Computer Graphics

- Light Transport -

Alexander Rath Philippe Weier Philipp Slusallek & Piotr Danilewski

Overview

So far

- Nuts and bolts of ray tracing
- Today
 - Light
 - Physics behind ray tracing
 - Physical light quantities
 - Perception of light
 - Light sources
 - Light transport simulation

Next lecture

- Reflectance properties
- Shading

- Ray
 - Linear propagation
 - Geometrical optics
- Vector
 - Polarization
 - Jones Calculus: matrix representation
- Wave
 - Diffraction, interference
 - Maxwell equations: propagation of light
- Particle
 - Light comes in discrete energy quanta: photons
 - Quantum theory: interaction of light with matter
- Field
 - Electromagnetic force: exchange of virtual photons
 - Quantum Electrodynamics (QED): interaction between particles

- Ray
 - Linear propagation
 - Geometrical optics
- Vector
 - Polarization
 - Jones Calculus: matrix representation
- Wave
 - Diffraction, interference
 - Maxwell equations: propagation of light
- Particle
 - Light comes in discrete energy quanta: photons
 - Quantum theory: interaction of light with matter
- Field
 - Electromagnetic force: exchange of virtual photons
 - Quantum Electrodynamics (QED): interaction between particles

Light in Computer Graphics

Based on human visual perception

- Macroscopic geometry
- Tristimulus color model
- Psycho-physics: tone mapping, compression, ...

Ray optics

- Macroscopic objects
- Incoherent light
- Light: scalar, real-valued quantity
- Linear propagation
- Superposition principle: light contributions add up linearly
- No attenuation in free space

Limitations

- Microscopic structures ($\approx \lambda$): diffraction, interference
- Polarization
- Dispersion

Angle and Solid Angle

- The angle θ (in radians) subtended by a curve in the plane is the length of the corresponding arc on the unit circle: $I = \theta r = \theta$
- The solid angle Ω , $d\omega$ subtended by an object is the surface area of its projection onto the unit sphere
 - Units for measuring solid angle: steradian [sr] (dimensionless)

Solid Angle in Spherical Coords

- Infinitesimally small solid angle $d\omega$
 - $du = r d\theta$
 - $dv = r' d\Phi = r \sin \theta d\Phi$
 - $dA = du dv = r^2 \sin \theta d\theta d\Phi$

 $\phi_1 \qquad \theta_1(\phi)$

 $- d\omega = dA / r^2 = \sin \theta \, d\theta \, d\Phi$

Finite solid angle

$$dV = f d\phi = f \sin \theta d\phi d\phi$$

$$dA = du dv = r^{2} \sin \theta d\theta d\phi$$

$$dw = dA / r^{2} = \sin \theta d\theta d\phi$$
inite solid angle
$$\Omega = \int_{\phi_{0}}^{\phi_{1}} d\phi \int_{\theta_{0}(\phi)}^{\theta_{1}(\phi)} \sin \theta d\theta$$

Solid Angle for a Surface

 The solid angle subtended by a small surface patch S with area dA is obtained (i) by projecting it orthogonal to the vector r to the origin: *dA cos θ*

and (ii) dividing by the distance to the origin squared: $d\omega = \frac{dA \cos \theta}{r^2}$

$$\Omega = \iint_S \frac{\vec{r} \cdot \vec{n}}{r^3} dA$$

Radiometry

- Definition:
 - Radiometry is the science of measuring radiant energy transfers.
 Radiometric quantities have physical meaning and can be directly measured using proper equipment such as spectral photometers.

Φ

E

B

1

Radiometric Quantities

- Energy [J]
- Radiant power [watt = J/s]
- Intensity [watt/sr]
- Irradiance [watt/m²]
- Radiosity [watt/m²]
- Radiance [watt/(m² sr)]

- Q (Photons Energy = $n \cdot hv$)
 - (Total Flux)

Radiant flux

Intensity

 $d\omega$

Irradiance

Radiosity

Radiance

Radiance

Radiometric Quantities: Radiance

- Radiance is used to describe radiant energy transfer
- Radiance *L* is defined as
 - The power (flux) traveling at some point x
 - In a specified direction $\omega = (\theta, \phi)$
 - Per unit area perpendicular to the direction of travel
 - Per unit solid angle
- Thus, the differential power $d^2 \Phi$ radiated through the differential solid angle $d\omega$, from the projected ω differential area $dA \cos\theta$ is:

 $d^2\Phi = L(x,\omega)dA\cos\theta\,d\omega$

Radiometric Quantities: Irradiance

• Irradiance E is defined as the **total power per unit area** (flux density) incident onto a surface. To obtain the total flux incident to dA, the incoming radiance L_i is integrated over the upper hemisphere Ω_+ above the surface:

$$E \equiv \frac{d\Phi}{dA}$$
$$d\Phi = \left[\int_{\Omega_{+}} L_{i}(x,\omega) \cos \theta \, d\omega \right] dA$$
$$E = \int_{\Omega_{+}} L_{i}(x,\omega) \cos \theta \, d\omega = \iint_{00}^{\frac{\pi}{2}2\pi} L_{i}(x,\omega) \cos \theta \sin \theta \, d\theta d\phi$$

Radiometric Quantities: Radiosity

• Radiosity B is defined as the total power per unit area (flux density) exitant from a surface. To obtain the total flux incident to dA, the outgoing radiance L_o is integrated over the upper hemisphere Ω_+ above the surface:

$$B \equiv \frac{d\Phi}{dA}$$
$$d\Phi = \left[\int_{\Omega_{+}} L_{o}(x,\omega) \cos \theta \, d\omega \right] dA$$
$$B = \int_{\Omega_{+}} L_{o}(x,\omega) \cos \theta \, d\omega = \iint_{00}^{\frac{\pi}{2}2\pi} L_{o}(x,\omega) \cos \theta \sin \theta \, d\theta d\phi$$

Spectral Properties

Wavelength

- Light is composed of electromagnetic waves
- These waves have different frequencies and wavelengths
- Most transfer quantities are continuous functions of wavelength

In graphics

- Each measurement $L(x,\omega)$ is for a discrete band of wavelength only
 - Often some abstract R, G, B (but see later)

Photometry

- The human eye is sensitive to a limited range of wavelengths
 - Roughly from 380 nm to 780 nm
- Our visual system responds differently to different wavelengths
 - Can be characterized by the Luminous Efficiency Function V(λ)
 - Represents the average human spectral response
 - · Separate curves exist for light and dark adaptation of the eye
- Photometric quantities are derived from radiometric quantities by integrating them against this function

Radiometry vs. Photometry

Physics-based quantities

Perception-based quantities

Radiometry		\rightarrow	Photometry	
W	Radiant power	\rightarrow	Luminous power	Lumens (lm)
W/m ²	Radiosity	\rightarrow	Luminosity	Lux (lm/m ²)
	Irradiance		Illuminance	
W/m ² /sr	Radiance	\rightarrow	Luminance	cd/m ² (lm/m ² /sr)

Perception of Light

photons / second = flux = energy / time = power angular extent of rod = resolution (\approx 1 arcminute²) projected rod size = area

angular extent of pupil aperture (r \leq 4 mm) = **solid angle** flux proportional to area and solid angle

radiance = flux per unit area per unit solid angle

The eye detects radiance

As *l* increases:

rod sensitive to flux
$$\Omega$$
 $A \approx l^2 \cdot \Omega$ $\Omega' \approx \pi \cdot r^2 / l^2$ $\Phi = L \land \Omega'$ $L = \frac{\Phi}{\Omega' \cdot A}$

 $\Phi_0 = L \cdot l^2 \cdot \Omega \cdot \pi \frac{r^2}{l^2} = L \cdot \text{const}$

Ð

Brightness Perception

- A' > A : photon flux per rod stays constant
- A' < A : photon flux per rod decreases

Where does the Sun turn into a star ?

