COMPUTER GRAPHICS
 Introduction to Monte Carlo Rendering

Philippe Weier
Alexander Rath
Philipp Slusallek
University of SaArbrücken
November 9, 2023

OVERVIEW

■ Introduction to Discrete Probability Theory
■ Introduction to Continuous Probability Theory
■ Monte Carlo Integration : A practical approach

INTRODUCTION TO

 DISCRETE PROBABILITY THEORY
Discrete Probability Theory

Motivation: Game of dice

We throw two fair dice, one red and one green.
(a) What is the set of possible results?
(b) Which results give a total of 6?
(c) Which results give a total of 12?
(d) Which results give an odd total?
(e) Which are the probabilities of the events (b),(c),(d)?

DISCRETE PROBABILITY THEORY

Calculation of probabilities

We can try to calculate the probabilities of events such as (b), (c) and (d) by throwing the dice numerous times and letting

$$
\text { probability of an event }=\frac{\# \text { of times event takes place }}{\# \text { experiments carried out }}
$$

This is an empirical rather than a mathematical answer!

DISCRETE PROBABILITY THEORY

Probability space

A probability space (Ω, \mathcal{F}, P) is a mathematical object associated with a random experiment comprising:

1. a set Ω, the sample space (universe), which contains all the possible outcomes (or results) ω of the experiment;
2. a collection \mathcal{F} of subsets of Ω. These subsets are called events, and \mathcal{F} is called the event space;
3. a function $P: \mathcal{F} \rightarrow[0,1]$ called a probability distribution, which associates a probability $\mathrm{P}(A) \in[0,1]$ to each $A \in \mathcal{F}$.
For simple examples with finite Ω, we often choose Ω so that each $\omega \in \Omega$ is equiprobable: If $\mathrm{P}(\omega)=\frac{1}{\mid \Omega}$, for every $\omega \in \Omega$, then $\mathrm{P}(A)=\frac{|A|}{|\Omega|}$, for every $A \subset \Omega$.

DISCRETE PROBABILITY THEORY

Example 1. Sample Space

What is the sample space of the following experiments:
(a) I toss a coin.
(b) I roll two fair dice, one red and one green.

Discrete Probability Theory

Example 1. Sample Space

What is the sample space of the following experiments:
(a) I toss a coin.
(b) I roll two fair dice, one red and one green.

Solution of Example 1

(a) $\Omega=\left\{\omega_{1}, \omega_{2}\right\}$, where ω_{1} and ω_{2} represents Tail and Head respectively.
(b) $\Omega=\left\{\omega_{1}, \ldots, \omega_{36}\right\}$, representing all 36 different possibilities.

DISCRETE PROBABILITY THEORY

Example 2. Event Space

$\mathcal{F}=\{A, B\}$ is a set of subsets of Ω which represents the events of interest. For the experiment "I roll two fair dice, one red and one green", what are the events:
(a) A : the red die shows a 4 ,
(b) B : the total is odd

Discrete Probability Theory

Example 2. Event Space

$\mathcal{F}=\{A, B\}$ is a set of subsets of Ω which represents the events of interest. For the experiment "I roll two fair dice, one red and one green", what are the events:
(a) A : the red die shows a 4 ,
(b) B : the total is odd

Solution of Example 2

If we define $\Omega=\{(r, g): r, g=1, \ldots, 6\}$, where r and g represent the red and green die respectively, we can write:
(a) $A=\{(4, g), g=1, \ldots 6\}$
(b) $B=\{(1,2),(1,4),(1,6), \ldots,(6,1),(6,3),(6,5)\}$

DISCRETE PROBABILITY THEORY

Set operations

Given two sets A and B we can define the following operations:
$A \cap B \quad$ intersection between set A and set B
$A \cup B \quad$ union between set A and set B
$A \backslash B \quad$ set A without the elements of set B
$A \subset B \quad$ set A is a subset of set B
$A^{c} \quad$ complement of set A

Discrete Probability Theory

Properties of Probability Distributions

Given A and B two events of the probability space $(\Omega, \mathcal{F}, \mathrm{P})$, the following properties are true:

- $P(\emptyset)=0$
- $\mathrm{P}(\Omega)=1$
- $\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)$.

If $A \backslash B=\emptyset$, then $\mathrm{P}(A \cap B)=\mathrm{P}(A)+\mathrm{P}(B)$

- if $A \subset B$, then $\mathrm{P}(A) \leq \mathrm{P}(B)$, and $\mathrm{P}(B \backslash A)=\mathrm{P}(B)-\mathrm{P}(A)$

DISCRETE PROBABILITY THEORY

Example 3. Probability Distributions

We roll two fair dice, one red and one green. What is the probability of
(a) the result of the red die is 4 , and the total sum is 9 ?
(b) the result of the red die is 4 , or the total sum of the dice is 9 ?

