Computer Graphics

- Acceleration Structures -

Philippe Weler
Alexander Rath
Philipp Slusallek

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

Acceleration Strategies

* Naive Ray Tracing is too expensive
— Need hundreds of millions rays per second
— Scenes consist of millions of triangles

* Faster ray-primitive intersection algorithms
— Only reduce complexity by a constant factor. (Still relevant!)

« Reduce complexity by sorting data as a pre-process
— Acceleration structures
» Guide range search process: dictionaries for ray tracing
 Limit distance of the search along the ray
— Eliminate intersection candidates
« Can reduce average complexity from O(n) to O(log n)
» Worst case still O(n)

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

Acceleration Structures
* Object Partitioning

— Partition objects into groups
— Store in a data structure (tree)
— Every object appears once in the data structure
— Possible spatial overlap
« Spatial Partitioning
— Subdivide space into disjoint fully covering regions
— Store in a data structure (tree or table)
— Every region appears once in the data structure
— Possibly multiple references to the same object

* Directional Partitioning
— Subdivide directions into cells

« 5D Partitioning
— Subdivide space and direction
— Close to pre-compute visibility for all points and all directions

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

OBJECT PARTITIONING

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

Bounding Volumes
 Key Ildea

— Enclose complex geometry in simple bounding volume
— Aray missing the bounding volume misses the object
— Only test object intersection if ray hits bounding volume

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

Bounding Volumes Types
 Sphere

— Very fast intersection computation
— Often inefficient because too large

« Axis-aligned bounding box (AABB)

— Simple intersection computation
— Very simple extension of min-max bounds
— Sometimes too large

Non-axis-aligned box
— A.k.a. oriented bounding box (OBB)

— Often better fit
— More complex computation

(Unbounded) Plane
— Infinite bounding box!!!!
— Best to keep planes outside of acceleration structures

Neural bounding? (Liu, et. al 2023)

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

Bounding Volumes Types
« k-DOP (discrete oriented polytope)

— Boolean intersection of k bounding slabs along k directions

— Pairs of half spaces /<
/ X

BETTER BOUND, BETTER CULLING

FASTER TEST, LESS MEMORY

SPHERE AABB OBB 8-DOP CONVEX HULL

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

Bounding Volumes Types
* Neural bounding (Liu, et. al 2023)

et

False negative =

False positive m— ==

Figure 1: Different bounding volume types classifying 2D space as maybe-object or certainly-not-object, from left to right: box (a), ellipsoid
(b), k-oriented planes (c), common neural networks (d) and a neural network trained using our approach (e). While common boundings are
not tight, common neural networks are not conservative, missing parts of the dolphin, while ours is both tight and has no false negatives.

Ours

AABox kDOP

a)

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

Bounding Volumes Construction

« Triangle P1
— bmin.x = min(p1.x, p2.x, p3.x)
— bmax.x = max(p1.x, p2.x, p3.x)
— Similar for bmin.y, bmax.y, bmin.z, bmax.z

'3
P2
» Parallelogram
— p1=p0 +e1
— p2=p0 + e2

— p3=p0+el1+e2

— bmin.x = min(p0.x, p1.x, p2.x, p3.x)

— bmax.x = max(p0.x, p1.x, p2.x, p3.X)

— Similar for bmin.y, bmax.y, bmin.z, bmax.z

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

Bounding Volumes Construction
 Sphere

— bmin = center - Vector(radius, radius, radius)
— bmax = center - Vector(radius, radius, radius)

« Axis-Aligned Box
— bmin.x = min(p1.x, p2.x)
— bmax.x = max(p1.x, p2.x)
— Similar for bmin.y, bmax.y, bmin.z, bmax.z

* Oriented Box
— bmin.x = min(p1.x, p2.x, ..., p8.x)
— bmax.x = max(p1.x, p2.x, ..., p8.X) P1
— Similar for bmin.y, bmax.y, bmin.z, bmax.z

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

Bounding Volumes Construction

« Constructive Solid Geometry @ g

— Union: CU S
* bmin.x = min(bminC.x, bminS.x) C: U S
* bmax.x = max(bmaxC.x, bmaxS.x)

— Difference: S -C
* bmin.x = bminS.x Z 5
* bmax.x = bmaxS.x

— Intersection: CN S C C—S
* bmin.x = max(bminC.x, bminS.x)
* bmax.x = min(bmaxC.x, bmaxS.x) cAS

