Computer Graphics

- Light Transport -

Alexander Rath
Philippe Weier
Philipp Slusallek \& Piotr Danilewski

Overview

- So far
- Nuts and bolts of ray tracing
- Today
- Light
- Physics behind ray tracing
- Physical light quantities
- Perception of light
- Light sources
- Light transport simulation
- Next lecture
- Reflectance properties
- Shading

LIGHT

What is Light?

What is Light?

What is Light?

- Ray
- Linear propagation
- Geometrical optics
- Vector
- Polarization
- Jones Calculus: matrix representation
- Wave
- Diffraction, interference
- Maxwell equations: propagation of light
- Particle
- Light comes in discrete energy quanta: photons
- Quantum theory: interaction of light with matter
- Field
- Electromagnetic force: exchange of virtual photons
- Quantum Electrodynamics (QED): interaction between particles

What is Light?

- Ray
- Linear propagation
- Geometrical optics
- Vector
- Polarization
- Jones Calculus: matrix representation
- Wave
- Diffraction, interference
- Maxwell equations: propagation of light
- Particle
- Light comes in discrete energy quanta: photons
- Quantum theory: interaction of light with matter
- Field
- Electromagnetic force: exchange of virtual photons
- Quantum Electrodynamics (QED): interaction between particles

Light in Computer Graphics

- Based on human visual perception
- Macroscopic geometry
- Tristimulus color model
- Psycho-physics: tone mapping, compression, ...
- Ray optics
- Macroscopic objects
- Incoherent light
- Light: scalar, real-valued quantity
- Linear propagation
- Superposition principle: light contributions add up linearly
- No attenuation in free space
- Limitations
- Microscopic structures ($\approx \lambda$): diffraction, interference
- Polarization
- Dispersion

Angle and Solid Angle

- The angle θ (in radians) subtended by a curve in the plane is the length of the corresponding arc on the unit circle: $I=\theta r=\theta$
- The solid angle Ω, $d \omega$ subtended by an object is the surface area of its projection onto the unit sphere
- Units for measuring solid angle: steradian [sr] (dimensionless)

Solid Angle in Spherical Coords

- Infinitesimally small solid angle d ω
$-d u=r d \theta$
$-d v=r^{\prime} d \Phi=r \sin \theta d \Phi$
$-d A=d u d v=r^{2} \sin \theta d \theta d \Phi$
$-d \omega=d A / r^{2}=\sin \theta d \theta d \Phi$
- Finite solid angle

$$
\Omega=\int_{\phi_{0}}^{\phi_{1}} d \phi \int_{\theta_{0}(\phi)}^{\theta_{1}(\phi)} \sin \theta d \theta
$$

Solid Angle for a Surface

- The solid angle subtended by a small surface patch S with area $d A$ is obtained (i) by projecting it orthogonal to the vector r to the origin:

$d A \cos \theta$

and (ii) dividing by the distance to the origin squared: $\mathrm{d} \omega=\frac{\mathrm{d} A \cos \theta}{r^{2}}$

$$
\Omega=\iint_{S} \frac{\vec{r} \cdot \vec{n}}{r^{3}} d A
$$

Radiometry

- Definition:
- Radiometry is the science of measuring radiant energy transfers. Radiometric quantities have physical meaning and can be directly measured using proper equipment such as spectral photometers.
- Radiometric Quantities
- Energy
- Radiant power
- Intensity
- Irradiance
- Radiosity
- Radiance
[J]
[watt = J/s]
[watt/sr]
[watt/m²]
[watt/m²]
[watt/(m² sr)] L

Q (Photons Energy $=n \cdot h v$) (Total Flux)

Radiant flux

Intensity

100W
all directions

$\Phi=\int_{\Omega} I \cdot d \omega$
$I=\frac{\mathrm{d} \Phi}{d \omega}$

100W

Intensity: Flux density per solid angle

Irradiance

Irradiance: Incoming flux density per surface

Radiosity

Radiance

Radiance

Radiometric Quantities: Radiance

- Radiance is used to describe radiant energy transfer
- Radiance L is defined as
- The power (flux) traveling at some point x
- In a specified direction $\omega=(\theta, \varphi)$
- Per unit area perpendicular to the direction of travel
- Per unit solid angle
- Thus, the differential power $\boldsymbol{d}^{2} \boldsymbol{\Phi}$ radiated through the differential solid angle $d \omega$, from the projected ω differential area $d A \cos \theta$ is:

Radiometric Quantities: Irradiance

- Irradiance E is defined as the total power per unit area (flux density) incident onto a surface. To obtain the total flux incident to $d A$, the incoming radiance L_{i} is integrated over the upper hemisphere Ω_{+}above the surface:

$$
\begin{gathered}
E \equiv \frac{d \Phi}{d A} \\
d \Phi=\left[\int_{\Omega_{+}} L_{i}(x, \omega) \cos \theta d \omega\right] d A \\
E=\int_{\Omega_{+}} L_{i}(x, \omega) \cos \theta d \omega=\int_{0}^{\frac{\pi}{2}} 2 \pi
\end{gathered} \int_{i}(x, \omega) \cos \theta \sin \theta d \theta d \phi
$$

Radiometric Quantities: Radiosity

- Radiosity B is defined as the total power per unit area (flux density) exitant from a surface. To obtain the total flux incident to $d A$, the outgoing radiance L_{o} is integrated over the upper hemisphere Ω_{+}above the surface:

$$
\begin{gathered}
B \equiv \frac{d \Phi}{d A} \\
d \Phi=\left[\int_{\Omega_{+}} L_{o}(x, \omega) \cos \theta d \omega\right] d A \\
B=\int_{\Omega_{+}} L_{o}(x, \omega) \cos \theta d \omega=\int_{0}^{\frac{\pi}{2} 2 \pi} \int_{o}(x, \omega) \cos \theta \sin \theta d \theta d \phi
\end{gathered}
$$

Spectral Properties

- Wavelength
- Light is composed of electromagnetic waves
- These waves have different frequencies and wavelengths
- Most transfer quantities are continuous functions of wavelength
- In graphics
- Each measurement $L(x, \omega)$ is for a discrete band of wavelength only
- Often some abstract R, G, B (but see later)

Photometry

- The human eye is sensitive to a limited range of wavelengths
- Roughly from 380 nm to 780 nm
- Our visual system responds differently to different wavelengths
- Can be characterized by the Luminous Efficiency Function $\mathrm{V}(\lambda)$
- Represents the average human spectral response
- Separate curves exist for light and dark adaptation of the eye
- Photometric quantities are derived from radiometric quantities by integrating them against this function

Radiometry vs. Photometry

Physics-based quantities
Perception-based quantities

Radiometry		\rightarrow	Photometry	
W	Radiant power	\rightarrow	Luminous power	Lumens (lm)
$\mathrm{W} / \mathrm{m}^{2}$	Radiosity Irradiance	\rightarrow	Luminosity Illuminance	Lux $\left(\mathrm{lm} / \mathrm{m}^{2}\right)$
$\mathrm{W} / \mathrm{m}^{2} / \mathrm{sr}$	Radiance	\rightarrow	Luminance	$\mathrm{cd} / \mathrm{m}^{2}\left(\mathrm{~lm} / \mathrm{m}^{2} / \mathrm{sr}\right)$

Perception of Light

photons $/$ second $=$ flux $=$ energy $/$ time $=$ power angular extent of rod $=$ resolution (≈ 1 arcminute ${ }^{2}$) projected rod size = area
angular extent of pupil aperture ($r \leq 4 \mathrm{~mm}$) = solid angle flux proportional to area and solid angle radiance $=$ flux per unit area per unit solid angle As l increases:

$$
\Phi_{0}=L \cdot l^{2} \cdot \Omega \cdot \pi \frac{r^{2}}{l^{2}}=L \cdot \mathrm{const}
$$

Brightness Perception

- $A^{\prime}>A$: photon flux per rod stays constant
- $A^{\prime}<A$: photon flux per rod decreases

Where does the Sun turn into a star ?