DISCRETE PROBABILITY THEORY

Example 3. Probability Distributions

We roll two fair dice, one red and one green. What is the probability of
(a) the result of the red die is 4 , and the total sum is 9 ?
(b) the result of the red die is 4 , or the total sum of the dice is 9 ?

Solution of Example 3

$\mathrm{P}(A)=\mathrm{P}($ "red die is $4 ")=\frac{6}{36}$, and $\mathrm{P}(B)=\mathrm{P}($ "sum is 9 " $)=\frac{4}{36}$. Hence
(a) $\mathrm{P}(A \cap B)=\frac{1}{36}$
(b) $\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)=\frac{6}{36}+\frac{4}{36}-\frac{1}{36}=\frac{9}{36}=\frac{1}{4}$

DISCRETE PROBABILITY THEORY

green die						
	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
$\frac{0}{7}$						

DISCRETE PROBABILITY THEORY

Conditional Probability Distributions

Let A and B be events of the probability space (Ω, \mathcal{F}, P), such that $\mathrm{P}(B)>0$. Then the conditional probability of A given B is

$$
\mathrm{P}(A \mid B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}
$$

If $\mathrm{P}(B)=0$, we adopt the convention
$\mathrm{P}(A \cap B)=\mathrm{P}(A \mid B) \mathrm{P}(B)$, so both sides are equal to zero.

Discrete Probability Theory

Independence

Let (Ω, \mathcal{F}, P) be a probability space. Two events $A, B \in \mathcal{F}$ are independent (we write $A \Perp B$) iff

$$
\mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B)
$$

In compliance with our intuition, this implies that

$$
\mathrm{P}(A \mid B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}=\frac{\mathrm{P}(A) \mathrm{P}(B)}{\mathrm{P}(B)}=\mathrm{P}(A),
$$

and by symmetry $\mathrm{P}(B \mid A)=\mathrm{P}(B)$.

Discrete Probability Theory

Example 4. Independence

A pack of 52 cards is well-shuffled, and one card is randomly picked.
(a) Are the events A "the card is an ace" and H "the card is a heart" independent?
(b) What can we say about the events A and K "the card is a king"?

DISCRETE PROBABILITY THEORY

Solution of Example 4

The sample space Ω consists of the 52 cards, which are equiprobable (P ("any card") $=\frac{1}{52}$).
(a) $\mathrm{P}(A)=\frac{4}{52}=\frac{1}{13}$ and $\mathrm{P}(H)=\frac{13}{52}=\frac{1}{4}$, and
$\mathrm{P}(A \cap H)=\frac{1}{52}=\mathrm{P}(A) \mathrm{P}(H)$, so A and H are independent.
(b) A card cannot be simultaneously an ace and a king, meaning $\mathrm{P}(A \cap K)=0 \neq \mathrm{P}(A) \mathrm{P}(K)$, so these two events are not independent.

DISCRETE PROBABILITY THEORY

Random Variables

Let (Ω, \mathcal{F}, P) be a probability space. A random variable (rv) $X: \Omega \mapsto \mathbb{R}$ is a function from the space sample Ω taking values in the real numbers \mathbb{R}. The set of values taken by X,

$$
D_{X}=\{x \in \mathbb{R}: \exists \omega \in \Omega \text { such that } X(\omega)=x\}
$$

is called the support of X. If D_{X} is countable, then X is a discrete random variable.

Discrete Probability Theory

Example 6. Random Variables I

We roll two fair dice, one red and one green. Let X be the total of the sides facing up. Find all possible values of X and the corresponding probabilities.

Discrete Probability Theory

Solution of Example 6

Draw a grid. X takes values in $D_{X}=\{2,3 \ldots, 11,12\}$, and so is clearly a discrete random variable. By symmetry, the 36 points in Ω are equally likely, so, for example,

$$
\mathrm{P}(X=3)=P(\{(1,2),(2,1)\})=\frac{2}{36}
$$

Thus, the probabilities for $\{2,3,4 \ldots, 11,12\}$ are respectively

$$
\frac{1}{36}, \frac{2}{36}, \frac{3}{36}, \frac{4}{36}, \frac{5}{36}, \frac{6}{36}, \frac{5}{36}, \frac{4}{36}, \frac{3}{36}, \frac{2}{36}, \frac{1}{36}
$$

