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INTRODUCTION TO
DISCRETE PROBABILITY THEORY



DISCRETE PROBABILITY THEORY

Motivation: Game of dice
We throw two fair dice, one red and one green.

(a) What is the set of possible results?
(b) Which results give a total of 6?
(c) Which results give a total of 12?
(d) Which results give an odd total?
(e) Which are the probabilities of the events (b),(c),(d)?
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DISCRETE PROBABILITY THEORY

Calculation of probabilities
We can try to calculate the probabilities of events such as (b), (c)
and (d) by throwing the dice numerous times and letting

probability of an event = # of times event takes place
# experiments carried out

This is an empirical rather than a mathematical answer!
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DISCRETE PROBABILITY THEORY

Probability space
A probability space (Ω,F ,P) is a mathematical object associated
with a random experiment comprising:
1. a set Ω, the sample space (universe), which contains all the
possible outcomes (or results) ω of the experiment;

2. a collection F of subsets of Ω. These subsets are called
events, and F is called the event space;

3. a function P : F → [0, 1] called a probability distribution,
which associates a probability P (A) ∈ [0, 1] to each A ∈ F .

For simple examples with finite Ω, we often choose Ω so that
each ω ∈ Ω is equiprobable: If P (ω ) = 1

|Ω| , for every ω ∈ Ω, then
P (A) = |A|

|Ω| , for every A ⊂ Ω.
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DISCRETE PROBABILITY THEORY

Example 1. Sample Space
What is the sample space of the following experiments:
(a) I toss a coin.
(b) I roll two fair dice, one red and one green.

Solution of Example 1

(a) Ω = {ω1, ω2}, where ω1 and ω2 represents Tail and Head
respectively.

(b) Ω = {ω1, ..., ω36}, representing all 36 different possibilities.
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DISCRETE PROBABILITY THEORY

Example 2. Event Space
F = {A,B} is a set of subsets of Ω which represents the events
of interest. For the experiment “I roll two fair dice, one red and
one green”, what are the events:
(a) A: the red die shows a 4,
(b) B: the total is odd

Solution of Example 2
If we define Ω = {(r, g) : r, g = 1, ..., 6}, where r and g represent
the red and green die respectively, we can write:
(a) A = {(4, g), g = 1, ...6}
(b) B = {(1, 2), (1, 4), (1, 6), ..., (6, 1), (6, 3), (6, 5)}
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DISCRETE PROBABILITY THEORY

Set operations
Given two sets A and B we can define the following operations:

A ∩ B intersection between set A and set B
A ∪ B union between set A and set B
A \ B set A without the elements of set B
A ⊂ B set A is a subset of set B
Ac complement of set A
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DISCRETE PROBABILITY THEORY

Properties of Probability Distributions
Given A and B two events of the probability space (Ω,F ,P), the
following properties are true:

P (∅) = 0

P (Ω) = 1

P (A ∪ B) = P (A) + P (B)− P (A ∩ B).
If A \ B = ∅, then P (A ∩ B) = P (A) + P (B)

if A ⊂ B, then P (A) ≤ P (B), and P (B \ A) = P (B)− P (A)
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DISCRETE PROBABILITY THEORY

Example 3. Probability Distributions
We roll two fair dice, one red and one green. What is the
probability of
(a) the result of the red die is 4, and the total sum is 9?
(b) the result of the red die is 4, or the total sum of the dice is 9?

Solution of Example 3
P (A) = P (“red die is 4”) = 6

36 , and P (B) = P (“sum is 9”) = 4
36 .

Hence
(a) P (A ∩ B) = 1

36

(b) P (A ∪ B) = P (A)+P (B)−P (A ∩ B) = 6
36 +

4
36 −

1
36 = 9

36 = 1
4
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DISCRETE PROBABILITY THEORY

green die

re
d
di
e

1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12
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DISCRETE PROBABILITY THEORY

Conditional Probability Distributions
Let A and B be events of the probability space (Ω,F ,P), such
that P (B) > 0. Then the conditional probability of A given B is

P (A | B) =
P (A ∩ B)

P (B)

If P (B) = 0, we adopt the convention
P (A ∩ B) = P (A | B)P (B), so both sides are equal to zero.
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DISCRETE PROBABILITY THEORY

Independence
Let (Ω,F ,P) be a probability space. Two events A,B ∈ F are
independent (we write A ⊥⊥ B) iff

P (A ∩ B) = P (A)P (B)

In compliance with our intuition, this implies that

P (A | B) =
P (A ∩ B)

P (B)
=

P (A)P (B)

P (B)
= P (A) ,

and by symmetry P (B | A) = P (B).
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DISCRETE PROBABILITY THEORY

Example 4. Independence
A pack of 52 cards is well-shuffled, and one card is randomly
picked.
(a) Are the events A “the card is an ace” and H “the card is a

heart” independent?
(b) What can we say about the events A and K “the card is a

king”?
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DISCRETE PROBABILITY THEORY

Solution of Example 4
The sample space Ω consists of the 52 cards, which are
equiprobable (P (“any card”) = 1

52 ).

