Computer Graphics

- Transformations -

Alexander Rath
Philipp Slusallek
Slides by Philipp Slusallek
and Piotr Danilewski

Overview

« Last time
— Introduction to Ray Tracing

- Today
— Vector spaces and affine spaces
— Homogeneous coordinates
— Basic transformations in homogeneous coordinates
— Concatenation of transformations
— Projective transformations

Vector Space

 Math recap

— 3D vector space over the real numbers

%1
. v=<vz>EV3:]R3
U3

— Vectors written as n x 1 matrices
— Vectors describe directions — not positions!
 All vectors start from the origin of the coordinate system
— 3 linear independent vectors create a basis
« Standard basis les

(00 [

— Any vector can now be represented uniquely with coordinates v;
* V= v161+v282 +v333 V1, V5, U3 ER

e

Vector Space - Metric

« Standard scalar product a.k.a. dot or inner product
— Measure lengths
e w2=v-v=vi+vs+vs
— Compute angles
* u-v = |ul|lv|cos(u, v)
— Projection of vectors onto other vectors

_ u-v _ u-v
* |u|cos(8) = i

e = o =

Y
|u| cos(6)

Vector Space - Basis

« Orthonormal basis
— Unit length vectors
* les| = les|= les[=1
— Orthogonal to each other
© e e =0
« Handedness of the coordinate system
— e1Xey; = tej
« Positive: Right-handed
* Negative: Left-handed

Affine Space

 Basic mathematical concepts
— Denoted as A3
» Elements are positions (not directions)
— Defined via its associated vector space V3
e a,beAleJlveViv=b—a
* —:unique, «: ambiguous
— Operations on A3
» Subtraction yields a vector
» No addition of affine elements
— Its not clear what the some of to points would mean
» But: Addition of points and vectors:
—a+v=beAd
« Distance
— dist(a,b) = |a — b|

Affine Space - Basis

 Affine Basis

— Given by its origin o (a point) and the basis of an associated
vector space

¢ { €1,€2,€3, 0}: €1,€2,€3 € V3; (S A3
« Position vector of point p
— (p—o0)isin V3

Affine Coordinates

« Affine Combination
— Linear combination of (n+1) points
* Do, Pn EA™
— With weights forming a partition of unity
* ag,...,ay € Rwith }};a; =1
— P = Xizo @iPi = Po + Xi=1 @i(p; — Po) = 0 + Xiq a;v;
 Basis
— (n + 1) points form am affine basis of A"
« Iff none of these point can be expressed as an affine combination of
the other points
« Any point in A™ can then be uniquely be represented as an affine
combination of the affine basis py, ..., p,, € A"

* Any vector in another basis can be expressed as a linear
combination of the p;, yielding a matrix for the basis

Affine Coordinates

« Closely related to “Barycentric Coordinates”
— Center of mass of (n + 1) points

with arbitrary masses (weights) m; is given as D1 N\ .
c p=2P= Y p = Yap, N
« Convex / Affine Hull oF!

— If all a; are non-negative than p is in the convex huII
of the other points

* In1D
— Point is defined by the splitting ratio a;: a,
. [p—Pal |p—pl
p - alpl + azpz - |p —DP1 | 1 |p2 P1 |p2 (1,0,0) (1/2,1/2,0) (0,1,0)

 In2D

— Weights are the relative areas in A(A4, A5, A3)
ACP,A(i+1)%3A(>i+2)%3)

A(A1,42,A
(A1,42,43) Note: Length and area
* p= 0(1A1 + 052142 + a3A3 measures need to be signed here

(1/2,1/4,174) (174,1/2,1/4)

(1/3,173,1/3)

(1/2,0,1/2) (1/4,17%4.172) (0,1/2,1/2)

° ti:ai:

Affine Mappings

* Properties
— Affine mapping (continuous, bijective, invertible)
« TA3 A3
— Defined by two non-degenerated simplicies

« 2D: Triangle, 3D: Tetrahedron, ...
— Invariants under affine transformations:

« Barycentric/affine coordinates

« Straight lines, parallelism, splitting ratios, surface/volume ratios
— Characterization via fixed points and lines

» Given as eigenvalues and eigenvectors of the mapping

 Representation
— Matrix product and a translation vector:
« Tp = Ap + t withA € R™"™, t € R"
— Invariance of affine coordinates

* Tp =TQa;p;) = AQa;p;) +t = Ya;(Ap;) + Ya;t = Ya;(Tp;)

Homogeneous Coordinates for 3D

« Homogeneous embedding of R3 into the projective 4D
space P(R%)
— Mapping into homogeneous space