DISCRETE PROBABILITY THEORY

Example 7. Random Variables II

We toss a coin repeatedly and independently. Let X be the random variable representing the number of throws until we first get heads. Calculate:
(a) $\mathrm{P}(X=3)$
(b) $\mathrm{P}(X=15)$
(c) $\mathrm{P}(X \leq 3.5)$
(d) $\mathrm{P}(1.7 \leq X \leq 3.5)$

DISCRETE PROBABILITY THEORY

Solution of Example 7 (Part I)

X takes value in $\{1,2,3, \ldots\}=\mathbb{N}$, and so is a discrete random variable with countable support.
Let p be the probability of success (head) and $(1-p)$ the probability of failure (tail) during a toss:
(a) The event $X=3$ corresponds to two failures followed by a success, giving $\mathrm{P}(X=3)=(1-p)^{2} p$ by independence of the successive trials.
(b) Likewise, $\mathrm{P}(X=15)=(1-p)^{14} p$, with 14 failures followed by a success.

Discrete Probability Theory

Solution of Example 7 (Part II)

(c) We can compute the probability as follows:

$$
\begin{aligned}
\mathrm{P}(X \leq 3.5) & =\mathrm{P}(X \leq 3)+\mathrm{P}(3<X \leq 3.5) \\
& =p+(1-p) p+(1-p)^{2} p \\
& =1-\mathrm{P}(X>3) \\
& =1-(1-p)^{3}
\end{aligned}
$$

(d) In this case, only two or three tosses are possible:

$$
\begin{aligned}
\mathrm{P}(1.7 \leq X \leq 3.5) & =\mathrm{P}(X=2)+\mathrm{P}(X=3) \\
& =(1-p) p+(1-p)^{2} p \\
& =p(1-p)(1+1-p) \\
& =p(1-p)(2-p)
\end{aligned}
$$

DISCRETE PROBABILITY THEORY

Probability mass functions

A random variable X associates probabilities to subsets of \mathbb{R}. In particular, when X is discrete, we have:

$$
A_{x}=\{\omega \in \Omega: X(\omega)=x\}
$$

and we can define the probability mass function (PMF) of a discrete random variable X as:

$$
f_{X}(x)=\mathrm{P}(X=x)=\mathrm{P}\left(A_{x}\right), x \in \mathbb{R}
$$

It has two properties:
(a) $f_{X}(x) \geq 0$, and it is only positive for $x \in D_{X}$, where D_{X} is the image of the function X, i.e., the support of f_{X};
(b) the total probability $\sum_{\left\{:: x_{i} \in D_{X}\right\}} f_{X}\left(x_{i}\right)=1$

Discrete Probability Theory

Example 8. Probability mass functions

We roll two fair dice, one red and one green. Let X be the total of the sides facing up. Compute the probability mass function of the variable X and represent it graphically.

Discrete Probability Theory

Example 8. Probability mass functions

We roll two fair dice, one red and one green. Let X be the total of the sides facing up. Compute the probability mass function of the variable X and represent it graphically.

Solution of Example 8

The x axis should represents all the values X can take, the support of f_{X}, while the $y=f_{X}(x)$ axis represent the corresponding discrete probabilities: $\mathrm{P}(X=2), \mathrm{P}(X=3), \ldots, \mathrm{P}(X=11), \mathrm{P}(X=12)$.

DISCRETE PROBABILITY THEORY

Probability Distributions: Geometric Distribution

A geometric random variable X has PMF

$$
f_{X}(x)=p(1-p)^{x-1}, \quad \text { with } \quad x=1,2, \ldots, N \text { and } 0 \leq p \leq 1
$$

We write $X \sim \operatorname{Geom}(p)$, and we call \mathbf{p} the success probability.
Note: This distribution models the waiting time X until a first successful event in a series of independent trials having the same success probability.

DISCRETE PROBABILITY THEORY

Probability Distributions: Discrete Uniform Distribution

A discrete uniform random variable X has PMF

$$
f_{X}(x)=\frac{1}{b-a+1}, \quad \text { with } x=a, a+1, \ldots, b, \quad a<b, \quad a, b \in \mathbb{Z}
$$

We write $U \sim D U(a, b)$.
Note: This definition generalises the outcome of die-throw, which corresponds to the $D U(1,6)$ distribution.

