Computer Graphics

- Acceleration Structures -

Philippe Weier
Alexander Rath
Philipp Slusallek
Acceleration Strategies

• Naïve Ray Tracing is too expensive
 – Need hundreds of millions rays per second
 – Scenes consist of millions of triangles

• Faster ray-primitive intersection algorithms
 – Only reduce complexity by a constant factor. (Still relevant!)

• Reduce complexity by sorting data as a pre-process
 – Acceleration structures
 • Guide range search process: dictionaries for ray tracing
 • Limit distance of the search along the ray
 – Eliminate intersection candidates
 • Can reduce average complexity from $O(n)$ to $O(\log n)$
 • Worst case still $O(n)$
Acceleration Structures

• **Object Partitioning**
 – Partition objects into groups
 – Store in a data structure (tree)
 – Every object appears once in the data structure
 – Possible spatial overlap

• **Spatial Partitioning**
 – Subdivide space into disjoint fully covering regions
 – Store in a data structure (tree or table)
 – Every region appears once in the data structure
 – Possibly multiple references to the same object

• **Directional Partitioning**
 – Subdivide directions into cells

• **5D Partitioning**
 – Subdivide space and direction
 – Close to pre-compute visibility for all points and all directions
OBJECT PARTITIONING
Bounding Volumes

• Key Idea
 – Enclose complex geometry in simple bounding volume
 – A ray missing the bounding volume misses the object
 – Only test object intersection if ray hits bounding volume
Bounding Volumes Types

• **Sphere**
 – Very fast intersection computation
 – Often inefficient because too large

• **Axis-aligned bounding box (AABB)**
 – Simple intersection computation
 – Very simple extension of min-max bounds
 – Sometimes too large

• **Non-axis-aligned box**
 – A.k.a. oriented bounding box (OBB)
 – Often better fit
 – More complex computation

• **(Unbounded) Plane**
 – Infinite bounding box!!!!
 – Best to keep planes outside of acceleration structures

• **Neural bounding?** (Liu, et. al 2023)
Bounding Volumes Types

- **k-DOP** (discrete oriented polytope)
 - Boolean intersection of k bounding slabs along k directions
 - Pairs of half spaces

- **SPHERE**
- **AABB**
- **OBB**
- **8-DOP**
- **CONVEX HULL**
Bounding Volumes Types

- Neural bounding (Liu, et. al 2023)

Figure 1: Different bounding volume types classifying 2D space as maybe-object or certainly-not-object, from left to right: box (a), ellipsoid (b), k-oriented planes (c), common neural networks (d) and a neural network trained using our approach (e). While common boundings are not tight, common neural networks are not conservative, missing parts of the dolphin, while ours is both tight and has no false negatives.
Bounding Volumes Construction

• Triangle
 – \(\text{bmin.x} = \min(p1.x, p2.x, p3.x) \)
 – \(\text{bmax.x} = \max(p1.x, p2.x, p3.x) \)
 – Similar for \(\text{bmin.y}, \text{bmax.y}, \text{bmin.z}, \text{bmax.z} \)

• Parallelogram
 – \(p1 = p0 + e1 \)
 – \(p2 = p0 + e2 \)
 – \(p3 = p0 + e1 + e2 \)
 – \(\text{bmin.x} = \min(p0.x, p1.x, p2.x, p3.x) \)
 – \(\text{bmax.x} = \max(p0.x, p1.x, p2.x, p3.x) \)
 – Similar for \(\text{bmin.y}, \text{bmax.y}, \text{bmin.z}, \text{bmax.z} \)
Bounding Volumes Construction

- **Sphere**
 - $b_{\text{min}} = \text{center} - \text{Vector}(\text{radius}, \text{radius}, \text{radius})$
 - $b_{\text{max}} = \text{center} - \text{Vector}(\text{radius}, \text{radius}, \text{radius})$

- **Axis-Aligned Box**
 - $b_{\text{min}}.x = \min(p1.x, p2.x)$
 - $b_{\text{max}}.x = \max(p1.x, p2.x)$
 - Similar for $b_{\text{min}}.y$, $b_{\text{max}}.y$, $b_{\text{min}}.z$, $b_{\text{max}}.z$

- **Oriented Box**
 - $b_{\text{min}}.x = \min(p1.x, p2.x, \ldots, p8.x)$
 - $b_{\text{max}}.x = \max(p1.x, p2.x, \ldots, p8.x)$
 - Similar for $b_{\text{min}}.y$, $b_{\text{max}}.y$, $b_{\text{min}}.z$, $b_{\text{max}}.z$
Bounding Volumes Construction

