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Acceleration Strategies
• Naïve Ray Tracing is too expensive

– Need hundreds of millions rays per second
– Scenes consist of millions of triangles

• Faster ray-primitive intersection algorithms
– Only reduce complexity by a constant factor. (Still relevant!)

• Reduce complexity by sorting data as a pre-process
– Acceleration structures

• Guide range search process: dictionaries for ray tracing
• Limit distance of the search along the ray

– Eliminate intersection candidates
• Can reduce average complexity from O(n) to O(log n)
• Worst case still O(n)
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Acceleration Structures
• Object Partitioning

– Partition objects into groups
– Store in a data structure (tree)
– Every object appears once in the data structure
– Possible spatial overlap

• Spatial Partitioning
– Subdivide space into disjoint fully covering regions
– Store in a data structure (tree or table)
– Every region appears once in the data structure
– Possibly multiple references to the same object

• Directional Partitioning
– Subdivide directions into cells

• 5D Partitioning
– Subdivide space and direction
– Close to pre-compute visibility for all points and all directions
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OBJECT PARTITIONING
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Bounding Volumes
• Key Idea

– Enclose complex geometry in simple bounding volume
– A ray missing the bounding volume misses the object
– Only test object intersection if ray hits bounding volume
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Bounding Volumes Types
• Sphere

– Very fast intersection computation
– Often inefficient because too large

• Axis-aligned bounding box (AABB)
– Simple intersection computation
– Very simple extension of min-max bounds
– Sometimes too large

• Non-axis-aligned box
– A.k.a. oriented bounding box (OBB)
– Often better fit
– More complex computation

• (Unbounded) Plane
– Infinite bounding box!!!!
– Best to keep planes outside of acceleration structures

• Neural bounding? (Liu, et. al 2023)
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Bounding Volumes Types
• k-DOP (discrete oriented polytope)

– Boolean intersection of k bounding slabs along k directions
– Pairs of half spaces
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Bounding Volumes Types
• Neural bounding (Liu, et. al 2023)
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Bounding Volumes Construction
• Triangle

– bmin.x = min(p1.x, p2.x, p3.x)
– bmax.x = max(p1.x, p2.x, p3.x)
– Similar for bmin.y, bmax.y, bmin.z, bmax.z

• Parallelogram
– p1 = p0 + e1
– p2 = p0 + e2
– p3 = p0 + e1 + e2
– bmin.x = min(p0.x, p1.x, p2.x, p3.x)
– bmax.x = max(p0.x, p1.x, p2.x, p3.x)
– Similar for bmin.y, bmax.y, bmin.z, bmax.z
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Bounding Volumes Construction
• Sphere

– bmin = center - Vector(radius, radius, radius)
– bmax = center - Vector(radius, radius, radius)

• Axis-Aligned Box
– bmin.x = min(p1.x, p2.x)
– bmax.x = max(p1.x, p2.x)
– Similar for bmin.y, bmax.y, bmin.z, bmax.z

• Oriented Box
– bmin.x = min(p1.x, p2.x, … , p8.x)
– bmax.x = max(p1.x, p2.x, … , p8.x)
– Similar for bmin.y, bmax.y, bmin.z, bmax.z
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Bounding Volumes Construction
• Constructive Solid Geometry

– Union: C U S
• bmin.x = min(bminC.x, bminS.x)
• bmax.x = max(bmaxC.x, bmaxS.x)

– Difference: S - C
• bmin.x = bminS.x
• bmax.x = bmaxS.x

– Intersection: C ∩ S
• bmin.x = max(bminC.x, bminS.x)
• bmax.x = min(bmaxC.x, bmaxS.x)

• Neural Bounding
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Bounding Volumes Discussion
• Benefits

– Can reduce the overall cost by a constant factor
• Limitations

– Does not change the asymptotic cost
• Solutions

– Build a hierarchy of bounding volumes
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Bounding Volume Hierarchy
• Hierarchical partitioning of the set of objects
• Form a tree structure

– Each inner node stores pointers to child nodes
– Each leaf node stores pointers to objects
– All nodes store a volume enclosing all sub-trees
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BVH Construction
• Insertion-Based

– Insert each object at the root
– Trickle down to sub-tree with minimal cost
– Sensitive to order of insertion

• Bottom-Up
– Group close-by objects together
– Recursively group close-by groups together
– Emphasis at the bottom of the tree