(a) P (A) = 4
52 = 1

13 and P (H) = 13
52 = 1

4 , and
P (A ∩ H) = 1

52 = P (A)P (H), so A and H are independent.

(b) A card cannot be simultaneously an ace and a king, meaning
P (A ∩ K) = 0 6= P (A)P (K), so these two events are not
independent.
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DISCRETE PROBABILITY THEORY

Random Variables
Let (Ω,F ,P) be a probability space. A random variable (rv)
X : Ω 7→ R is a function from the space sample Ω taking values in
the real numbers R. The set of values taken by X,

DX = {x ∈ R : ∃ω ∈ Ω such that X(ω) = x}

is called the support of X. If DX is countable, then X is a
discrete random variable.
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DISCRETE PROBABILITY THEORY

Example 6. Random Variables I
We roll two fair dice, one red and one green. Let X be the total of
the sides facing up. Find all possible values of X and the
corresponding probabilities.
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DISCRETE PROBABILITY THEORY

Solution of Example 6
Draw a grid. X takes values in DX = {2, 3..., 11, 12}, and so is
clearly a discrete random variable. By symmetry, the 36 points in
Ω are equally likely, so, for example,

P (X = 3) = P ({(1, 2), (2, 1)}) = 2

36

Thus, the probabilities for {2, 3, 4..., 11, 12} are respectively

1

36
,
2

36
,
3

36
,
4

36
,
5

36
,
6

36
,
5

36
,
4

36
,
3

36
,
2

36
,
1

36
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DISCRETE PROBABILITY THEORY

Example 7. Random Variables II
We toss a coin repeatedly and independently. Let X be the
random variable representing the number of throws until we first
get heads. Calculate:
(a) P (X = 3)

(b) P (X = 15)

(c) P (X ≤ 3.5)

(d) P (1.7 ≤ X ≤ 3.5)
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DISCRETE PROBABILITY THEORY

Solution of Example 7 (Part I)
X takes value in {1, 2, 3, ...} = N, and so is a discrete random
variable with countable support.
Let p be the probability of success (head) and (1− p) the
probability of failure (tail) during a toss:
(a) The event X = 3 corresponds to two failures followed by a

success, giving P (X = 3) = (1− p)2p by independence of the
successive trials.

(b) Likewise, P (X = 15) = (1− p)14p, with 14 failures followed
by a success.
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DISCRETE PROBABILITY THEORY

Solution of Example 7 (Part II)

(c) We can compute the probability as follows:
P (X ≤ 3.5) = P (X ≤ 3) + P (3 < X ≤ 3.5)

= p + (1− p)p + (1− p)2p
= 1− P (X > 3)

= 1− (1− p)3

(d) In this case, only two or three tosses are possible:
P (1.7 ≤ X ≤ 3.5) = P (X = 2) + P (X = 3)

= (1− p)p + (1− p)2p
= p(1− p)(1 + 1− p)
= p(1− p)(2− p)
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DISCRETE PROBABILITY THEORY

Probability mass functions
A random variable X associates probabilities to subsets of R. In
particular, when X is discrete, we have:

Ax = {ω ∈ Ω : X(ω) = x},

and we can define the probability mass function (PMF) of a
discrete random variable X as:

fX(x) = P (X = x) = P (Ax ) , x ∈ R.

It has two properties:
(a) fX(x) ≥ 0, and it is only positive for x ∈ DX, where DX is the

image of the function X, i.e., the support of fX;
(b) the total probability

∑
{i:xi∈DX} fX(xi) = 1
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DISCRETE PROBABILITY THEORY

Example 8. Probability mass functions
We roll two fair dice, one red and one green. Let X be the total of
the sides facing up. Compute the probability mass function of
the variable X and represent it graphically.