- **Constructive Solid Geometry**
 - Union: $C \cup S$
 - $b_{\text{min}}.x = \min(b_{\text{min}}C.x, b_{\text{min}}S.x)$
 - $b_{\text{max}}.x = \max(b_{\text{max}}C.x, b_{\text{max}}S.x)$
 - Difference: $S - C$
 - $b_{\text{min}}.x = b_{\text{min}}S.x$
 - $b_{\text{max}}.x = b_{\text{max}}S.x$
 - Intersection: $C \cap S$
 - $b_{\text{min}}.x = \max(b_{\text{min}}C.x, b_{\text{min}}S.x)$
 - $b_{\text{max}}.x = \min(b_{\text{max}}C.x, b_{\text{max}}S.x)$

- **Neural Bounding**

\[
\mathcal{L}(\theta) = \int c(\mathbf{r})d\mathbf{r}, \quad c(\mathbf{r}) = \begin{cases}
0 & \text{if } g(\mathbf{r}) = 0 \text{ and } h_\theta(\mathbf{r}) = 0, \quad \text{TN} \\
\alpha & \text{if } g(\mathbf{r}) = 1 \text{ and } h_\theta(\mathbf{r}) = 0, \quad \text{FN} \\
\beta & \text{if } g(\mathbf{r}) = 0 \text{ and } h_\theta(\mathbf{r}) = 1, \quad \text{FP} \\
0 & \text{if } g(\mathbf{r}) = 1 \text{ and } h_\theta(\mathbf{r}) = 1, \quad \text{TP}
\end{cases}
\]
Bounding Volumes Discussion

• **Benefits**
 – Can reduce the overall cost by a constant factor

• **Limitations**
 – Does not change the asymptotic cost

• **Solutions**
 – Build a hierarchy of bounding volumes
Bounding Volume Hierarchy

- Hierarchical partitioning of the set of objects
- Form a tree structure
 - Each inner node stores pointers to child nodes
 - Each leaf node stores pointers to objects
 - All nodes store a volume enclosing all sub-trees
BVH Construction

• **Insertion-Based**
 – Insert each object at the root
 – Trickle down to sub-tree with minimal cost
 – Sensitive to order of insertion

• **Bottom-Up**
 – Group close-by objects together
 – Recursively group close-by groups together
 – Emphasis at the bottom of the tree

• **Top-Down**
 – Subdivide objects into groups
 – Recursively subdivide groups into sub-groups
 – Emphasis at the top of the tree
BVH Construction

- Compute overall bounding box
BVH Construction

- Choose split axis and coordinate
- Place each object into a single group
- Use position of object’s centroid relative to the plane
 - Estimate centroid as center of object’s bounding box in practice
BVH Construction

- Compute bounding box of the 2 child nodes
- Recurse down each individual subtree
- Until termination criterion is met
BVH Construction

- **BVHBuild(objects):**
- **MakeSplitDecision();**
- **If split**
 - **for**(object o in objects)
 - If centroid(o).axis < split
 - Put o into leftGroup;
 - Else
 - Put o into rightGroup;
 - Return new inner node with children
 - **BVHBuild**(leftGroup);
 - **BVHBuild**(rightGroup);
- **Else**
 - Return new leaf node with objects;
BVH Traversal

• Check if root node is intersected by the ray
BVH Traversal

- Recurse only into subtrees intersected by the ray
BVH Traversal

• Cheap traversal instead of costly intersection
• Process both subtrees
 – In random order
 – In order of intersection of their bounding boxes
BVH Traversal

• For each primitive in current leaf node
 – Check if ray intersects the primitive
 – If closest (positive) hit so far, record hit

• Ordered Traversal
 – Skip 2nd child if non-overlapping intersection found in 1st child
BVH Traversal

• **BVHIntersect(ray, node):**
 • **If (node is inner node)**
 – If ray intersects bounding box of near child
 • BVHIntersect(ray, node.nearChild);
 – If ray intersects bounding box of far child (before previous hit)
 • BVHIntersect(ray, node.farChild);
 • **Else**
 – Iterate through node.listOfObjects and record closest intersection;
BVH Storage

• Node Representation
 – Leaf Flag
 • 1 Boolean
 – Bounding Volume
 • Bounding box: 6 reals
 – Pointers to children / geometry
 • 2 pointers
 • 1 pointer & 1 integer