• Top-Down
– Subdivide objects into groups
– Recursively subdivide groups into sub-groups
– Emphasis at the top of the tree
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BVH Construction
• Compute overall bounding box
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BVH Construction
• Choose split axis and coordinate
• Place each object into a single group
• Use position of object’s centroid relative to the plane

– Estimate centroid as center of object’s bounding box in practice
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BVH Construction
• Compute bounding box of the 2 child nodes
• Recurse down each individual subtree
• Until termination criterion is met
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• BVHBuild(objects):
• MakeSplitDecision();
• If split

– for(object o in objects)
• If centroid(o).axis < split

– Put o into leftGroup;
• Else

– Put o into rightGroup;
– Return new inner node with children

• BVHBuild(leftGroup);
• BVHBuild(rightGroup);

• Else
– Return new leaf node with objects;

BVH Construction
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BVH Traversal
• Check if root node is intersected by the ray
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BVH Traversal
• Recurse only into subtrees intersected by the ray
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BVH Traversal
• Cheap traversal instead of costly intersection
• Process both subtrees

– In random order
– In order of intersection of their bounding boxes
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BVH Traversal
• For each primitive in current leaf node

– Check if ray intersects the primitive
– If closest (positive) hit so far, record hit

• Ordered Traversal
– Skip 2nd child if non-overlapping intersection found in 1st child
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• BVHIntersect(ray, node):
• If (node is inner node)

– If ray intersects bounding box of near child
• BVHIntersect(ray, node.nearChild);

– If ray intersects bounding box of far child (before previous hit)
• BVHIntersect(ray, node.farChild);

• Else
– Iterate through node.listOfObjects and record closest intersection;

BVH Traversal
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• Node Representation
– Leaf Flag

• 1 Boolean
– Bounding Volume

• Bounding box: 6 reals
– Pointers to children / geometry

• 2 pointers
• 1 pointer & 1 integer

• Smarter Node Representation (32 Bytes)
– Bounding box 

• (6 floats, 24 bytes)
– Left child index (if interior) OR first primitive index (if leaf) 

• (1 unsigned integer, 4 bytes)
– Number of Triangles (if leaf)

• (1 unsigned integer, 4 bytes)

BVH Storage
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• Properties
– Logarithmic intersection cost
– Adaptive to local geometric density

• Trade-Offs
– Relatively moderate build cost
– Relatively moderate traversal cost

BVH Discussion
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SPACE SUBDIVISION
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• Regular partitioning of space into equal-size cells
• Each cell holds a reference to all overlapping objects

Uniform Grid
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• Resolution Trade-Offs
– Small cells

• Few intersections tests
• Many traversal steps

– Large cells
• Few traversal steps
• Many intersections tests

• Optimal Resolution
– Nb of cells prop. to nb of objects n

• Resolution proportional to ! 𝑛
– Roughly cubic cells

• Resolution prop. to scene’s extent

– d: diagonal vector pmax - pmin
– l: density (user-defined)

Uniform Grid Construction

𝑟𝑒𝑠! = 𝑑!
! 𝜆𝑛
𝑑!𝑑"𝑑#

𝑟𝑒𝑠" = 𝑑"
! 𝜆𝑛
𝑑!𝑑"𝑑#

𝑟𝑒𝑠# = 𝑑#
! 𝜆𝑛
𝑑!𝑑"𝑑#
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Uniform Grid Traversal
• 3D-DDA (Digital Differential Analyzer) 
• Variant of Bresenham algorithm (see later)

– Compute coordinates bx/by/bz to closest cell boundaries
– Initialize parametric distances px/py/pz to closest cell boundaries
– Compute parametric distances tx/ty/tz between cells



Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

Mailboxing
• Avoid redundant intersections

– Single primitive can be inserted in many cells

• Keep track of intersection tests
– Per-object cache of ray IDs

• Concurrent access of multiple rays in multi-threaded environment!!
– Per-ray cache of object IDs

• Can only track the N most recent intersections
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• Properties
– Cube-root intersection cost
– Non-adaptive to local geometric density: “Teapot in the stadium”

• Trade-Offs
– Relatively cheap build cost
– Relatively expensive traversal cost

Uniform Grid Discussion
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Hierarchical Grids
• Hierarchy of uniform grids

– Each grid cell might be subdivided into a finer grid
• Properties

– Adaptive subdivision: adjust depth to local scene complexity
– Fixed split positions

Cells of uniform grid
(colored by # of intersection tests)

Same for two-level grid
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BSP Trees
• Binary Space Partition Tree (BSP)

– Recursively split space with planes
• Arbitrary split positions
• Arbitrary orientations