DISCRETE PROBABILITY THEORY

Cumulative distribution function

The cumulative distribution function (CDF) of a random variable X is:

$$
F_{X}(x)=\mathrm{P}(X \leq x), \quad x \in \mathbb{R} .
$$

If X is discrete, we can write

$$
F_{X}(x)=\sum_{\left\{x_{i} \in D_{X}: x_{i} \leq x\right\}} \mathrm{P}\left(X=x_{i}\right),
$$

which is a step function with jumps at the points of support D_{X} of $f_{X}(x)$.
When there is no risk of confusion, we write $F \equiv F_{X}$

Discrete Probability Theory

Example 9. Cumulative distribution function

Give the support and the probability mass and cumulative distribution functions of a geometric random variable.

DISCRETE PROBABILITY THEORY

Solution of Example 9

The support is $D=\mathbb{N}$, and for $x \geq 1$ we have

$$
\mathrm{P}(X \leq x)=\sum_{r=1}^{\lfloor x\rfloor} p(1-p)^{r-1}
$$

so we need to sum a geometric series with common ratio $1-p$, giving

$$
\mathrm{P}(X \leq x)=\frac{p\left\{1-(1-p)^{\lfloor x\rfloor}\right\}}{1-(1-p)}=1-(1-p)^{\lfloor x\rfloor}
$$

Thus

$$
F_{X}(x)=\mathrm{P}(X \leq x)= \begin{cases}0, & x<1 \\ 1-(1-p)^{\lfloor x\rfloor}, & x \geq 1\end{cases}
$$

DISCRETE PROBABILITY THEORY

Properties of a cumulative distribution function

Let (Ω, \mathcal{F}, P) be a probability space and $X: \Omega \mapsto \mathbb{R}$ a random variable. Its cumulative distribution function F_{X} satisfies:
(a) $\lim _{x \rightarrow-\infty} F_{X}(x)=0$;
(b) $\lim _{x \rightarrow+\infty} F_{X}(x)=1$;
(c) F_{X} is non-decreasing, so $F_{X}(x) \leq F_{X}(y)$ for $x \leq y$;
(d) $\mathrm{P}(X>x)=1-F_{X}(x)$
(e) If $x<y$, then $\mathrm{P}(x<X \leq y)=F_{X}(y)-F_{X}(x)$

Discrete Probability Theory

Expectation

Let X be a discrete random variable for which $\sum_{x \in D_{X}}|x| f_{X}(x)<\infty$, where D_{X} is the support of f_{X}. The expectation (or expected value or mean) of X is

$$
\mathrm{E}[X]=\sum_{x \in D_{X}} x \mathrm{P}(X=x)=\sum_{x \in D_{X}} x f_{X}(x)
$$

DISCRETE PROBABILITY THEORY

Expected value of a function

Let X be a discrete random variable with mass function f, and let g be a real-valued function of \mathbb{R}. Then

$$
\mathrm{E}[g(X)]=\sum_{x \in D_{X}} g(x) \cdot f(x)
$$

when $\sum_{x \in D_{X}}|g(x)| f(x)<\infty$.

Discrete Probability Theory

Properties of the expected value

Let X be a discrete random variable with expected value $\mathrm{E}[X]$, and let $a, b \in \mathbb{R}$ be constants. Then
(a) $\mathrm{E}[\cdot]$ is a linear operator, i.e., $\mathrm{E}[a X+b]=a \mathrm{E}[X]+b$;
(b) if $g(X)$ and $h(X)$ have finite expected values, then

$$
\mathrm{E}[g(X)+h(X)]=\mathrm{E}[g(X)]+\mathrm{E}[h(X)] ;
$$

(c) if $\mathrm{P}(X=b)=1$, then $\mathrm{E}[X]=b$;
(d) if $\mathrm{P}(a<X \leq b)=1$, then $a<\mathrm{E}[X] \leq b$;
(e) $\{\mathrm{E}[X]\}^{2} \leq \mathrm{E}\left[X^{2}\right]$

Remark: Facts (a), (b) and (c) are very useful in calculations.

Discrete Probability Theory

Example 11. Expectation

We roll two fair dice, one red and one green. Let R and G be the RV representing the value of the side facing up for the red and green dice, respectively. Let X be the RV representing the sum of the side-up faces of both dice.
(a) What is the expected value of the variables R and G ?
(b) What is the expected value of X ?

Discrete Probability Theory

Example 11. Expectation

We roll two fair dice, one red and one green. Let R and G be the RV representing the value of the side facing up for the red and green dice, respectively. Let X be the RV representing the sum of the side-up faces of both dice.
(a) What is the expected value of the variables R and G ?
(b) What is the expected value of X ?