- Depends on apparent Sun disc size on retina
- Photon flux per rod stays the same on Mercury, Earth or Neptune
- Photon flux per rod decreases when $\Omega' < 1$ arcminute² (beyond Neptune)

Radiometry in ray tracing

Radiometry in ray tracing

Each pixel: $L_1 = L_2$ $\operatorname{color}[p_1] = \operatorname{color}[p_2]$

Total area: $\Phi_{1} = \int_{\Omega} \int_{A_{1}} L \cdot d\omega dA_{\perp} \approx \int_{A_{1}} E \cdot dA = ES_{1}$ $\Phi_{2} = \int_{\Omega} \int_{A_{2}} L \cdot d\omega dA_{\perp} \approx \int_{A_{2}} E \cdot dA = ES_{2}$

Radiometry in ray tracing

 $\frac{S_1}{S_2} \sim \left(\frac{d_2}{d_1}\right)^2$

 p_1

 p_2

Each pixel: $L_1 = L_2$

$$\operatorname{color}[p_1] = L_1 \frac{S_1}{S_{p_1}}$$

$$\operatorname{color}[p_2] = L_2 \frac{S_2}{S_{p_2}}$$

LIGHT TRANSPORT

- Scene
 - Lights (emitters)
 - Object surfaces (partially absorbing)

• Illuminated object surfaces become emitters, too!

- Radiosity = Irradiance absorbed photons flux density
 - Radiosity: photons per second per m² leaving surface
 - Irradiance: photons per second per m² incident on surface

- Light bounces between all mutually visible surfaces
- Dynamic energy equilibrium
 - Emitted photons = absorbed photons (+ escaping photons)
 - → Global Illumination

Light interaction with surfaces

- Incident angle
- Material
 - → BRDF: bidirectional reflectance distribution function

- Outgoing radiance proportional to:
 - Incoming radiance $L_o \sim L_i$
 - Incident angle $L_o \sim \cos \theta$
 - Material reflectance (BRDF) $L_o \sim f_r$
 - Material self emission

 $L_o \sim L_e$

• Rendering equation:

$$L_o = L_e + \int_{\Omega_+} f_r L_i \cos \theta_i \, d\omega_i$$

(Surface) Rendering Equation

$$L_o(x,\omega_o) = L_e(x,\omega_o) + \int_{\Omega_+} f_r(\omega_i, x, \omega_o) L_i(x,\omega_i) \cos \theta_i \, d\omega_i$$

- Visible surface radiance
 - Surface position
 - Outgoing direction
- Incoming illumination direction
- Self-emission
- Reflected light
 - Incoming radiance from all directions
 - Direction-dependent reflectance (BRDF: bidirectional reflectance distribution function)

 $L_i(x,\omega_i)$

 $f_r(\omega_i, x, \omega_o)$

(Surface) Rendering Equation

- Fredholm integral equation of 2nd kind
 - Unknown radiance appears both on the left-hand side and inside the integral
 - Numerical methods necessary to compute approximate solution

$$L_{A}(x,\omega_{1}) = L_{A_{e}}(x,\omega_{1}) + \int_{\Omega_{+}} f_{A}(\omega, x,\omega_{1})L(x,\omega)\cos\theta \,d\omega$$

$$L_{A}(x,\omega_{1}) = L(\operatorname{RT}(x,\omega_{1}),-\omega_{1})$$

$$L_{B}(y,\omega_{2}) = L_{B_{e}}(y,\omega_{2}) + \int_{\Omega_{+}} f_{B}(\omega, y,\omega_{2})L(y,\omega)\cos\theta \,d\omega$$

$$\omega_{2}$$

$$y$$

$$B$$

 \mathbf{N}

(Surface) Rendering Equation

Reparameterization over surfaces

- Represent receiver's $d\omega$ as emiter's dA.

$$L_{B}(y,\omega_{2}) = L_{B_{e}}(y,\omega_{2}) + \int_{\Omega_{+}} f_{B}(\omega, y, \omega_{2})L(x,\omega) \cos\theta \,d\omega$$

$$\downarrow$$

$$L_{B}(y,\omega_{2}) = L_{B_{e}}(y,\omega_{2}) + \int_{A} f_{B}(\omega_{yx}, y, \omega_{2}) ? \cos\theta \,dA$$

$$\downarrow$$

$$\omega_{2}$$

$$\psi_{B}$$

(Surface) Rendering Equation

- Reparameterization over surfaces
 - Represent receiver's $d\omega$ as emiter's dA
 - Check visilbity

$$L_B(y,\omega_2) = L_{B_e}(y,\omega_2) + \int_{\Omega_+} f_B(\omega, y,\omega_2) L(x,\omega) \cos\theta \, d\omega$$

$$L_B(y,\omega_2) = L_{B_e}(y,\omega_2) + \int_A f_B(\omega_{yx}, y, \omega_2) L(y, \omega_{yx}) V(x, y) \frac{\cos \theta_B \cos \theta_A}{\|x - y\|^2} dA$$