• Smarter Node Representation (32 Bytes)
 – Bounding box
 • (6 floats, 24 bytes)
 – Left child index (if interior) OR first primitive index (if leaf)
 • (1 unsigned integer, 4 bytes)
 – Number of Triangles (if leaf)
 • (1 unsigned integer, 4 bytes)
BVH Discussion

• Properties
 – Logarithmic intersection cost
 – Adaptive to local geometric density

• Trade-Offs
 – Relatively moderate build cost
 – Relatively moderate traversal cost
SPACE SUBDIVISION
Uniform Grid

• Regular partitioning of space into equal-size cells
• Each cell holds a reference to all overlapping objects
Uniform Grid Construction

- **Resolution Trade-Offs**
 - Small cells
 - Few intersections tests
 - Many traversal steps
 - Large cells
 - Few traversal steps
 - Many intersections tests

- **Optimal Resolution**
 - Nb of cells prop. to nb of objects n
 - Resolution proportional to $\sqrt[3]{n}$
 - Roughly cubic cells
 - Resolution prop. to scene’s extent
 - d: diagonal vector $p_{max} - p_{min}$
 - λ: density (user-defined)

\[
\begin{align*}
res_x &= d_x \sqrt[3]{\frac{\lambda n}{d_x d_y d_z}} \\
res_y &= d_y \sqrt[3]{\frac{\lambda n}{d_x d_y d_z}} \\
res_z &= d_z \sqrt[3]{\frac{\lambda n}{d_x d_y d_z}}
\end{align*}
\]
Uniform Grid Traversal

- 3D-DDA (Digital Differential Analyzer)
- Variant of Bresenham algorithm (see later)
 - Compute coordinates $bx/by/bz$ to closest cell boundaries
 - Initialize parametric distances $px/py/pz$ to closest cell boundaries
 - Compute parametric distances $tx/ty/tz$ between cells
Mailboxing

• **Avoid redundant intersections**
 – Single primitive can be inserted in many cells

• **Keep track of intersection tests**
 – Per-object cache of ray IDs
 • Concurrent access of multiple rays in multi-threaded environment!!
 – Per-ray cache of object IDs
 • Can only track the N most recent intersections
Uniform Grid Discussion

- **Properties**
 - Cube-root intersection cost
 - Non-adaptive to local geometric density: “Teapot in the stadium”

- **Trade-Offs**
 - Relatively cheap build cost
 - Relatively expensive traversal cost
Hierarchical Grids

- **Hierarchy of uniform grids**
 - Each grid cell might be subdivided into a finer grid

- **Properties**
 - Adaptive subdivision: adjust depth to local scene complexity
 - Fixed split positions

Cells of uniform grid (colored by # of intersection tests)

Same for two-level grid
BSP Trees

- **Binary Space Partition Tree (BSP)**
 - Recursively split space with planes
 - Arbitrary split positions
 - Arbitrary orientations
 - How much flexibility?
 - Restricted BSP: predefined set of directions
 - Unrestricted BSP: unlimited flexibility
Octree

- **Hierarchical Structure**
 - 3D extension of 2D quadtree
 - Each inner node contains 8 equally sized voxels

- **Properties**
 - Adaptive subdivision: adjust depth to local scene complexity
 - Fixed branching factor and split positions
kD-Tree

- **Definition**
 - **Axis-Aligned** Binary Space Partition Tree
 - Recursively split space with axis-aligned planes
 - Arbitrary split positions
 - X, Y or Z orientations

- **Adaptive**
 - Can handle the “Teapot in a Stadium” well
kD-Tree Construction

- Compute overall bounding box
kD-Tree Construction

- Choose split axis and coordinate
- Place each object into non-exclusive groups
kD-Tree Construction

- Recurse down each individual subtree
- Until termination criterion is met
kD-Tree Construction
kD-Tree Construction
kd-TREE Construction

- KDTreeBuild(objects):
- MakeSplitDecision();
- If split
 - for(object o in objects)
 - If minBound(o).axis < split
 - Add o to leftGroup;
 - If maxBound(o).axis > split
 - Add o to rightGroup;
 - Return new inner node with children
 - KDTreeBuild(leftGroup);
 - KDTreeBuild(rightGroup);
- Else
 - Return new leaf node with objects;
kD-Tree Traversal

- Check if root node is intersected by the ray
kD-Tree Traversal

- **Process both subtrees**
 - In random order
 - In order of traversal
kD-Tree Traversal