Solution of Example 11

(a) $\mathrm{E}[R]=\mathrm{E}[G]=\sum_{i=1}^{6} x_{i} \mathrm{P}\left(X=x_{i}\right)=\frac{7}{2}=3.5$
(b) Using the fact that expectation is linear:

$$
\mathrm{E}[X]=\mathrm{E}[R+G]=\mathrm{E}[R]+\mathrm{E}[G]=7
$$

DISCRETE PROBABILITY THEORY

Moments of a distribution

If X has a PMF $f(x)$ such that $\sum_{x}|x|^{r} f(x)<\infty$, then
(a) the r th moment of X is $\mathrm{E}\left[X^{r}\right]$;
(b) the r th central moment of X is $\mathrm{E}\left[(X-\mathrm{E}[X])^{r}\right]$;
(c) the variance of X is $\sigma^{2}=\operatorname{Var}[X]=\mathrm{E}\left[(X-\mathrm{E}[X])^{2}\right]$ (the second central moment);
(d) the standard deviation of X is defined as $\sigma=\sqrt{\operatorname{Var}[X]}$ (non-negative);

Discrete Probability Theory

Moments of a distribution: Remarks

- $\mathrm{E}[X]$ and $\operatorname{Var}[X]$ are the most important moments: they represent the "average value" $\mathrm{E}[X]$ of X, and the "average squared distance" of X from its mean, $\mathrm{E}[X]$.
- The variance measures the scatter of X around its mean, $\mathrm{E}[X]$, with small variance corresponding to small scatter, and conversely.
- The expectation and standard deviation have the same units (kg, m,...) as X.

Discrete Probability Theory

Properties of the Variance

Let X be a random variable whose variance exists, and let a, b be constants. Then:
(a) $\operatorname{Var}[X]=\mathrm{E}\left[X^{2}\right]-\mathrm{E}[X]^{2}=\mathrm{E}[X(X-1)]+\mathrm{E}[X]-\mathrm{E}[X]^{2}$

The variance expressed in terms of either the ordinary moments, or the factorial moments. Usually, the first is more useful, but the second can be used occasionally.
(b) $\operatorname{Var}[a X+b]=a^{2} \operatorname{Var}[X]$

The variance does not change if X is shifted by a fixed quantity b, but the dispersion is increased by the squared of a multiplier a.
(c) $\operatorname{Var}[X]=0 \Rightarrow X$ is constant with probability 1 . If X has zero variance, then it does not vary.

DISCRETE PROBABILITY THEORY

Example 12. Variance

We roll a fair dice. Let X be the RV representing the value of the side-up face (the outcome). Calculate the variance of X.

Discrete Probability Theory

Example 12. Variance

We roll a fair dice. Let X be the RV representing the value of the side-up face (the outcome). Calculate the variance of X.

Solution of Example 12

As seen in Example 11 (a), all possible outcomes have equal probability $\frac{1}{6}$, and the expected value of the outcome corresponds to $E(X)=\frac{7}{2}$. The variance can thus be calculated as

$$
\operatorname{Var}[X]=\mathrm{E}\left[(X-E(X))^{2}\right]=\sum_{x=1}^{6} \frac{1}{6}\left(x-\frac{7}{2}\right)^{2}=\frac{2}{6} \cdot \frac{1}{4} \cdot(1+9+25)=\frac{35}{12}
$$

Questions?

INTRODUCTION TO

CONTINUOUS PROBABILITY THEORY

Continuous Probability Theory

Continuous random variables

In many situations, we must work with continuous variables:
■ the time until the end of the lecture $\in(0,45) \mathrm{min}$;

- the pair (height, weight) $\in(0, \infty)^{2}$.

Until now, we supposed that the support

$$
D_{X}=\{x \in \mathbb{R}: X(\omega)=x, \omega \in \Omega\}
$$

of X is countable, so X is a discrete random variable. We suppose now that D_{X} is not countable, which implies that Ω itself is not countable.

Continuous Probability Theory

Probability density functions

A random variable X is continuous if there exists a function $f(x)$, called the probability density function (or density) (PDF) of X, such that

$$
\mathrm{P}(X \leq x)=F(x)=\int_{-\infty}^{x} f(u) d u, \quad x \in \mathbb{R} .
$$

The properties of F imply that
(i) $f(x) \geq 0$
(ii) $\int_{-\infty}^{+\infty} f(x) d x=1$

Continuous Probability Theory

Probability density functions: Remarks

- Evidently,

$$
f(x)=\frac{d F(x)}{d x}
$$

■ Since $\mathrm{P}(x<X \leq y)=\int_{x}^{y} f(u) d u$ for $x<y$, for all $x \in \mathbb{R}$,

$$
\begin{aligned}
\mathrm{P}(X=x) & =\lim _{y \downarrow x} \mathrm{P}(x<X \leq y) \\
& =\lim _{y \downarrow x} \int_{x}^{y} f(u) d u \\
& =\int_{x}^{x} f(u) d u=0 .
\end{aligned}
$$

■ If X is discrete, then its PMF $f(x)$ is often also called its density function.