Solution of Example 8
The x axis should represents all the values X can take, the
support of fX, while the y = fX(x) axis represent the
corresponding discrete probabilities:
P (X = 2) ,P (X = 3) , ...,P (X = 11) ,P (X = 12).
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DISCRETE PROBABILITY THEORY

Probability Distributions: Geometric Distribution
A geometric random variable X has PMF

fX(x) = p(1− p)x−1, with x = 1, 2, ...,N and 0 ≤ p ≤ 1

We write X ∼ Geom(p), and we call p the success probability.
Note: This distribution models the waiting time X until a first
successful event in a series of independent trials having the
same success probability.
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DISCRETE PROBABILITY THEORY

Probability Distributions: Discrete Uniform Distribution
A discrete uniform random variable X has PMF

fX(x) =
1

b − a + 1
, with x = a, a + 1, ..., b, a < b, a, b ∈ Z

We write U ∼ DU(a, b).
Note: This definition generalises the outcome of die-throw,
which corresponds to the DU(1, 6) distribution.
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DISCRETE PROBABILITY THEORY

Cumulative distribution function
The cumulative distribution function (CDF) of a random variable
X is:

FX(x) = P (X ≤ x) , x ∈ R.

If X is discrete, we can write

FX(x) =
∑

{xi ∈DX : xi ≤ x}
P (X = xi ) ,

which is a step function with jumps at the points of support DX
of fX(x).
When there is no risk of confusion, we write F ≡ FX
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DISCRETE PROBABILITY THEORY

Example 9. Cumulative distribution function
Give the support and the probability mass and cumulative
distribution functions of a geometric random variable.
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DISCRETE PROBABILITY THEORY

Solution of Example 9
The support is D = N, and for x ≥ 1 we have

P (X ≤ x) =
⌊x⌋∑
r=1

p(1− p)r−1,

so we need to sum a geometric series with common ratio 1− p,
giving

P (X ≤ x) = p{1− (1− p)⌊x⌋}
1− (1− p) = 1− (1− p)⌊x⌋

Thus

FX(x) = P (X ≤ x) =
{
0, x < 1

1− (1− p)⌊x⌋, x ≥ 1
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DISCRETE PROBABILITY THEORY

Properties of a cumulative distribution function
Let (Ω, F , P) be a probability space and X : Ω 7→ R a random
variable. Its cumulative distribution function FX satisfies:
(a) limx→−∞ FX(x) = 0;
(b) limx→+∞ FX(x) = 1;
(c) FX is non-decreasing, so FX(x) ≤ FX(y) for x ≤ y;
(d) P (X > x) = 1− FX(x)
(e) If x < y, then P (x < X ≤ y) = FX(y) − FX(x)
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DISCRETE PROBABILITY THEORY

Expectation
Let X be a discrete random variable for which∑

x∈DX
|x | fX(x) < ∞, where DX is the support of fX.

The expectation (or expected value or mean) of X is

E [X ] =
∑

x∈DX

x P (X = x) =
∑

x∈DX

x fX(x).
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DISCRETE PROBABILITY THEORY

Expected value of a function
Let X be a discrete random variable with mass function f, and let
g be a real-valued function of R. Then

E [g(X)] =
∑

x∈DX

g(x) · f(x),

when
∑

x∈DX
|g(x)| f(x) < ∞.
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DISCRETE PROBABILITY THEORY

Properties of the expected value
Let X be a discrete random variable with expected value E [X ],
and let a, b ∈ R be constants. Then
(a) E [· ] is a linear operator, i.e., E [aX + b ] = a E [X ] + b ;
(b) if g(X) and h(X) have finite expected values, then

E [g(X) + h(X)] = E [g(X)] + E [h(X)] ;

(c) if P (X = b) = 1, then E [X ] = b ;
(d) if P (a < X ≤ b) = 1, then a < E [X ] ≤ b ;
(e) {E [X ]}2 ≤ E

[
X2

]
Remark: Facts (a), (b) and (c) are very useful in calculations.
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DISCRETE PROBABILITY THEORY

Example 11. Expectation
We roll two fair dice, one red and one green. Let R and G be the
RV representing the value of the side facing up for the red and
green dice, respectively. Let X be the RV representing the sum of
the side-up faces of both dice.
(a) What is the expected value of the variables R and G?
(b) What is the expected value of X?