• Cheap traversal instead of costly intersection
• Recurse only into subtrees intersected by the ray

Diagram: A kD-tree structure with a ray intersection shown, indicating traversal through the tree.
kD-Tree Traversal

- For each primitive in current leaf node
 - Check if ray intersects the primitive
 - If closest (positive) hit so far, record hit
kD-Tree Traversal

- **Front-to-back traversal**
 - Traverse child nodes in order along rays
kD-Tree Traversal

- **Ordered Traversal**
 - Skip 2nd child if intersection found in 1st child belongs to the cell
kD-Tree Storage

- **Node Representation**
 - Leaf flag + split axis (x, y, z or leaf)
 - 2 bits
 - Split location (1D)
 - 1 real
 - Pointers to children / geometry
 - 2 pointers
 - 1 pointer & 1 integer

- **Bounding Box**
 - Nodes of k-D tree represent axis-aligned bounding boxes
 - Do not need to be explicitly stored
 - Ray interval can instead be implicitly updated
kD-Tree Traversal

- Initialize entry/exit distances at root’s bounding box
 - \(t_{\text{near}} \) & \(t_{\text{far}} \)

- Compare split distance to node’s entry/exit distances
 - \(t_{\text{split}} \geq t_{\text{far}} \) Go only to near node
 - \(t_{\text{near}} < t_{\text{split}} < t_{\text{far}} \) Go to both
 - \(t_{\text{split}} \leq t_{\text{near}} \) Go only to far node

- Near and far depend on direction of ray!

![Diagram of kD-Tree Traversal](image-url)
kD-Tree Traversal

KDTreeIntersect(ray, node, t_near, t_far):

If (node is inner node)

\[t_split = (\text{node.splitCoord} - \text{ray.pos[node.splitAxis]}) / \text{ray.dir[node.splitAxis]}; \]

if (t_split >= t_far)

\[\text{KDTreeIntersect}(\text{ray, node.near_child, t_near, t_far}); // near child only \]

else if (t_split <= t_near)

\[\text{KDTreeIntersect}(\text{ray, node.far_child, t_near, t_far}); // far child only \]

else // hit both children

\[\text{KDTreeIntersect}(\text{ray, node.near_child, t_near, t_split}); \]

\[\text{KDTreeIntersect}(\text{ray, node.far_child, t_split, t_far}); \]

else

Iterate through node.listOfObjects and record closest intersection;

If (intersection is within [t_near, t_far]) abort traversal;

- **Computationally Inexpensive**
 - One subtraction, division, decision, and fetch
 - But many more cycles due to dependencies
KD Tree Discussion

• Properties
 – Logarithmic intersection cost
 – Adaptive to local geometric density

• Trade-Offs
 – Relatively expensive build cost
 – Relatively cheap traversal cost
TREE OPTIMIZATIONS
Building Trees

• **Given**
 – Axis-aligned bounding box ("cell")
 – List of geometric primitives (e.g. triangles) touching cell

• **BVH and kD-Tree Core Operations**
 – Pick an axis-aligned plane to split the cell into two parts
 • kD tree: use extent of bounding box of geometry
 • BVH: use extent of bounding box of centroids instead
 – E.g. yields infinitely thin bounding box for 3 aligned centroids
 – Sift geometry into two (possibly redundant) batches
 – Recurse
 – Stop when termination criterion is met
Splitting
Minimize Extents

- **Split Axis**
 - Largest extent

- **Split Location**
 - Middle of extent

- **Termination Criterion**
 - Size of (non-empty) cell < predefined threshold
Split in the Middle

- Makes the L & R probabilities equal
- Pays no attention to the L & R costs
Minimize Primitives

• **Split Axis**
 – Round-robin

• **Split Location**
 – Median of geometry (balanced tree)

• **Termination Criterion**
 – Number of objects < predefined threshold
Split at the Median

- Makes the L & R costs equal
- Pays no attention to the L & R probabilities
Minimize Extents and Primitives

• What split do we really want?
 – The one that makes ray tracing cheap
 – Formulate an expression of cost and minimize it
 – Cost optimization

• What is the cost of tracing a ray through a node?
 – Cost(cell) = traversalCost + \(\text{Prob}(\text{hit L} | \text{hit P}) \times \text{Cost}(L) \)
 + \(\text{Prob}(\text{hit R} | \text{hit P}) \times \text{Cost}(R) \)
Surface Area Heuristic