X X
.« R33 (y) — <3Z’> € P(R%)
Z

1
— Mapping back by dividing through fourth component
X X/W
Y
. 7 — (Y/W)
W Z/W

« Consequence
— This allows to represent affine transformations as 4x4 matrices
— Mathematical trick

« Convenient representation to express rotations and translations as
matrix multiplications

» Easy to find line through points, point-line/line-line intersections
— Also important for projections (later)

Point Representation in 2D

 Point in homogeneous coordinates

— All points along a line through the origin map to the same point in
2D

Homogeneous Coordinates in 2D

« Some tricks (works only in P(R3), i.e. only in 2D)
— Point representation
(/)
Y/W

X X
- (X) = (y) e P(R?), (;)
y
w
— Representation of a line | € R?
» Dot product of | vector with point in plane must be zero:

- l={(;)|ax+by+c-1=0}= {XEP(]R3)|X-I=O,1=(Z>}

C
« Line | is normal vector of the plane through origin and points on line

— Intersection of lines | and I
» Point on both lines =» point must be orthogonal to both line vectors
e Xelnl' X =IxI'
— Line trough 2 points p and p’
* Line must be orthogonal to both points
e peElAp eEls]=pxp

Affine view

 P™(R) - projective space

« R" - affine view
— typically: last coordinate =1

P™(R)

lines —> points
Rl’l

P™(R)

Affine view

 P™(R) - projective space

« R" - affine view
— typically: last coordinate =1

P*(R) R"

lines —> points

planes ——> lines

Intersections

 P™(R) - projective space
« R" - affine view

P*(R) R"

plane-plane —— line-line

I

line —> point

Intersections

 P™(R) - projective space
« R" - affine view

P*(R) R™

arallel
plane-plane —— paral
line-line

T

: point
10 at infinity

Orthonormal Matrices

« Columns are orthogonal vectors of unit length
— An example

0 0 1
. (1 0 0)
0O 1 O
— Directly derived from the definition of the matrix product
« MTM =1

— In this case the transpose must be identical to the inverse
. M—l — MT

Linear Transformation: Matrix

 Transformations in a Vector space: Multiplication by
a Matrix
— Action of a linear transformation on a vector
« Multiplication of matrix with column vector (e.g. in 3D)

X' Tex Txy Tz X
p’ = (Y’) = Tp = Tyx Tyy Tyz (Y)
Z' T,, T,, T,,)] \Z

« Composition of transformations
— Simple matrix multiplication (T4, then T>)
* T;T1p =T2(T1p) = (T Tp =Tp
— Note: matrix multiplication is associative but not commutative!
 T,T,is not the same as TT, (in general)

Affine Transformation

 Remember:

— Affine map: Linear mapping and a translation
e Tp=Ap +t
* For 3D: Combining it into one matrix

— Using homogeneous 4D coordinates
— Multiplication by 4x4 matrix in P(R%) space

X' Txx Txy sz wa X
. p = Y' | _ Tp = yx Tyy Tyz Tyw Y
Z' Ty sz Tz Tow Z
w’ Twx Twy Twz Tww w

— Allows for combining (concatenating) multiple transforms into one
using normal (4x4) matrix product

« Let’s go through the different transforms we need:

Transformations: Translation

* Translation (T)
0 t,\ ,x X+t
;) <y>) (y ;)
1 t,|\z] \z+t,
0 1/ M 1

— T(ty, ty,t,)p = (
T(2,1)B

O O K
o O -k O

Translation of Vectors

« So far: only translated points
« Vectors: Difference between 2 points

Px dx Px — qx
e =Py _ 9 || Py —
vEpPTA <pz> <qz> (pz_CIz>

1 1 0

— Fourth component is zero
« Consequently: Translations do not affect vectors!

1 0 0 ¢t,\ ,v, Uy

0 1 0 ¢ v v

T(t,, t,,t = y Yl=1"Y
(totyt)v=|g o 4 tz><vz> <v2>

0 0 0 1 0 0

Translation: Properties

* Properties
— ldentity
« T(0,0,0) = 1 (Identity Matrix)
— Commutative (special case)
o T(te ty, t,)T(tr, by, t5) = T(ty, 5, t5)T(tr ty, t,) =
T(ty + ty,t, +t,t, + ;)
— Inverse

.« Tty t,,t,) = T(=t,, —t), —t})

Basic Transformations (2)

« Scaling (S)

s, 0 0 0

0 s 0O O

- S(Sx, Sy, SZ) = 0 8’ . 0
VA

O 0 o0 1

— Note: sy, sy, s, = 0 (otherwise see mirror transformation)
— Uniform Scaling s: s = s, = x,, = s,