- Depends on apparent Sun disc size on retina
- Photon flux per rod stays the same on Mercury, Earth or Neptune
- Photon flux per rod decreases when $\Omega^{\prime}<1$ arcminute ${ }^{2}$ (beyond Neptune)

Radiometry in ray tracing

Radiometry in ray tracing

Each pixel:

$$
\begin{aligned}
L_{1} & =L_{2} \\
\operatorname{color}\left[p_{1}\right] & =\operatorname{color}\left[p_{2}\right]
\end{aligned}
$$

Total area:

$$
\begin{aligned}
& \Phi_{1}=\int_{\Omega} \int_{A_{1}} L \cdot d \omega d A_{\perp} \approx \int_{A_{1}} E \cdot d A=E S_{1} \\
& \Phi_{2}=\int_{\Omega} \int_{A_{2}} L \cdot d \omega d A_{\perp} \approx \int_{A_{2}} E \cdot d A=E S_{2}
\end{aligned}
$$

Radiometry in ray tracing

Each pixel:

$$
\begin{aligned}
L_{1} & =L_{2} \\
\operatorname{color}\left[p_{1}\right] & =L_{1} \frac{S_{1}}{S_{p_{1}}} \\
\operatorname{color}\left[p_{2}\right] & =L_{2} \frac{S_{2}}{S_{p_{2}}}
\end{aligned}
$$

$$
\frac{S_{1}}{S_{2}} \sim\left(\frac{d_{2}}{d_{1}}\right)^{2}
$$

LIGHT TRANSPORT

Light Transport in a Scene

- Scene
- Lights (emitters)
- Object surfaces (partially absorbing)

Light Transport in a Scene

- Illuminated object surfaces become emitters, too!
- Radiosity = Irradiance - absorbed photons flux density
- Radiosity: photons per second per m^{2} leaving surface
- Irradiance: photons per second per m^{2} incident on surface

Light Transport in a Scene

- Light bounces between all mutually visible surfaces
- Dynamic energy equilibrium
- Emitted photons = absorbed photons (+ escaping photons)
\rightarrow Global Illumination

Light Transport in a Scene

- Light interaction with surfaces
- Incident angle
- Material
\rightarrow BRDF: bidirectional reflectance distribution function

Light Transport in a Scene

- Outgoing radiance proportional to:
- Incoming radiance
- Incident angle
- Material reflectance (BRDF)
- Material self emission
- Rendering equation:

$$
L_{o}=L_{e}+\int_{\Omega_{+}} f_{r} L_{i} \cos \theta_{i} d \omega_{i}
$$

(Surface) Rendering Equation

$$
L_{o}\left(x, \omega_{o}\right)=L_{e}\left(x, \omega_{o}\right)+\int_{\Omega_{+}} f_{r}\left(\omega_{i}, x, \omega_{o}\right) L_{i}\left(x, \omega_{i}\right) \cos \theta_{i} d \omega_{i}
$$

- Visible surface radiance
- Surface position
- Outgoing direction
- Incoming illumination direction
- Self-emission

$$
L_{e}\left(x, \omega_{o}\right)
$$

- Reflected light
- Incoming radiance from all directions $L_{i}\left(x, \omega_{i}\right)$
- Direction-dependent reflectance (BRDF: bidirectional reflectance distribution function)

$$
f_{r}\left(\omega_{i}, x, \omega_{o}\right)
$$

(Surface) Rendering Equation

- Fredholm integral equation of 2nd kind
- Unknown radiance appears both on the left-hand side and inside the integral
- Numerical methods necessary to compute approximate solution

(Surface) Rendering Equation

- Reparameterization over surfaces
- Represent receiver's $d \omega$ as emiter's $d A$.

(Surface) Rendering Equation

- Reparameterization over surfaces
- Represent receiver's $d \omega$ as emiter's $d A$
- Check visilbity

LIGHT SOURCES

Light Specifications

- Emitted Power $\boldsymbol{\Phi}_{\mathrm{e}}$
- Total brightness
- Spectral Distribution
- Continuous thermal spectrum
- Discrete spectral lines
- Approximation
- RGB color

Font Light

Direstiond Ligk

Ambient Light

- Omnidirectional Constant Illumination
- Identical incident radiance from all directions

$$
L_{r l}\left(x, \omega_{o}\right)=L_{a} \int_{\Omega_{+}} f_{r}\left(\omega_{i}, x, \omega_{o}\right) \cos \theta_{i} d \omega_{i}=L_{a} \rho_{r}\left(x, \omega_{o}\right)
$$