– How much flexibility?
• Restricted BSP: predefined set of directions
• Unrestricted BSP: unlimited flexibility
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Octree
• Hierarchical Structure

– 3D extension of 2D quadtree
– Each inner node contains 8 equally sized voxels

• Properties
– Adaptive subdivision: adjust depth to local scene complexity
– Fixed branching factor and split positions
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kD-Tree
• Definition

– Axis-Aligned Binary Space Partition Tree
– Recursively split space with axis-aligned planes

• Arbitrary split positions
• X, Y or Z orientations

• Adaptive
– Can handle the “Teapot in a Stadium” well 
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kD-Tree Construction
• Compute overall bounding box
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kD-Tree Construction
• Choose split axis and coordinate
• Place each object into non-exclusive groups

A

A
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kD-Tree Construction
• Recurse down each individual subtree
• Until termination criterion is met

A

A

B

B

L2L1
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kD-Tree Construction

A
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kD-Tree Construction
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• KDTreeBuild(objects):
• MakeSplitDecision();
• If split

– for(object o in objects)
• If minBound(o).axis < split

– Add o to leftGroup;
• If maxBound(o).axis > split

– Add o to rightGroup;
– Return new inner node with children

• KDTreeBuild(leftGroup);
• KDTreeBuild(rightGroup);

• Else
– Return new leaf node with objects;

kD-Tree Construction
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kD-Tree Traversal
• Check if root node is intersected by the ray
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kD-Tree Traversal
• Process both subtrees

– In random order
– In order of traversal

A

A

B
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kD-Tree Traversal

A

A

B

B

L2L1

C

C

D

D
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L4 L5

• Cheap traversal instead of costly intersection
• Recurse only into subtrees intersected by the ray
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kD-Tree Traversal

A

A
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B
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L4 L5

• For each primitive in current leaf node
– Check if ray intersects the primitive
– If closest (positive) hit so far, record hit
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kD-Tree Traversal

A
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B
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• Front-to-back traversal
– Traverse child nodes in order along rays
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kD-Tree Traversal

A

A

B

B

L2L1

C

C

D

D
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L4 L5

• Ordered Traversal
– Skip 2nd child if intersection found in 1st child belongs to the cell
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• Node Representation
– Leaf flag + split axis (x, y, z or leaf)

• 2 bits
– Split location (1D)

• 1 real
– Pointers to children / geometry

• 2 pointers
• 1 pointer & 1 integer

• Bounding Box
– Nodes of k-D tree represent axis-aligned bounding boxes
– Do not need to be explicitly stored
– Ray interval can instead be implicitly updated

kD-Tree Storage
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kD-Tree Traversal
• Initialize entry/exit distances at root’s bounding box

– t_near & t_far
• Compare split distance to node’s entry/exit distances

– t_split >= t_far Go only to near node
– t_near < t_split < t_far Go to both
– t_split <= t_near Go only to far node

• Near and far depend on direction of ray!
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kD-Tree Traversal
KDTreeIntersect(ray, node, t_near, t_far):
If (node is inner node)

t_split = (node.splitCoord – ray.pos[node.splitAxis] ) / ray.dir[node.splitAxis];
if (t_split >= t_far)

KDTreeIntersect(ray, node.near_child, t_near, t_far); // near child only
else if  (t_split <= t_near)

KDTreeIntersect(ray, node.far_child, t_near, t_far); // far child only
else // hit both children

KDTreeIntersect(ray, node.near_child, t_near, t_split);
KDTreeIntersect(ray, node.far_child, t_split, t_far);

else
Iterate through node.listOfObjects and record closest intersection;
If (intersection is within [t_near, t_far]) abort traversal;

• Computationally Inexpensive
– One subtraction, division, decision, and fetch
– But many more cycles due to dependencies



Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

• Properties
– Logarithmic intersection cost
– Adaptive to local geometric density

• Trade-Offs
– Relatively expensive build cost
– Relatively cheap traversal cost

KD Tree Discussion
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TREE OPTIMIZATIONS
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Building Trees
• Given

– Axis-aligned bounding box (“cell”)
– List of geometric primitives (e.g. triangles) touching cell

• BVH and kD-Tree Core Operations
– Pick an axis-aligned plane to split the cell into two parts

• kD tree: use extent of bounding box of geometry
• BVH: use extent of bounding box of centroids instead

– E.g. yields infinitely thin bounding box for 3 aligned centroids
– Sift geometry into two (possibly redundant) batches
– Recurse
– Stop when termination criterion is met
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Splitting
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Minimize Extents
• Split Axis

– Largest extent
• Split Location

– Middle of extent
• Termination Criterion

– Size of (non-empty) cell < predefined threshold
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Split in the Middle

• Makes the L & R probabilities equal
• Pays no attention to the L & R costs
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• Split Axis
– Round-robin

• Split Location
– Median of geometry (balanced tree)

• Termination Criterion
– Number of objects < predefined threshold

Minimize Primitives
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Split at the Median

• Makes the L & R costs equal
• Pays no attention to the L & R probabilities
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Minimize Extents and Primitives
• What split do we really want?