B X S(2,1)B X

Basic Transformations

* Reflection/Mirror Transformation (M)
— Reflection at plane (x=0)

-1 0 0 0\ /x —x
oy [0 1 0 0y y
Mc=10 01 oflz z
0 00 1/ \ 1

* Analogously for other axis
» Note: changes orientation

— Right-handed becomes left-handed and v.v.
— Indicated by det(M;) < 0

— Reflection at origin

-1 0 0O O X —X
o -1 0 of[y)_[-vy
M, = 0 0 -1 ofJ\z]|] \-z

0 0 0 1 1 1

» Note: changes orientation in 3D
— But not in 2D (1!!): Just two scale factors
— Each scale factor reverses orientation once

Basic Transformations (4)

« Shear (H)
— H(hyy, haz Py By By, By =
Uy b e B, e ,Z et by + hoz
hyy 1 hy, O|[y Y + hyX + hy,z
how hgyy 1 0\ Z Z+hzxx+hzyy
o o o 1/ ‘1

— Determinant is 1
« Volume preserving (as volume is just shifted in some direction)

y] v

i

B X H(1,00,0,00B

Rotation in 2D

* In 2D: Rotation around origin

— Representation in spherical coordinates
, x=rcosf — x' =rcos(0 + ¢)

y =rsinf — y' =rsin(6 + ¢) R(90°)B
— Well know property

., cos(8 + ¢) = cosbcos¢p —sinfsing

sin(8 + ¢) = cos 0 sin ¢ + sin 8 cos ¢
— Gives
. x' = (rcosf)cos¢p — (rsinf)sing = xcos¢p — ysing¢
y' = (rcosf)sing + (rsinf) cos¢p = xsin¢ + y cos ¢
— Or in matrix form

__(cos¢p —sing
* R(¢) = (sinqb cosqb)

Rotation in 3D

 Rotation around major axes

1 0 0 0
0 cos¢p -—sing O
— R —
x($) 0 sing <cos¢p O
0 0 0 1
cosp 0 sing O
_ 0 1 0 0
Ry(¢) = sing 0 cos¢ O
0 0 0 1
cosp —singp 0 O
sin cos 0 O
~ R(9) = oq5 0 ’ 1 0
0 0 0 1

— 2D rotation around the respective axis

« Assumes right-handed system, mathematically positive direction
— Be aware of change in sign on sines in R,,

* Due to relative orientation of other axis

Rotation in 3D (2)

* Properties

- Ra(o) =1
— Ra(0)R,(P) = Ra(0 + ¢) = Ra(p)R,(6)

» Rotations around the same axis are commutative (special case)
— In general: Not commutative

* Ry(0)Ry(¢) # Rp(d)R,(0)

» Order does matter for rotations around different axes
— Rz'(0) = Ro(—6) = R(6)

» Orthonormal matrix: Inverse is equal to the transpose
— Determinant is 1

* Volume preserving

Rotation Around Point

 Rotate object around a point p and axis a
— Translate p to origin, rotate around axis a, translate back to p

* R,(p,0) =T(p)Ry(p)T(—p)

i
P
| P
@
B ’ B'=T(-p)B

9

OB’E R,(0)B”

9

>

A4
T(p)B”

Rotation Around Some Axis

« Rotate around a given point p and vector r (|r|=1)
— Translate so that p is in the origin
— Transform with rotation R=MT
« M given by orthonormal basis (r,s,t) such that r becomes the x axis

» Requires construction of a orthonormal basis (r,s,t), see next slide
— Rotate around x axis

— Transform back with R-"
— Translate back to point p

A M7 A M A

N\ 7N

S
r 1S r
()

S > > > t >

X / _/ X X

r
t Figure without

Z t Z

Z translation aspect

R(p,r,¢) = T(@I)M ()R ($)M" (r)T(—p)

Rotation Around Some Axis

« Compute orthonormal basis given a vector r
— Using a numerically stable method
— Construct s such that its normal to r (verify with dot product)
« Use fact that in 2D, orthogonal vector to (x,y) is (-y, X)

— Do this in coordinate plane that has largest components
(. .
(0, —rz,ry), ifx = argmlnx,ylz{lrxl, Tyl Irzl}
e s =<(-r1,0,1)ify = argminx,ylz{lrxl, Ty ,|rZ|}
k(—ry,rx, 0), if z = argminx,y,z{lrxl, 1y |, Irzl}
— Normalize
e s=5'/|s|
— Compute t as cross product
e t=1rXs