- Not Physically Plausible
- Crude approximation to indirect illumination

Point Light

- Sphere of Radius r
- Surface area: $4 \pi r^{2}$
- Irradiance on Surrounding Sphere
- $E_{r}=\Phi_{e} /\left(4 \pi r^{2}\right)$
- Quadratic Surface Area
- Double distance from emitter: sphere area four times bigger
- Inverse Square Law
- Irradiance falls off with inverse of squared distance

$$
\frac{E_{1}}{E_{2}}=\frac{\mathrm{r}_{2}^{2}}{r_{1}^{2}}
$$

Isotropic Point Light

- Emitted Intensity
$-I=\frac{\Phi_{e}}{4 \pi}$
- Irradiance on Surface dA

$$
E(x)=\frac{d \Phi_{e}}{d A}=\frac{d \Phi_{e}}{d \omega} \frac{d \omega}{d A}=I \frac{d \omega}{d A}=I \frac{d A \cos \theta}{r^{2} d A}=I \frac{\cos \theta}{r^{2}}
$$

- Illumination

$$
L_{r l}\left(x, \omega_{o}\right)=\frac{I}{\|x-y\|^{2}} V(x, y) f_{r}\left(\omega(x, y), x, \omega_{o}\right) \cos \theta_{i}
$$

- Extrinsic Parameters
- Position

Anisotropic Point Light

- Emitted Intensity
$-I(\omega)=\Phi_{e} P(\omega)$
- Directional Distribution
- Tabulated
- Goniometric diagram
- Analytical
- E.g. Warn (un-normalized)
- Zero if dot product < 0
$-P(\omega)=\left(\omega \cdot \omega_{l}\right)^{n}$

- Extrinsic Parameters
- Position
- Forward vector ω_{l}
- Illumination

$$
L_{r l}\left(x, \omega_{o}\right)=\frac{I(-\omega)}{\|x-y\|^{2}} V(x, y) f_{r}\left(\omega(x, y), x, \omega_{o}\right) \cos \theta_{i}
$$

Spot Light

- Restricted Directional Distribution
- If $\angle \omega, \omega_{l}<\theta_{c}$ then $P(\omega)=\left(\omega \cdot \omega_{l}\right)^{n}$
- Else $P(\omega)=0$
- With cut-off angle θ_{c}

Projective Light

Projective Light

- Unit direction from light center to surface point
- Find light-screen coordinates from ray direction
- Light-space coords: dot product with light basis vectors
- Like for a perspective camera, but in reverse
- $P(\omega)=$ color/intensity at corresponding coordinates
- Extrinsic Parameters
- Position
- Forward vector
- Up vector

Projective Light

- Examples

Directional Light

- Set point light to infinity
- In the limit, all light rays have parallel directions
- Illumination

$$
L_{r l}\left(x, \omega_{o}\right)=B(y) V\left(x, \omega_{i}\right) f_{r}\left(\omega_{i}, x, \omega_{o}\right) \cos \theta_{i}
$$

- Extrinsic Parameters
- Forward vector

Sky Light

- Sun
- Point source (approx.)
- White light (by def.)
- Sky
- Area source
- Scattering: blue
- Horizon
- Brighter
- Haze: whitish
- Overcast sky
- Multiple scattering in clouds
- Uniform grey

PRACTICAL APPROXIMATION

Rendering Equation: Approximations

$$
L_{o}\left(x, \omega_{o}\right)=L_{e}\left(x, \omega_{o}\right)+\int_{\Omega_{+}} f_{r}\left(\omega_{i}, x, \omega_{o}\right) L_{i}\left(x, \omega_{i}\right) \cos \theta_{i} d \omega_{i}
$$

- Approximations based only on empirical foundations
- An example: polygon rendering in OpenGL
- Using RGB instead of full spectrum
- Follows roughly the eye's sensitivity
- Sampling hemisphere along finite, discrete directions
- Simplifies integration to summation
- Reflection function model
- Parameterized function
- Ambient: constant, non-directional, background light
- Diffuse: light reflected uniformly in all directions
- Specular: light of higher intensity in mirror-reflection direction

Wrap Up

- Physical Quantities in Rendering
- Radiance
- Radiosity
- Irradiance
- Intensity
- Light Perception
- Light Sources
- Rendering Equation
- Integral equation
- Balance of radiance