– The one that makes ray tracing cheap
– Formulate an expression of cost and minimize it
– Cost optimization

• What is the cost of tracing a ray through a node?
– Cost(cell) = traversalCost + Prob(hit L | hit P) * Cost(L)

+ Prob(hit R | hit P) * Cost(R)
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Surface Area Heuristic
• Compute the Probability

– Assume uniform directional distribution of rays
– Probability turns out to be proportional to surface area
– Area of outer surface of bounding box, not its volume
– Prob(hit N | hit P) = SA(N) / SA(P)

• Compute the Cost
– Should recursively compute the cost of the subtree
– Use the cost of a leaf node as a greedy approximation
– Cost(N) = ObjectCount(N) * intersectionCost

• Tuning Parameters
– traversalCost
– intersectionCost
– Build behavior only depends on their relative ratio
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Cost-Optimized Split

• Automatically isolates complexity
• Produces large chunks of empty space
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Minimize Extents and Primitives
• Split Axis

– Iterate over each of the 3 axes in turn
– Record axis whose split location with minimal cost is optimal

• Split Location
– Iterate over all candidates along the axis currently considered

• BVH: Centroid intervals
• K-D tree: Extrema of cost function at boundaries of bounding boxes

– Compute cost for each and record candidate with minimal cost
• Naively compute cost individually → N^2 operations

– Iterate over the set of objects
– Compute left/right bounding volumes and primitive numbers

• Sort the candidates along the given axis → N log(N) operations
– BVH: incrementally compute surface areas both forward and backward
– KD tree: incrementally compute primitive numbers from min/max bounds
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• Termination Criterion
– When optimal Cost(cell) of splitting > Cost(N) of creating a leaf

• Additional Criteria
– Avoid infinite loops

• E.g. all objects of a BVH node put in single child
– Bound memory consumption

• Limited tree depth

Minimize Extents and Primitives
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• MakeSplitDecision(objects):

• For(axis a in x/y/z)
– For(candidate c in [sorted] candidates along a)

• Compute left and right object counts;
• Compute left and right surface areas;
• splitCost = Cost(c);
• If (splitCost < bestCost)

– bestCost = splitCost;
– bestSplit = c;
– bestAxis = a;

• splitDecision = (bestCost < LeafCost(objects));

Minimize Extents and Primitives
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Stack-Based Traversal
• Avoid overhead of recursive function calls

– No need for a true recursion

• Explicitly maintain stack of sub-trees to traverse
– Optimize by minimizing stack operations
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Stack-Based Traversal
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Stack-Based Traversal
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Stack-Based Traversal
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Stack-Based Traversal
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Stack-Based Traversal
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Stack-Based Traversal
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Stack-Based Traversal
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Stack-Based Traversal
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Stack-Based Traversal
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DIRECTIONAL APPROACHES

75
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Directional Partitioning
• Applications

– Useful only for rays that start from a fixed point
• Camera (assuming no camera movement)
• Point light sources

– Preprocessing of visibility
• For each object locate where it is visible

• Variation: “light buffer”
– Lazy and conservative evaluation
– Store occluder that was found in

directional structure
– Test entry first for next shadow test

76
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5D Partitioning
• Partitioning of space and direction
• Roughly pre-computes visibility for the entire scene

• What is visible from each point in each direction?
– Very costly preprocessing, cheap traversal

• Improper trade-off between preprocessing and run-time
– Memory hungry, even with lazy evaluation
– Seldom used in practice
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WRAP-UP
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• Trade-Off
– Build vs. Traversal Cost
– Target time to image

• Preprocessing time + rendering time
• Preprocessing time depends on geometry
• Rendering time depends on total number of rays

• Some Structures better than Others
– Depending on input geometry
– Depending on rendering task
– No absolute best!

Battle of Acceleration Structures
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• Acceleration structure is a geometric primitive
• Can be used inside another acceleration structure
• Build meta-acceleration structure

Nested Acceleration Structures 