Solution of Example 11

(a) E [R ] = E [G ] =
∑6

i=1 xi P (X = xi ) =
7
2 = 3.5

(b) Using the fact that expectation is linear :

E [X ] = E [R + G ] = E [R ] + E [G ] = 7
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DISCRETE PROBABILITY THEORY

Moments of a distribution
If X has a PMF f(x) such that

∑
x|x |rf(x) < ∞, then

(a) the r th moment of X is E [Xr ] ;
(b) the r th central moment of X is E [(X − E [X ])r ] ;
(c) the variance of X is σ2 = Var [X ] = E

[
(X − E [X ])2

]
(the

second central moment);
(d) the standard deviation of X is defined as σ =

√
Var [X ]

(non-negative);
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DISCRETE PROBABILITY THEORY

Moments of a distribution: Remarks
E [X ] and Var [X ] are the most important moments: they
represent the “average value” E [X ] of X, and the “average
squared distance” of X from its mean, E [X ].
The variance measures the scatter of X around its mean,
E [X ], with small variance corresponding to small scatter,
and conversely.
The expectation and standard deviation have the same units
(kg, m,...) as X.
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DISCRETE PROBABILITY THEORY

Properties of the Variance
Let X be a random variable whose variance exists, and let a, b be
constants. Then:
(a) Var [X ] = E

[
X2

]
− E [X ]2 = E [X(X − 1)] + E [X ]− E [X ]2

The variance expressed in terms of either the ordinary
moments, or the factorial moments. Usually, the first is more
useful, but the second can be used occasionally.

(b) Var [aX + b ] = a2 Var [X ]
The variance does not change if X is shifted by a fixed
quantity b, but the dispersion is increased by the squared of
a multiplier a.

(c) Var [X ] = 0 ⇒ X is constant with probability 1.
If X has zero variance, then it does not vary.
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DISCRETE PROBABILITY THEORY

Example 12. Variance
We roll a fair dice. Let X be the RV representing the value of the
side-up face (the outcome). Calculate the variance of X.

Solution of Example 12
As seen in Example 11 (a), all possible outcomes have equal
probability 1

6 , and the expected value of the outcome
corresponds to E(X) = 7

2 . The variance can thus be calculated as

Var [X] = E
[
(X − E(X))2

]
=

6∑
x=1

1

6

(
x − 7

2

)2

=
2

6
·1
4
·(1+9+25) =

35

12
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INTRODUCTION TO
CONTINUOUS PROBABILITY THEORY



CONTINUOUS PROBABILITY THEORY

Continuous random variables
In many situations, we must work with continuous variables:

the time until the end of the lecture ∈ (0, 45) min;
the pair (height, weight) ∈ (0,∞)2.

Until now, we supposed that the support

DX = {x ∈ R : X(ω) = x, ω ∈ Ω}

of X is countable, so X is a discrete random variable. We
suppose now that DX is not countable, which implies that Ω
itself is not countable.
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CONTINUOUS PROBABILITY THEORY

Probability density functions
A random variable X is continuous if there exists a function f(x),
called the probability density function (or density) (PDF) of X,
such that

P (X ≤ x) = F(x) =
∫ x

−∞
f(u)du, x ∈ R.

The properties of F imply that
(i) f(x) ≥ 0

(ii)
∫ +∞
−∞ f(x)dx = 1
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CONTINUOUS PROBABILITY THEORY

Probability density functions: Remarks

Evidently,
f(x) = dF(x)

dx .

Since P (x < X ≤ y) =
∫ y

x f (u)du for x < y, for all x ∈ R,

P (X = x) = lim
y↓x

P (x < X ≤ y)

= lim
y↓x

∫ y

x
f (u)du

=

∫ x

x
f (u)du = 0.

If X is discrete, then its PMF f (x) is often also called its
density function.
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CONTINUOUS PROBABILITY THEORY

Uniform distribution
The random variable U having density

f (u) =
{

1
b−a , a ≤ u ≤ b,
0, otherwise,

a < b

is called a uniform random variable. We write U ∼ U(a, b).
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CONTINUOUS PROBABILITY THEORY

Example 13. Uniform distribution
Find the cumulative distribution function (CDF) of the uniform
distribution.

Solution of Example 13
The integration of the uniform density gives

F (u) =


0, u ≤ a,
u−a
b−a , a < u ≤ b,
1, u > b.
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CONTINUOUS PROBABILITY THEORY

Moments
Let g(x) be a real-valued function, and X a continuous random
variable of density f (x). Then if E [|g(X) | ] < ∞, we define the
expectation of g(X) to be

E [g(X)] =

∫ +∞

−∞
g(x)f (x)dx.