* Neural Bounding

£(0) = / c(r)dr, c(r)= 4

(r))=0, TN
oif g(r) = 1 and hg(r) =0, EN
B if g(r))=1, FP

(r))=1, TP

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

Bounding Volumes Discussion

« Benefits

— Can reduce the overall cost by a constant factor
* Limitations

— Does not change the asymptotic cost

« Solutions
— Build a hierarchy of bounding volumes

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

Bounding Volume Hierarchy

* Hierarchical partitioning of the set of objects

 Form a tree structure
— Each inner node stores pointers to child nodes
— Each leaf node stores pointers to objects
— All nodes store a volume enclosing all sub-trees

N e

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

BVH Construction

* Insertion-Based
— Insert each object at the root
— Trickle down to sub-tree with minimal cost
— Sensitive to order of insertion

 Bottom-Up
— Group close-by objects together
— Recursively group close-by groups together
— Emphasis at the bottom of the tree

« Top-Down
— Subdivide objects into groups
— Recursively subdivide groups into sub-groups
— Emphasis at the top of the tree

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

BVH Construction

« Compute overall bounding box

O <

\/D @ ¢
D N7 [158

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

BVH Construction

« Choose split axis and coordinate

 Place each object into a single group

« Use position of object’s centroid relative to the plane
— Estimate centroid as center of object’s bounding box in practice

4

Philipp Slusallek, Philippe Weier, Alexander Rath

Computer Graphics WS 2023/24

BVH Construction

« Compute bounding box of the 2 child nodes
e Recurse down each individual subtree
 Until termination criterion is met

% O s

Philipp Slusallek, Philippe Weier, Alexander Rath

Computer Graphics WS 2023/24

BVH Construction

- BVHBUuild(objects):
- MakeSplitDecision();
 |If split

— for(object o in objects)
« If centroid(o).axis < split
— Put o into leftGroup;

* Else
— Put o into rightGroup;

— Return new inner node with children

« BVHBuild(leftGroup);
« BVHBUuild(rightGroup);

 Else
— Return new leaf node with objects;

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

BVH Traversal

« Check if root node is intersected by the ray

\/ @
.

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

BVH Traversal

* Recurse only into subtrees intersected by the ray

Pl

\/ @
C D

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

BVH Traversal

« Cheap traversal instead of costly intersection

* Process both subtrees
— In random order
— In order of intersection of their bounding boxes

2
\67 @

r'q

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

BVH Traversal

* For each primitive in current leaf node

— Check if ray intersects the primitive
— If closest (positive) hit so far, record hit

* Ordered Traversal
— Skip 2nd child if non-overlapping intersection found in 1st child

2d
\67 @

r'q

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

BVH Traversal

 BVHiIintersect(ray, node):

« If (node is inner node)
— If ray intersects bounding box of near child

« BVHlIntersect(ray, node.nearChild);
— If ray intersects bounding box of far child (before previous hit)

« BVHiIntersect(ray, node.farChild);

 Else
— lterate through node.listOfObjects and record closest intersection;

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

BVH Storage

 Node Representation

— Leaf Flag
* 1 Boolean
— Bounding Volume

« Bounding box: 6 reals
— Pointers to children / geometry

» 2 pointers
« 1 pointer & 1 integer
 Smarter Node Representation (32 Bytes)

— Bounding box
» (6 floats, 24 bytes)

— Left child index (if interior) OR first primitive index (if leaf)
* (1 unsigned integer, 4 bytes)

— Number of Triangles (if leaf)
* (1 unsigned integer, 4 bytes)

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

BVH Discussion

* Properties

— Logarithmic intersection cost
— Adaptive to local geometric density

 Trade-Offs

— Relatively moderate build cost
— Relatively moderate traversal cost

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

SPACE SUBDIVISION

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

Uniform Grid

* Regular partitioning of space into equal-size cells
« Each cell holds a reference to all overlapping objects

" F
B

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

Uniform Grid Construction

 Resolution Trade-Offs
— Small cells

 Few intersections tests
« Many traversal steps

— Large cells

* Few traversal steps
« Many intersections tests

« Optimal Resolution

Nb of cells prop. to nb of objects n

 Resolution proportional to 3/n

Roughly cubic cells
» Resolution prop. to scene’s extent

d. diagonal vector pmax - pmin
A. density (user-defined)

3 An
res, = d, 7d.d
x“yUz
3 An
res, =d,, /
Z

dyd,d

3 An
d,d,d,

res, = d,

'
\

Eygj

.

