time = power

(1 arcminute = 1/60 degrees)



Brightness Perception
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f

r

l

A

• A’ > A : photon flux per rod stays constant
• A’ < A : photon flux per rod decreases

Where does the Sun turn into a star ?
- Depends on apparent Sun disc size on retina
- Photon flux per rod stays the same on Mercury, Earth or Neptune
- Photon flux per rod decreases when W’ < 1 arcminute2 (beyond Neptune)

'A

'W W



Radiometry in ray tracing
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𝑑𝐴 𝑑𝜔

𝑑𝐴 𝑑𝜔
Radiance



Radiometry in ray tracing
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𝐿%
𝐿$

𝐿% = 𝐿$

𝑝% 𝑝$

color 𝑝% = color 𝑝$

Φ% = .
!
.
"!
𝐿 ⋅ 𝑑𝜔𝑑𝐴# ≈ .

"!
𝐸 ⋅ 𝑑𝐴 = 𝐸𝑆%

𝑆% 𝑆$

𝑆%
𝑆$
≈

𝑑$
𝑑%

$

Each pixel:

Total area:

Φ$ = .
!
.
""
𝐿 ⋅ 𝑑𝜔𝑑𝐴# ≈ .

""
𝐸 ⋅ 𝑑𝐴 = 𝐸𝑆$



Radiometry in ray tracing
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𝐿%
𝐿$

𝐿% = 𝐿$
𝑝% 𝑝$ color 𝑝% = 𝐿%
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𝑆$

𝑆%
𝑆$
~

𝑑$
𝑑%

$
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color 𝑝$ = 𝐿$
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LIGHT TRANSPORT
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Light Transport in a Scene
• Scene

– Lights (emitters)
– Object surfaces (partially absorbing)
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Light Transport in a Scene
• Illuminated object surfaces become emitters, too!

– Radiosity = Irradiance – absorbed photons flux density
• Radiosity: photons per second per m2 leaving surface
• Irradiance: photons per second per m2 incident on surface
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Light Transport in a Scene
• Light bounces between all mutually visible surfaces
• Dynamic energy equilibrium

– Emitted photons = absorbed photons (+ escaping photons)
→ Global Illumination
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Light Transport in a Scene
• Light interaction with surfaces

– Incident angle
– Material

→  BRDF: bidirectional reflectance distribution function
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𝐿'

𝐿(

𝐿'
𝐿(
=?



Light Transport in a Scene
• Outgoing radiance proportional to:
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– Incoming radiance 𝐿(~𝐿'

– Incident angle 𝐿(~cos 𝜃

– Material reflectance (BRDF) 𝐿(~𝑓)

– Material self emission 𝐿(~𝐿*

• Rendering equation:

𝐿( = 𝐿* +.
!#
𝑓)𝐿' cos 𝜃' 𝑑𝜔'



(Surface) Rendering Equation

• Visible surface radiance
– Surface position
– Outgoing direction

• Incoming illumination direction

• Self-emission
• Reflected light

– Incoming radiance from all directions
– Direction-dependent reflectance

(BRDF: bidirectional reflectance
distribution function)
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𝐿A 𝑥, 𝜔A = 𝐿K 𝑥, 𝜔A +-
<"
𝑓' 𝜔=, 𝑥, 𝜔A 𝐿= 𝑥, 𝜔= cos 𝜃= 𝑑𝜔=

𝐿A 𝑥, 𝜔A
𝑥
𝜔!
𝜔"

𝐿K 𝑥, 𝜔A

𝐿= 𝑥, 𝜔=

𝑓' 𝜔=, 𝑥, 𝜔A

𝜔(
𝜔'

𝜃'

𝑥



(Surface) Rendering Equation
• Fredholm integral equation of 2nd kind

– Unknown radiance appears both on the
left-hand side and inside the integral

– Numerical methods necessary to compute 
approximate solution
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𝐿" 𝑥, 𝜔M = 𝐿"# 𝑥, 𝜔M +-
<"
𝑓" 𝜔, 𝑥, 𝜔M 𝐿 𝑥, 𝜔 cos 𝜃 𝑑𝜔

𝐴

𝐵

𝐿N 𝑦,𝜔@ = 𝐿N# 𝑦,𝜔@ +-
<"
𝑓N 𝜔, 𝑦, 𝜔@ 𝐿 𝑦,𝜔 cos 𝜃 𝑑𝜔

𝜔%

𝜔$

𝑥

𝑦

𝐿" 𝑥, 𝜔% = 𝐿 RT 𝑥, 𝜔% , −𝜔%



(Surface) Rendering Equation
• Reparameterization over surfaces

– Represent receiver’s 𝑑𝜔 as emiter’s 𝑑𝐴.
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𝐴

𝐵

𝐿N 𝑦,𝜔@ = 𝐿N# 𝑦,𝜔@ +-
<"
𝑓N 𝜔, 𝑦, 𝜔@ 𝐿 𝑥, 𝜔 cos 𝜃 𝑑𝜔

𝜔$

𝑥

𝑦

𝑛!

𝑛"

𝜃!

𝜃"

𝐿N 𝑦,𝜔@ = 𝐿N# 𝑦,𝜔@ +-
"
𝑓N 𝜔TU, 𝑦, 𝜔@ cos 𝜃 𝑑𝐴



(Surface) Rendering Equation
• Reparameterization over surfaces

– Represent receiver’s 𝑑𝜔 as emiter’s 𝑑𝐴
– Check visilbity
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𝐴

𝐵

𝐿N 𝑦,𝜔@ = 𝐿N# 𝑦,𝜔@ +-
<"
𝑓N 𝜔, 𝑦, 𝜔@ 𝐿 𝑥, 𝜔 cos 𝜃 𝑑𝜔

𝜔$

𝑥

𝑦

𝑛!