Continuous Probability Theory

Uniform distribution

The random variable U having density

$$
f(u)= \begin{cases}\frac{1}{b-a}, & a \leq u \leq b, \\ 0, & \text { otherwise },\end{cases}
$$

is called a uniform random variable. We write $U \sim U(a, b)$.

Continuous Probability Theory

Example 13. Uniform distribution

Find the cumulative distribution function (CDF) of the uniform distribution.

Continuous Probability Theory

Example 13. Uniform distribution

Find the cumulative distribution function (CDF) of the uniform distribution.

Solution of Example 13

The integration of the uniform density gives

$$
F(u)= \begin{cases}0, & u \leq a \\ \frac{u-a}{b-a}, & a<u \leq b \\ 1, & u>b\end{cases}
$$

Continuous Probability Theory

Moments

Let $g(x)$ be a real-valued function, and X a continuous random variable of density $f(x)$. Then if $\mathrm{E}[|g(X)|]<\infty$, we define the expectation of $g(X)$ to be

$$
\mathrm{E}[g(X)]=\int_{-\infty}^{+\infty} g(x) f(x) d x
$$

In particular, the expectation and the variance of X are

$$
\begin{aligned}
\mathrm{E}[X] & =\int_{-\infty}^{+\infty} x f(x) d x, \\
\operatorname{Var}[X] & =\int_{-\infty}^{+\infty}\{x-\mathrm{E}[X]\}^{2} f(x) d x=\mathrm{E}\left[X^{2}\right]-\mathrm{E}[X]^{2} .
\end{aligned}
$$

Continuous Probability Theory

Example 14. Moments

Calculate the expectation and the variance of the uniform distribution.

Continuous Probability Theory

Solution of Example 13

Note that we need to compute $\mathrm{E}\left[U^{r}\right]$ for $r=1,2$, and this is $\frac{1}{r+1} \frac{\left(b^{r+1}-a^{r+1}\right)}{b-a}$. Hence

$$
\mathrm{E}[X]=\frac{1}{2} \frac{b^{2}-a^{2}}{b-a}=\frac{b+a}{2}
$$

as expected. For the variance, note that

$$
\begin{aligned}
\mathrm{E}\left[X^{2}\right]-\mathrm{E}[X]^{2} & =\frac{1}{3} \frac{b^{2}-a^{3}}{b-a}-\frac{(b+a)^{2}}{4} \\
& =\frac{1}{3} b^{2}+a b+a^{2}-\frac{\left(b^{2}+2 a b+a^{2}\right)}{4} \\
& =\frac{(b-a)^{2}}{12}
\end{aligned}
$$

X DISCRETE OR CONTINUOUS?

Discrete
Support D_{X} countable
mass function dimensionless

$$
\begin{gathered}
0 \leq f_{X}(x) \leq 1 \\
\sum_{x \in \mathbb{R}} f_{X}(x)=1
\end{gathered}
$$

$$
F_{X}(a)=\mathrm{P}(X \leq a)
$$

$$
\mathrm{P}(X \in \mathcal{A})
$$

$$
\mathrm{P}(a<X \leq b)
$$

$$
\mathrm{P}(X=a)
$$

$$
\mathrm{E}[g(X)]
$$

$\sum_{x \leq a} f_{X}(x)$
$\sum_{x \in \mathcal{A}} f_{X}(x)$
$\sum_{\{x: a<X \leq b\}} f_{X}(x)$
$f_{X}(a) \geq 0$
$\sum_{x \in \mathbb{R}} g(x) f_{X}(x)$

Continuous

contains an interval $\left(x_{-}, x_{+}\right) \subset \mathbb{R}$ density function
units $[x]^{-1}$

$$
\begin{gathered}
0 \leq f_{X}(x) \\
\int_{-\infty}^{+\infty} f_{X}(x) d x=1 \\
\int_{-\infty}^{+\infty} f_{X}(x) d x \\
\int_{\mathcal{A}} f_{X}(x) d x \\
\int_{a}^{b} f_{X}(x) d x \\
\int_{a}^{a} f_{X}(x) d x=0 \\
\int_{-\infty}^{+\infty} g(x) f_{X}(x) d x
\end{gathered}
$$

Continuous Probability Theory

Normal distribution (I)

A random variable X having density

$$
f(x)=\frac{1}{(2 \pi)^{\frac{1}{2}} \sigma} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right], \quad x \in \mathbb{R}, \quad \mu \in \mathbb{R}, \quad \sigma>0,
$$

is a normal random variable with expectation μ and variance σ^{2} : we write $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.
Note: The standard deviation of X is $\sqrt{\sigma^{2}}=\sigma>0$.