In particular, the expectation and the variance of X are

E [X ] =

∫ +∞

−∞
x f (x)dx,

Var [X ] =

∫ +∞

−∞
{x − E [X ]}2 f (x)dx = E

[
X2

]
− E [X ]2 .
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CONTINUOUS PROBABILITY THEORY

Example 14. Moments
Calculate the expectation and the variance of the uniform
distribution.
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CONTINUOUS PROBABILITY THEORY

Solution of Example 13
Note that we need to compute E [Ur ] for r = 1, 2, and this is
1

r+1
(br+1−ar+1)

b−a . Hence

E [X ] =
1

2

b2 − a2
b − a =

b + a
2

as expected. For the variance, note that

E
[
X2

]
− E [X ]2 =

1

3

b2 − a3
b − a − (b + a)2

4

=
1

3
b2 + ab + a2 −

(
b2 + 2ab + a2

)
4

=
(b − a)2

12
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X DISCRETE OR CONTINUOUS?

Discrete Continuous
Support DX countable contains an

interval (x−, x+) ⊂ R

fX mass function density function
dimensionless units [x]−1

0 ≤ fX(x) ≤ 1 0 ≤ fX(x)∑
x∈R fX(x) = 1

∫ +∞
−∞ fX(x)dx = 1

FX(a) = P (X ≤ a)
∑

x≤ a fX(x)
∫ +∞
−∞ fX(x)dx

P (X ∈ A)
∑

x∈A fX(x)
∫
A fX(x)dx

P (a < X ≤ b)
∑

{x:a<X≤b} fX(x)
∫ b

a fX(x)dx

P (X = a) fX(a) ≥ 0
∫ a

a fX(x)dx = 0

E [g(X)]
∑

x∈R g(x)fX(x)
∫ +∞
−∞ g(x)fX(x)dx
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CONTINUOUS PROBABILITY THEORY

Normal distribution (I)
A random variable X having density

f (x) = 1

(2π)
1
2 σ

exp
[
−(x − µ)2

2σ2

]
, x ∈ R, µ ∈ R, σ > 0,

is a normal random variable with expectation µ and variance σ2:
we write X ∼ N (µ, σ2).
Note: The standard deviation of X is

√
σ2 = σ > 0.
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CONTINUOUS PROBABILITY THEORY

Normal distribution (II)
When µ = 0, σ2 = 1, the corresponding random variable Z is
standard normal, Z ∼ N (0, 1), with density

ϕ(z) = (2π)−
1
2 exp

(
−z2

2

)
, z ∈ R.

Then

FZ(x) = P (Z ≤ x) = Φ(x) =
∫ x

−∞
ϕ(z)dz = 1

(2π)
1
2

∫ x

−∞
exp −z2

2
dz

Note that f (x) = σ−1ϕ( x−µ
σ ) for x ∈ R.
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QUESTIONS?



MONTE CARLO INTEGRATION



INTEGRATION USING DETERMINISTIC QUADRATURE

Assume we have some function f (x) defined over the domain
x ∈ [a, b]. We want to to evaluate the integral

I =
∫ b

a
f (x)dx.

We can approximate this integral using a deterministic
quadrature rule which computes the sum of the area of regions
(possibly uniformly spaced) over the domain as follow:

I ≈
N∑

i=1

wi f (xi ) =
N∑

i=1

f (xi )(b − a)
N
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INTEGRATION USING DETERMINISTIC QUADRATURE
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INTEGRATION USING MONTE CARLO

The Monte Carlo approach to computing the integral is to
consider N samples to estimate the value of the integral. The
samples are selected randomly over the domain of the integral
with probability density function p(x).
In it’s simplest form p(x) can simply follow a uniform random
distribution, that is X ∼ U(a, b), where [a, b] is the domain where
the function is defined.
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INTEGRATION USING MONTE CARLO

Estimator
Given a random variable X with probability density function
pX(x) = p(x), a function f (x) to integrate and N samples xi (or
realisations) of the random variable X, we can compute the
estimator 〈I〉 of the integral I =

∫ b
a f (x) dx as:

〈I〉 = 1

N

N∑
i=1

f (xi )

p(xi)
.
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INTEGRATION USING MONTE CARLO

Estimator : Proof

E [〈I〉 ] = E
[
1

N

N∑
i=1

f (xi)

p (xi)

]

=
1

N

N∑
i=1

E
[

f (xi)

p (xi)