- **Compute the Probability**
 - Assume uniform directional distribution of rays
 - Probability turns out to be proportional to *surface area*
 - Area of outer surface of bounding box, not its volume
 - \(\text{Prob(hit } N \mid \text{hit } P) = \frac{\text{SA}(N)}{\text{SA}(P)} \)

- **Compute the Cost**
 - Should recursively compute the cost of the subtree
 - Use the cost of a leaf node as a greedy approximation
 - \(\text{Cost}(N) = \text{ObjectCount}(N) \times \text{intersectionCost} \)

- **Tuning Parameters**
 - traversalCost
 - intersectionCost
 - Build behavior only depends on their relative ratio
Cost-Optimized Split

- Automatically isolates complexity
- Produces large chunks of empty space
Minimize Extents and Primitives

- **Split Axis**
 - Iterate over each of the 3 axes in turn
 - Record axis whose split location with minimal cost is optimal

- **Split Location**
 - Iterate over all candidates along the axis currently considered
 - BVH: Centroid intervals
 - K-D tree: Extrema of cost function at boundaries of bounding boxes
 - Compute cost for each and record candidate with minimal cost
 - Naively compute cost individually → N^2 operations
 - Iterate over the set of objects
 - Compute left/right bounding volumes and primitive numbers
 - Sort the candidates along the given axis → $N \log(N)$ operations
 - BVH: incrementally compute surface areas both forward and backward
 - KD tree: incrementally compute primitive numbers from min/max bounds
Minimize Extents and Primitives

• **Termination Criterion**
 – When optimal Cost(cell) of splitting > Cost(N) of creating a leaf

• **Additional Criteria**
 – Avoid infinite loops
 • E.g. all objects of a BVH node put in single child
 – Bound memory consumption
 • Limited tree depth
Minimize Extents and Primitives

- **MakeSplitDecision**(objects):
 - **For**(axis a in x/y/z)
 - **For**(candidate c in [sorted] candidates along a)
 - Compute left and right object counts;
 - Compute left and right surface areas;
 - splitCost = Cost(c);
 - If (splitCost < bestCost)
 - bestCost = splitCost;
 - bestSplit = c;
 - bestAxis = a;
 - splitDecision = (bestCost < LeafCost(objects));
Stack-Based Traversal

• **Avoid overhead of recursive function calls**
 – No need for a true recursion

• **Explicitly maintain stack of sub-trees to traverse**
 – Optimize by minimizing stack operations
Stack-Based Traversal

Current: A
Stack:
Stack-Based Traversal

Current: B
Stack: C

Diagram showing a stack-based traversal process.
Stack-Based Traversal
Stack-Based Traversal

Current: C

Stack: C
Stack-Based Traversal

Current: C

Stack:
Stack-Based Traversal
Stack-Based Traversal

Current: L4
Stack: L5, L3

Diagram showing a stack-based traversal with nodes labeled A to D and levels L1 to L5.
Stack-Based Traversal

Current: ▲ ▴
Stack: L5 L3

Diagram showing a stack-based traversal algorithm with a stack containing nodes L5 and L3, and the current node being ▲ ▴.
Stack-Based Traversal

Current: \[\triangle \triangle\]
Result: \[\triangle\]

Stack: [L5, L3]
DIRECTIONAL APPROACHES
Directional Partitioning

- **Applications**
 - Useful only for rays that start from a fixed point
 - Camera (assuming no camera movement)
 - Point light sources
 - Preprocessing of visibility
 - For each object locate where it is visible

- **Variation: “light buffer”**
 - Lazy and conservative evaluation
 - Store occluder that was found in directional structure
 - Test entry first for next shadow test
5D Partitioning

• Partitioning of space and direction
• Roughly pre-computes visibility for the entire scene
 • What is visible from each point in each direction?
 – Very costly preprocessing, cheap traversal
 • Improper trade-off between preprocessing and run-time
 – Memory hungry, even with lazy evaluation
 – Seldom used in practice
WRAP-UP
Battle of Acceleration Structures

• **Trade-Off**
 – Build vs. Traversal Cost
 – Target time to image
 • Preprocessing time + rendering time
 • Preprocessing time depends on geometry
 • Rendering time depends on total number of rays

• **Some Structures better than Others**
 – Depending on input geometry
 – Depending on rendering task
 – No absolute best!
Nested Acceleration Structures

• Acceleration structure is a geometric primitive
• Can be used inside another acceleration structure
• Build meta-acceleration structure