Continuous Probability Theory

Normal distribution (II)

When $\mu=0, \sigma^{2}=1$, the corresponding random variable Z is standard normal, $Z \sim \mathcal{N}(0,1)$, with density

$$
\phi(z)=(2 \pi)^{-\frac{1}{2}} \exp \left(-\frac{z^{2}}{2}\right), \quad z \in \mathbb{R}
$$

Then

$$
F_{Z}(x)=\mathrm{P}(Z \leq x)=\Phi(x)=\int_{-\infty}^{x} \phi(z) d z=\frac{1}{(2 \pi)^{\frac{1}{2}}} \int_{-\infty}^{x} \exp \frac{-z^{2}}{2} d z
$$

Note that $f(x)=\sigma^{-1} \phi\left(\frac{x-\mu}{\sigma}\right)$ for $x \in \mathbb{R}$.

Questions?

Monte Carlo Integration

InTEGRATION USING DETERMINISTIC QUADRATURE

Assume we have some function $f(x)$ defined over the domain $x \in[a, b]$. We want to to evaluate the integral

$$
I=\int_{a}^{b} f(x) d x
$$

We can approximate this integral using a deterministic quadrature rule which computes the sum of the area of regions (possibly uniformly spaced) over the domain as follow:

$$
I \approx \sum_{i=1}^{N} w_{i} f\left(x_{i}\right)=\sum_{i=1}^{N} \frac{f\left(x_{i}\right)(b-a)}{N}
$$

InTEGRATION USING DETERMINISTIC QUADRATURE

Deterministic Quadrature: 20 samples

INTEGRATION USING MONTE CARLO

The Monte Carlo approach to computing the integral is to consider N samples to estimate the value of the integral. The samples are selected randomly over the domain of the integral with probability density function $p(x)$.
In it's simplest form $p(x)$ can simply follow a uniform random distribution, that is $X \sim U(a, b)$, where $[a, b]$ is the domain where the function is defined.

Integration using Monte Carlo

Estimator

Given a random variable X with probability density function $p_{X}(x)=p(x)$, a function $f(x)$ to integrate and N samples x_{i} (or realisations) of the random variable X, we can compute the estimator $\langle I\rangle$ of the integral $I=\int_{a}^{b} f(x) \mathrm{d} x$ as:

$$
\langle I\rangle=\frac{1}{N} \sum_{i=1}^{N} \frac{f\left(x_{i}\right)}{p\left(x_{i}\right)}
$$

INTEGRATION USING MONTE CARLO

Estimator : Proof

$$
\begin{aligned}
\mathrm{E}[\langle I\rangle] & =\mathrm{E}\left[\frac{1}{N} \sum_{i=1}^{N} \frac{f\left(x_{i}\right)}{p\left(x_{i}\right)}\right] \\
& =\frac{1}{N} \sum_{i=1}^{N} \mathrm{E}\left[\frac{f\left(x_{i}\right)}{p\left(x_{i}\right)}\right] \\
& =\frac{1}{N} N \int \frac{f(x)}{p(x)} p(x) \mathrm{d} x \\
& =\int f(x) \mathrm{d} x \\
& =I
\end{aligned}
$$

Monte Carlo Integration: 20 samples

IMPORTANCE SAMPLING

The biggest advantage of Monte Carlo integration compared to quadrature approaches is that it only needs a fixed number of samples regardless of the dimensionality of the function we integrate. For example for a 2-dimensional function $f(x, y)$ we can simply its integral

$$
I=\iint f(x, y) \mathrm{d} x \mathrm{~d} y
$$

using the estimator

$$
\langle I\rangle=\frac{1}{N} \sum_{i=1}^{N} \frac{f\left(x_{i}, y_{i}\right)}{p\left(x_{i}, y_{i}\right)}
$$

Integration using Monte Carlo

For now, we used a simple uniform distribution, which can lead to high variance in the estimator. Ideally, we want the density function $p(x) \propto f(x)$. Then, a single sample would suffice to estimate the constant proportionality factor and $\operatorname{Var}[\langle I\rangle]=0$. This is called perfect importance sampling.
Of course, this is often not feasible since finding the ideal $p(x)$ might be as hard as computing the integral of $f(x)$. However, if $p(x)$ is a good approximation of $f(x)$ the variance of our estimator would already greatly decrease.
We call this importance sampling, since $p(x)$ should put more weight (or importance) where the function $f(x)$ takes large values and less weight to lower values of $f(x)$.