Computer Graphics WS 2023/24

Philipp Slusallek, Philippe Weier, Alexander Rath

Uniform Grid Traversal

- 3D-DDA (Digital Differential Analyzer)

« Variant of Bresenham algorithm (see later)
— Compute coordinates bx/by/bz to closest cell boundaries
— Initialize parametric distances px/py/pz to closest cell boundaries
— Compute parametric distances tx/ty/tz between cells

2/

— 77

/

A "‘
VAN

@

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

U

Mailboxing

 Avoid redundant intersections
— Single primitive can be inserted in many cells

+ Keep track of intersection tests
— Per-object cache of ray IDs
» Concurrent access of multiple rays in multi-threaded environment!!
— Per-ray cache of object IDs
« Can only track the N most recent intersections

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

Uniform Grid Discussion

* Properties

— Cube-root intersection cost
— Non-adaptive to local geometric density: “Teapot in the stadium”

 Trade-Offs

— Relatively cheap build cost
— Relatively expensive traversal cost

-

© www.scratchapixel.com

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

Hierarchical Grids

* Hierarchy of uniform grids
— Each grid cell might be subdivided into a finer grid
 Properties
— Adaptive subdivision: adjust depth to local scene complexity
— Fixed split positions

Cells of uniform grid

Same for two-level grid
(colored by # of intersection tests) g

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

BSP Trees

« Binary Space Partition Tree (BSP)

— Recursively split space with planes
 Arbitrary split positions
 Arbitrary orientations

— How much flexibility?
» Restricted BSP: predefined set of directions
» Unrestricted BSP: unlimited flexibility

m\cz
N

-

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

Octree

 Hierarchical Structure

— 3D extension of 2D quadtree

— Each inner node contains 8 equally sized voxels

* Properties

— Adaptive subdivision: adjust depth to local scene complexity
— Fixed branching factor and split positions

/

N
2 7

N

~N

N

NN

/

N

N
AN mu

s 1
.

Computer Graphics WS 2023/24

Philipp Slusallek, Philippe Weier, Alexander Rath

kD-Tree

* Definition
— Axis-Aligned Binary Space Partition Tree
— Recursively split space with axis-aligned planes
 Arbitrary split positions
« X, Y or Z orientations
* Adaptive

— Can handle the “Teapot in a Stadium” well

&4
N

O
N
.

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

kD-Tree Construction

« Compute overall bounding box

Computer Graphics WS 2023/24

-
-

1 AN
) \,
\ AN
1 \ N,
4 \
/ Il \ \\ \\
/ 7 \ N \
II / \
, 7

~
~
[= = =

Philipp Slusallek, Philippe Weier, Alexander Rath

kD-Tree Construction

 Choose split axis and coordinate
* Place each object into non-exclusive groups

A

LAY
BRI
o 1 \
¢ 1 \‘
/ ,' \ I VNN
/4 1 \) \ \ N,
4 1 \ 1 Y A Y \

,' 1 \ I \ \\ AN
/ ! \ 1! \ \ N
’ 1 \ 1 1 \ \ N

/ J \ 1] \ \ \\
Y Do
1]
1 1
1]
1 I
1 1
1 1
] I

- i

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

kD-Tree Construction

e Recurse down each individual subtree
 Until termination criterion is met

1)
ll\‘\\\
[TRNON
Il v\ N\
RN
11 v N '~
Ip v NN
1 | 1 \ \
I \ \\ \\
1 \ \ S,
/,\ 1 ’l \ AY \\
’ 1 I \ \ \
\ 4 I p
/i
1
)
I 1
1
! I
! I
1
I 1

- S

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

kD-Tree Construction

C DO

A

,’ 1 \\\
4 \ s\

7 1

/i 1

4 1

4]

4 1
AI |

Computer Graphics WS 2023/24

Philipp Slusallek, Philippe Weier, Alexander Rath

kD-Tree Construction

L4 M LS

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

kD-Tree Construction

 KDTreeBuild(objects):
« MakeSplitDecision();
« If split

— for(object o in objects)
* If minBound(0).axis < split
— Add o to leftGroup;
« If maxBound(o).axis > split
— Add o to rightGroup;
— Return new inner node with children
» KDTreeBuild(leftGroup);
« KDTreeBuild(rightGroup);