]
=

1

NN
∫ f (x)

p(x)p(x)dx

=

∫
f (x)dx

= I
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INTEGRATION USING MONTE CARLO : X ∼ U(a, b)
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Monte Carlo Integration: 20 samples
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IMPORTANCE SAMPLING

The biggest advantage of Monte Carlo integration compared to
quadrature approaches is that it only needs a fixed number of
samples regardless of the dimensionality of the function we
integrate. For example for a 2-dimensional function f (x, y) we
can simply its integral

I =
∫∫

f (x, y)dxdy

using the estimator

〈I〉 = 1

N

N∑
i=1

f (xi, yi)

p (xi, yi)
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INTEGRATION USING MONTE CARLO

For now, we used a simple uniform distribution, which can lead
to high variance in the estimator. Ideally, we want the density
function p(x) ∝ f (x). Then, a single sample would suffice to
estimate the constant proportionality factor and Var [〈I〉 ] = 0.
This is called perfect importance sampling.
Of course, this is often not feasible since finding the ideal p(x)
might be as hard as computing the integral of f(x). However, if
p(x) is a good approximation of f(x) the variance of our estimator
would already greatly decrease.
We call this importance sampling, since p(x) should put more
weight (or importance) where the function f(x) takes large values
and less weight to lower values of f(x).
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INTEGRATION USING MONTE CARLO

Sampling from a given distribution p(x)
Given a probability density function p(x) and a uniformly
sampled number U ∼ U(0, 1) we can sample X ∼ p(x) using the
following pseudo-code:

Pick u unifomly in [0, 1)

Output x = F−1(u)
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INTEGRATION USING MONTE CARLO

Example 15. Inverse CDF Computation I
Suppose we want to take samples proportional to g(x) = cos(π2 x)
and x ∈ [−1, 1]. First, we need to normalize g(x) to turn it into a
valid probability density function:

pX(x) =
g(x)∫ 1

−1 g(x)dx
=

π

4
cos

(π
2

x
)

(1)

Then we can compute its CDF as follow:

FX =

∫ x

−1
pX(x)dx =

1

2

(
sin

(π
2

x
)
+ 1

)
(2)
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INTEGRATION USING MONTE CARLO

Example 15. Inverse CDF Computation II
And the inverse CDF is:

F−1
X (x) = 2

π
sin−1 (2x − 1)

Hence, given a uniform number U ∼ U(0, 1) we can generate
X ∼ p(x) using X = F−1

X (U)
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INTEGRATION USING MONTE CARLO : X ∼ p(x)
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Monte Carlo Integration: 20 samples

√
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π
4 cos(π2x)
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THE IMPORTANCE OF RANDOM NUMBER GENERATION

Generating a uniform random number in [0, 1) on a computer is a
long standing problem in computer science.
A good quality random number generator should exibit the
following properties:

Uniform Distribution
Independence
Reproducibility
Statistical Properties
Long Period
Fast Generation
Security
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MONTE CARLO FOR RENDERING

In rendering the function we are interested in integrating is
called the Rendering Equation (more in the next lecture):

L (x, ωo) = Le (x, ωo) +

∫
Ω+

fr (ωi, x, ωo)Li (x, ωi) cos(θi) dωi (3)

Monte Carlo integration is well suited for this very high
dimensional integral.
Finding a probability density that matches the entire rendering
equation at once is extremely hard, however, we can still find
good probability density functions for the individual steps.
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MONTE CARLO FOR RENDERING

Often, for sampling directions, we want to consider the material
reflection term fr (ωi, x, ωo) together with the cosine term cos(θi)
separately from the incident light term Li (x, ωi).
While it is not always easy to find a directional density function
that is proportional to the reflectance function we know the
direction should at least be proportional to the cosine term!
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UNIFORM HEMISPHERE SAMPLING : 1 SAMPLE
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UNIFORM HEMISPHERE SAMPLING : 4 SAMPLES
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UNIFORM HEMISPHERE SAMPLING : 16 SAMPLES
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UNIFORM HEMISPHERE SAMPLING : 256 SAMPLES
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UNIFORM HEMISPHERE SAMPLING : 1024 SAMPLES
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VS COSINE HEMISPHERE SAMPLING : 1 SAMPLE
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VS COSINE HEMISPHERE SAMPLING : 4 SAMPLES
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VS COSINE HEMISPHERE SAMPLING : 16 SAMPLES
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VS COSINE HEMISPHERE SAMPLING : 256 SAMPLES
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VS COSINE HEMISPHERE SAMPLING : 1024 SAMPLES
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QUESTIONS?
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