LIGHT SOURCES

Light Specifications

• Emitted Power $\boldsymbol{\Phi}_{e}$

Total brightness

Spectral Distribution

- Continuous thermal spectrum
- Discrete spectral lines

Approximation

RGB color

(See Chapter 5) Ambient Light

Light Types

Ambient Light

Omnidirectional Constant Illumination

- Identical incident radiance from all directions

$$L_{rl}(x,\omega_o) = L_a \int_{\Omega_+} f_r(\omega_i, x, \omega_o) \cos \theta_i \, d\omega_i = L_a \, \rho_r(x, \omega_o)$$

- Not Physically Plausible
 - Crude approximation to indirect illumination

Point Light

• Sphere of Radius *r*

– Surface area: $4 \pi r^2$

Irradiance on Surrounding Sphere

 $- E_r = \Phi_e / (4 \pi r^2)$

Quadratic Surface Area

- Double distance from emitter: sphere area four times bigger

Inverse Square Law

- Irradiance falls off with inverse of squared distance

Isotropic Point Light

Emitted Intensity

$$-I = \frac{\Phi_e}{4\pi}$$

Irradiance on Surface dA

$$E(x) = \frac{d\Phi_e}{dA} = \frac{d\Phi_e}{d\omega}\frac{d\omega}{dA} = I\frac{d\omega}{dA} = I\frac{dA\cos\theta}{r^2dA} = I\frac{\cos\theta}{r^2}$$

Illumination

$$L_{rl}(x,\omega_o) = \frac{I}{\|x-y\|^2} V(x,y) f_r(\omega(x,y),x,\omega_o) \cos \theta_i$$

- Extrinsic Parameters
 - Position

dA

Anisotropic Point Light

Spot Light

Restricted Directional Distribution

- If $\angle \omega, \omega_l < \theta_c$ then $P(\omega) = (\omega \cdot \omega_l)^n$
- Else $P(\omega) = 0$
- With cut-off angle θ_c

Projective Light

Projective Light

- Unit direction from light center to surface point
- Find light-screen coordinates from ray direction
 - Light-space coords: dot product with light basis vectors
 - Like for a perspective camera, but in reverse
- $P(\omega)$ = color/intensity at corresponding coordinates

Extrinsic Parameters

- Position
- Forward vector
- Up vector

Projective Light

Examples

Directional Light

Set point light to infinity

- In the limit, all light rays have parallel directions

Illumination

 $L_{rl}(x,\omega_o) = B(y)V(x,\omega_i)f_r(\omega_i,x,\omega_o)\cos\theta_i$

- Extrinsic Parameters
 - Forward vector

Sky Light

• Sun

- Point source (approx.)
- White light (by def.)
- Sky
 - Area source
 - Scattering: blue

Horizon

- Brighter
- Haze: whitish

Overcast sky

- Multiple scattering in clouds
- Uniform grey

Courtesy Lynch & Livingston

PRACTICAL APPROXIMATION

Rendering Equation: Approximations

$$L_o(x,\omega_o) = L_e(x,\omega_o) + \int_{\Omega_+} f_r(\omega_i, x, \omega_o) L_i(x,\omega_i) \cos \theta_i \, d\omega_i$$

- Approximations based only on empirical foundations
 - An example: polygon rendering in OpenGL
- Using RGB instead of full spectrum
 - Follows roughly the eye's sensitivity
- Sampling hemisphere along finite, discrete directions
 - Simplifies integration to summation
- Reflection function model
 - Parameterized function
 - Ambient: constant, non-directional, background light
 - Diffuse: light reflected uniformly in all directions
 - Specular: light of higher intensity in mirror-reflection direction

Wrap Up

Physical Quantities in Rendering

- Radiance
- Radiosity
- Irradiance
- Intensity
- Light Perception
- Light Sources

Rendering Equation

- Integral equation
- Balance of radiance