𝑛"

𝜃!

𝜃"𝐿N 𝑦,𝜔@ = 𝐿N# 𝑦,𝜔@ +

-
"
𝑓N 𝜔TU, 𝑦, 𝜔@ 𝐿 𝑦,𝜔TU 𝑉 𝑥, 𝑦

cos 𝜃N cos 𝜃"
𝑥 − 𝑦 @ 𝑑𝐴

𝑑𝐴
𝜃" 𝑑𝜔

𝑑𝜔 =
cos 𝜃"
𝑥 − 𝑦 $ 𝑑𝐴 𝑉 𝑥, 𝑦 = W0 ⟺ 𝑅𝑇 𝑥, 𝜔% ≠ 𝑦

1 ⟺ 𝑅𝑇 𝑥, 𝜔% = 𝑦



LIGHT SOURCES
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Light Specifications
• Emitted Power Φe

– Total brightness
• Spectral Distribution

– Continuous thermal spectrum
– Discrete spectral lines

• Approximation
– RGB color
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Light Types
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Ambient Light
• Omnidirectional Constant Illumination

– Identical incident radiance from all directions

• Not Physically Plausible
– Crude approximation to indirect illumination
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𝐿)+ 𝑥, 𝜔( = 𝐿,.
!#
𝑓) 𝜔' , 𝑥, 𝜔( cos 𝜃' 𝑑𝜔' = 𝐿, 𝜌) 𝑥, 𝜔(



Point Light
• Sphere of Radius r

– Surface area: 4 π r2

• Irradiance on Surrounding Sphere
– Er = Φe / (4 π r2)

• Quadratic Surface Area
– Double distance from emitter: sphere area four times bigger

• Inverse Square Law
– Irradiance falls off with inverse of squared distance
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𝐸*
𝐸(
=
r((

𝑟*(
E2

E1

r1

r2



Isotropic Point Light
• Emitted Intensity

– 𝐼 = #!
$%

• Irradiance on Surface dA

• Illumination

• Extrinsic Parameters
– Position
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dA

r

dw

q

𝐸 𝑥 =
𝑑Φ*

𝑑𝐴 =
𝑑Φ*

𝑑𝜔
𝑑𝜔
𝑑𝐴 = 𝐼

𝑑𝜔
𝑑𝐴 = 𝐼

𝑑𝐴 cos 𝜃
𝑟$𝑑𝐴 = 𝐼

cos 𝜃
𝑟$

𝐿&' 𝑥, 𝜔! =
𝐼

𝑥 − 𝑦 ( 𝑉(𝑥, 𝑦)𝑓& 𝜔(𝑥, 𝑦), 𝑥, 𝜔! cos 𝜃"



Anisotropic Point Light
• Emitted Intensity

– 𝐼(𝜔) = Φ)𝑃(𝜔)
• Directional Distribution

– Tabulated
• Goniometric diagram

– Analytical
• E.g. Warn (un-normalized)

– Zero if dot product < 0
– 𝑃 𝜔 = (𝜔 ⋅ 𝜔")#

• Extrinsic Parameters
– Position
– Forward vector 𝜔'

• Illumination
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𝐿&' 𝑥, 𝜔! =
𝐼(−𝜔)
𝑥 − 𝑦 ( 𝑉(𝑥, 𝑦)𝑓& 𝜔(𝑥, 𝑦), 𝑥, 𝜔! cos 𝜃"



Spot Light
• Restricted Directional Distribution

– If  ∠𝜔,𝜔' < 𝜃* 𝑡ℎ𝑒𝑛 𝑃 𝜔 = (𝜔 ⋅ 𝜔')+
– Else 𝑃 𝜔 = 0
– With cut-off angle 𝜃*

50



Projective Light
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Projective Light
• Unit direction from light center to surface point
• Find light-screen coordinates from ray direction

– Light-space coords: dot product with light basis vectors
– Like for a perspective camera, but in reverse

• 𝑃 𝜔 = color/intensity at corresponding coordinates
• Extrinsic Parameters

– Position
– Forward vector
– Up vector
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Projective Light
• Examples
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Directional Light
• Set point light to infinity

– In the limit, all light rays have parallel directions
• Illumination

• Extrinsic Parameters
– Forward vector
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𝐿&' 𝑥, 𝜔! = 𝐵 𝑦 𝑉(𝑥, 𝜔")𝑓& 𝜔", 𝑥, 𝜔! cos 𝜃"



Sky Light
• Sun

– Point source (approx.)
– White light (by def.)

• Sky
– Area source
– Scattering: blue

• Horizon
– Brighter
– Haze: whitish

• Overcast sky
– Multiple scattering

in clouds
– Uniform grey
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Courtesy Lynch & Livingston



PRACTICAL APPROXIMATION
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Rendering Equation: Approximations

• Approximations based only on empirical foundations
– An example: polygon rendering in OpenGL

• Using RGB instead of full spectrum
– Follows roughly the eye’s sensitivity

• Sampling hemisphere along finite, discrete directions
– Simplifies integration to summation

• Reflection function model
– Parameterized function

• Ambient: constant, non-directional, background light
• Diffuse: light reflected uniformly in all directions
• Specular: light of higher intensity in mirror-reflection direction
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𝐿A 𝑥, 𝜔A = 𝐿K 𝑥, 𝜔A +-
<"
𝑓' 𝜔=, 𝑥, 𝜔A 𝐿= 𝑥, 𝜔= cos 𝜃= 𝑑𝜔=



Wrap Up
• Physical Quantities in Rendering

– Radiance
– Radiosity
– Irradiance
– Intensity

• Light Perception
• Light Sources
• Rendering Equation

– Integral equation
– Balance of radiance
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