 Else
— Return new leaf node with objects;

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

kD-Tree Traversal

« Check if root node is intersected by the ray

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

kD-Tree Traversal

* Process both subtrees

— In random order
— In order of traversal

Computer Graphics WS 2023/24

Philipp Slusallek, Philippe Weier, Alexander Rath

kD-Tree Traversal

« Cheap traversal instead of costly intersection
 Recurse only into subtrees intersected by the ray

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

kD-Tree Traversal

* For each primitive in current leaf node

— Check if ray intersects the primitive
— If closest (positive) hit so far, record hit

N

\\~
~

L4

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

kD-Tree Traversal

* Front-to-back traversal
— Traverse child nodes in order along rays

AN

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

kD-Tree Traversal

* Ordered Traversal
— Skip 2nd child if intersection found in 1st child belongs to the cell

L4

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

kD-Tree Storage

 Node Representation

— Leaf flag + split axis (X, y, z or leaf)
« 2 bits

— Split location (1D)
* 1 real

— Pointers to children / geometry
» 2 pointers
« 1 pointer & 1 integer

 Bounding Box
— Nodes of k-D tree represent axis-aligned bounding boxes
— Do not need to be explicitly stored
— Ray interval can instead be implicitly updated

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

kD-Tree Traversal

 Initialize entry/exit distances at root’s bounding box
— t near &t _far
« Compare split distance to node’s entry/exit distances

— t split>=t_far Go only to near node
— t near<t split<t far Go to both
— t split<=1t_near Go only to far node
* Near and far depend on direction of ray!
ol ," b/
,./ ,,, ,,/
- < —* - -
z/‘, /‘/ ,/ /,
/,,,, /‘,, I.,,,
’ ’ .’

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

kD-Tree Traversal

KDTreelntersect(ray, node, t_near, t_far):
If (node is inner node)
t split = (node.splitCoord — ray.pos[node.splitAxis]) / ray.dir[node.splitAxis];
if (t_split >=t_far)
KDTreelntersect(ray, node.near_child, t near, t far); // near child only
else if (t_split <=t _near)

KDTreelntersect(ray, node.far_child, t near, t far); // far child only
else // hit both children
KDTreelntersect(ray, node.near_child, t near, t_split);
KDTreelntersect(ray, node.far_child, t_split, t_far);
else
lterate through node.listOfObjects and record closest intersection;
If (intersection is within [t_near, t_far]) abort traversal;

« Computationally Inexpensive

— One subtraction, division, decision, and fetch
— But many more cycles due to dependencies

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

KD Tree Discussion

* Properties

— Logarithmic intersection cost
— Adaptive to local geometric density

 Trade-Offs

— Relatively expensive build cost
— Relatively cheap traversal cost

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

TREE OPTIMIZATIONS

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

Building Trees

« Given
— Axis-aligned bounding box (“cell”)
— List of geometric primitives (e.g. triangles) touching cell

 BVH and kD-Tree Core Operations

— Pick an axis-aligned plane to split the cell into two parts
» kD tree: use extent of bounding box of geometry
« BVH: use extent of bounding box of centroids instead
— E.g. yields infinitely thin bounding box for 3 aligned centroids
— Sift geometry into two (possibly redundant) batches
— Recurse
— Stop when termination criterion is met

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

Splitting

Minimize Extents
« Split Axis

— Largest extent
« Split Location
— Middle of extent

* Termination Criterion
— Size of (non-empty) cell < predefined threshold

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

Split in the Middle

 Makes the L & R probabilities equal
« Pays no attention to the L & R costs

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

Minimize Primitives
« Split Axis

— Round-robin

« Split Location

— Median of geometry (balanced tree)

* Termination Criterion
— Number of objects < predefined threshold

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

Split at the Median

Adh
A «

 Makes the L & R costs equal
« Pays no attention to the L & R probabilities

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

Minimize Extents and Primitives

 What split do we really want?
— The one that makes ray tracing cheap
— Formulate an expression of cost and minimize it
— Cost optimization

 What is the cost of tracing a ray through a node?
— Cost(cell) = traversalCost + Prob(hit L | hit P) * Cost(L)
+ Prob(hit R | hit P) * Cost(R)