— r,8,t forms orthonormal basis, thus M transforms into this basis
" Sy t, O

T 0] . L : _
c M(r)=1|"7 , inverse is given as its transpose: M1 = M7
r, S, t, 0
0 1

Concatenation of Transforms

 Multiply matrices to concatenate
— Matrix-matrix multiplication is not commutative (in general)

— Order of transformations matters! r
y>

Wi
R,(45°) T(1,1)B

y ‘ T(1,1)B

yi
S— » >
<> T(1,1)R,(45°)B

R,(45°)B X X

Transformations

 Line

— Transform end points
 Plane

— Transform three points

 Vector
— Translations to not act on vectors

* Normal vectors
— Problem: e.g. with non-uniform scaling

yi v

/ n » %2,1’1”‘
~ §(21.1) ;

B X S(21,1)B

Transforming Normals

* Dot product as matrix multiplication

Vx
—n-v=nlv="0Nx Ny Ny (Uy>
vZ
« Normal N on a plane
— For any vector v in the plane: nTv = 0
— Find transformation M’ for normal vector, such that :

(M'n)" (Mv) =0 MTMM™! = 1M~
* n"(M'"M)v =0 and thus MT =M1
M™™ =1 M =M1

— M’ is the adjoint of M
» Exists even for non-invertible matrices
« For M invertible and orthogonal M’ = (M~)T = (MDT =M
 Remember:

— Normals are transformed by the transpose of the inverse of the
4x4 transformation matrix of points and vectors

USING TRANSFORMATIONS

Coordinate Systems

* Local (object) coordinate system (3D)

— Object vertex positions

— Can be hierarchically nested in each other (scene graph, transf.
stack)

« World (global) coordinate system (3D)
— Scene composition and object placement
» Rigid objects: constant translation, rotation per object, (scaling)

* Animated objects: time-varying transformation in world-space
— lllumination can be computed in this space

37

Hierarchical Coordinate Systems

* Hierarchy of transformations

T_root
T_Shoulderr
T_ShoulderrJoint
T_UpperArmR
T_ElbowRJoint
T_LowerArmR
T_WristRJoint

T_ShoulderL
T_ShoulderLJoint
T_UpperArmL
T_ElbowLJoint
T_LowerArmL

Hierarchical Coordinate Systems

 Used in Scene Graphs

— Group objects hierarchically
— Local coordinate system is relative to parent coordinate system

— Apply transformation to the parent to change the whole sub-tree
(or sub-graph)

Ray-tracing Transformed Objects

world)

to-

T — set of triangles (local coordinates)
M — transformation matrix (local

Ray (world coordinates)

=
=
+

Qo

Ray-tracing Transformed Objects

Option 1: transform the triangles

def transform(T,m)

= {}
foreach p in T

out

M?'»‘p
out.insert(q)
out.rebuildIndexStructure()

return out

q

Transform(T,M).intersect(ray)

0 +td

Ray-tracing Transformed Objects

ray)

def intersect(obj,

obj.M.inverse()
obj.M.normalTransform()

Minv

N

ray = transform(ray,Minv)
obj.intersect(local_ray)

local_
hit =

transformChit.point,M)
transform(hit.normal,N)

_I
P ©
c =
-
o O
o c
PP
—
h_h_
| i
< ©
o 9o
oo
o o

hit

return global_

Option 2: transform the ray

o+ td

Transforming Tangents

 Transform ray by inverse and intersect object...

world space -----------» object space ------------ - world space world space

ray

T ¢ R T e o reprojectframe_/,r

« ...then transform tangents back to world space

— Bitangent might need to be adjusted to obtain orthonormal basis

— Adjoint matrix not necessary, can compute normal from tangent
and bitangent

Ray-tracing through a Hierarchy

T_root
T_Shoulderr _ apply+push M1
T_ShoulderrJoint
T_UpperArmR
T_ElbowRJoint *
T_LowerArmR P
T_WristRJoint o pop

2 4

T_ShoulderL -
T_ShoulderLJoint /

N /
T_UpperArmL . —/ apply+pop M, N

T_ElbowLJoint .
T_LowerArmL \ 7/

L 4

ing

Instanc

les

T — set of triang

local coordinates
memory

O
)
()
o 2
@ (@)
O
2 n O
—— +2 (@©
@ O c
e Qo
b’
(- o O
O o 5.
- T -
© o QL
£Ez0.2
r_dt
L0 co
w1 0o
C ®© =
© O Q9
- 0 00O
_ =
— e D e
= =

in memory

ized” i

1a

mater

Never