INTEGRATION USING MONTE CARlo

Sampling from a given distribution $p(x)$

Given a probability density function $p(x)$ and a uniformly sampled number $U \sim \mathrm{U}(0,1)$ we can sample $X \sim p(x)$ using the following pseudo-code:

- Pick u unifomly in $[0,1)$
- Output $x=F^{-1}(u)$

Integration using Monte Carlo

Example 15. Inverse CDF Computation I

Suppose we want to take samples proportional to $g(x)=\cos \left(\frac{\pi}{2} x\right)$ and $x \in[-1,1]$. First, we need to normalize $g(x)$ to turn it into a valid probability density function:

$$
\begin{equation*}
p_{X}(x)=\frac{g(x)}{\int_{-1}^{1} g(x) \mathrm{d} x}=\frac{\pi}{4} \cos \left(\frac{\pi}{2} x\right) \tag{1}
\end{equation*}
$$

Then we can compute its CDF as follow:

$$
\begin{equation*}
F_{X}=\int_{-1}^{x} p_{X}(x) \mathrm{d} x=\frac{1}{2}\left(\sin \left(\frac{\pi}{2} x\right)+1\right) \tag{2}
\end{equation*}
$$

INTEGRATION USING MONTE CARlo

Example 15. Inverse CDF Computation II

And the inverse CDF is:

$$
F_{X}^{-1}(x)=\frac{2}{\pi} \sin ^{-1}(2 x-1)
$$

Hence, given a uniform number $U \sim \mathrm{U}(0,1)$ we can generate $X \sim p(x)$ using $X=F_{X}^{-1}(U)$

Monte Carlo Integration: 20 samples

The importance of Random Number generation

Generating a uniform random number in $[0,1)$ on a computer is a long standing problem in computer science.
A good quality random number generator should exibit the following properties:

- Uniform Distribution
- Independence
- Reproducibility
- Statistical Properties
- Long Period
- Fast Generation
- Security

Monte Carlo for Rendering

In rendering the function we are interested in integrating is called the Rendering Equation (more in the next lecture):

$$
\begin{equation*}
L\left(x, \omega_{o}\right)=L_{e}\left(x, \omega_{o}\right)+\int_{\Omega_{+}} f_{r}\left(\omega_{i}, x, \omega_{o}\right) L_{i}\left(x, \omega_{i}\right) \cos \left(\theta_{i}\right) \mathrm{d} \omega_{i} \tag{3}
\end{equation*}
$$

Monte Carlo integration is well suited for this very high dimensional integral.
Finding a probability density that matches the entire rendering equation at once is extremely hard, however, we can still find good probability density functions for the individual steps.

Monte Carlo for Rendering

Often, for sampling directions, we want to consider the material reflection term $f_{r}\left(\omega_{i}, x, \omega_{o}\right)$ together with the cosine term $\cos \left(\theta_{i}\right)$ separately from the incident light term $L_{i}\left(x, \omega_{i}\right)$.
While it is not always easy to find a directional density function that is proportional to the reflectance function we know the direction should at least be proportional to the cosine term!

Uniform Hemisphere Sampling : 1 SAMPLE

UNIFORM HEMISPHERE SAMPLING : 4 SAMPLES

Uniform Hemisphere Sampling : 16 SAMPLES

Uniform Hemisphere Sampling : 256 Samples

Uniform Hemisphere Sampling : 1024 SAMPLES

VS Cosine Hemisphere Sampling : 1 SAMPLE

VS Cosine Hemisphere Sampling : 4 SAMPLES

VS Cosine Hemisphere Sampling : 16 SAMPLES

VS Cosine Hemisphere Sampling : 256 Samples

VS Cosine Hemisphere Sampling : 1024 SAMPLES

Questions?

References

A.C. Davison.

Probability and Statistics.
EPFL, 2016.

- Philip Dutre, Kavita Bala, Philippe Bekaert, and Peter Shirley. Advanced Global Illumination. AK Peters Ltd, 2006.