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

Surface Area Heuristic
« Compute the Probability

— Assume uniform directional distribution of rays
— Probability turns out to be proportional to surface area
— Area of outer surface of bounding box, not its volume
— Prob(hit N | hit P) = SA(N) / SA(P)

« Compute the Cost
— Should recursively compute the cost of the subtree

— Use the cost of a leaf node as a greedy approximation
— Cost(N) = ObjectCount(N) * intersectionCost

 Tuning Parameters
— traversalCost

— intersectionCost
— Build behavior only depends on their relative ratio

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

Cost-Optimized Split

 Automatically isolates complexity
* Produces large chunks of empty space

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

Minimize Extents and Primitives
« Split Axis

— lterate over each of the 3 axes in turn
— Record axis whose split location with minimal cost is optimal

« Split Location
— lterate over all candidates along the axis currently considered
« BVH: Centroid intervals
« K-D tree: Extrema of cost function at boundaries of bounding boxes
— Compute cost for each and record candidate with minimal cost
« Naively compute cost individually — N*2 operations
— lterate over the set of objects
— Compute left/right bounding volumes and primitive numbers
« Sort the candidates along the given axis — N log(N) operations
— BVH: incrementally compute surface areas both forward and backward
— KD tree: incrementally compute primitive numbers from min/max bounds

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

Minimize Extents and Primitives

 Termination Criterion
— When optimal Cost(cell) of splitting > Cost(N) of creating a leaf

- Additional Criteria
— Avoid infinite loops
« E.g. all objects of a BVH node put in single child
— Bound memory consumption
» Limited tree depth

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

Minimize Extents and Primitives
« MakeSplitDecision(objects):

* For(axis a in x/y/z)
— For(candidate c in [sorted] candidates along a)
« Compute left and right object counts;
« Compute left and right surface areas;
» splitCost = Cost(c);
 If (splitCost < bestCost)
— bestCost = splitCost;
— bestSplit = c;
— bestAxis = a;

+ splitDecision = (bestCost < LeafCost(objects));

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

Stack-Based Traversal

« Avoid overhead of recursive function calls
— No need for a true recursion

« Explicitly maintain stack of sub-trees to traverse
— Optimize by minimizing stack operations

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

Stack-Based Traversal

L4

C Current: A
Stack:

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

Stack-Based Traversal

L4

Current: B

Stack: C

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

Stack-Based Traversal

L4

Current: L2

Stack: C

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

Stack-Based Traversal

L4

Current;

Stack: C

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

Stack-Based Traversal

AN

L4

C Current: C
Stack:

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

Stack-Based Traversal

AN

L4

C Current: D
Stack: L3

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

Stack-Based Traversal

Current: L4

Stack: L5 L3

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

Stack-Based Traversal

Current;

Stack: L5 L3

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

Stack-Based Traversal

Current; Result:

Stack: L5 L3

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

DIRECTIONAL APPROACHES

Computer Graphics WS 2023/24 Philipp Slusallek , Philigde Weier, Alexan der Rath

Directional Partitioning

« Applications
— Useful only for rays that start from a fixed point A
« Camera (assuming no camera movement)
« Point light sources
— Preprocessing of visibility
» For each object locate where it is visible

« Variation: “light buffer”
— Lazy and conservative evaluation

— Store occluder that was found in
directional structure

— Test entry first for next shadow test

Computer Graphics WS 2023/24 Philipp Slusallel,@hilippe Weier, Alexander Rath

5D Partitioning

« Partitioning of space and direction

* Roughly pre-computes visibility for the entire scene
* What is visible from each point in each direction?
— Very costly preprocessing, cheap traversal
» Improper trade-off between preprocessing and run-time
— Memory hungry, even with lazy evaluation
— Seldom used in practice

Directions Origins Beam

(b)

i

Directions

Beam

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

WRAP-UP

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

Battle of Acceleration Structures
 Trade-Off

— Build vs. Traversal Cost
— Target time to image
» Preprocessing time + rendering time
» Preprocessing time depends on geometry
* Rendering time depends on total number of rays

« Some Structures better than Others
— Depending on input geometry
— Depending on rendering task
— No absolute best!

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

Nested Acceleration Structures

« Acceleration structure is a geometric primitive
« Can be used inside another acceleration structure

 Build meta-acceleration structure

Computer Graphics WS 2023/24 Philipp Slusallek, Philippe Weier, Alexander Rath

