Computer Graphics

- Introduction to Ray Tracing -

Alexander Rath
Philipp Slusallek
Slides by Piotr Danilewski

RENDERING

Rendering

© 20t Century Studios 2022

Rendering

3D scene |

> 2D image

camera

Rendering

Ingredients: 3D scene
Set of objects in R3 defined by:

Rendering

Ingredients: 3D scene
Set of objects in R* defined by:
— Shape:
» primitives: spheres, boxes, triangles, ...
» implicit functions: quadrics, noise functions, ...
» boolean operations on other shapes
» ...

A 8>

©

Rendering

Ingredients: 3D scene

Set of objects in R* defined by:

— Shape:
» primitives: spheres, boxes, triangles,
» implicit functions: quadrics, noise functions, ...
» boolean operations on other shapes 3
» ...

— Material: light reflectance and emission
» functions: diffuse, specular
» texture
» noise functions
» transparency properties

Rendering

Ingredients: 3D scene

Set of objects in R* defined by:
— Shape:
» primitives: spheres, boxes, triangles, ...
» implicit functions: quadrics, noise functions, .
» boolean operations on other shapes
» ...

— Material: light reflectance and emission
» functions: diffuse, specular
» texture
» noise functions
» transparency properties
— Advanced objects:
» volumes
» point clouds
» ...

Rendering

Ingredients: camera
Defined in R3 by:
— Type:
» perspective, orthographic, fisheye ...
— Parameters:
» origin, direction, field-of-view ...

Rendering

Typical assumptions:

— Light reflected only off surfaces, objects
— Empty space is transparent

— No quantum effects

— No relativistic effects

Rendering algorithms

— Ray Tracing
» Physically-based simulation of light transport
» Deep recursion
» Many effects supported out of the box
» Slow, if no care taken

VA<
>

<
?V&

Rendering algorithms

— Rasterization
» Imperative drawing of scene
* Projecting whole objects

« Shading the produced shapes A
v AT
» Shallow recursion «()=
2 A

» Poor support for effects
» Fast

RAY-TRACING PRINCIPLES

Ray Tracing Is...

- Fundamental rendering algorithm 7§ .. ¢
— Simulates physical behavior of light SN

« Automatic, simple and intuitive

— Easy to understand and implement
— Delivers “correct” images by default

* Powerful and efficient Y FE
— Many optical global effects T S
— Shadows, reflections, refractions, ... Perspective Machine, Albrecht Direr
— Efficient real-time implementation in SW and HW
— Can work in parallel and distributed environments
— Logarithmic scalability with scene size: O(log n) vs. O(n)
— Output sensitive and demand driven

« Concept of light rays is not new
— Empedocles (492-432 BC), Renaissance (Durer, 1525), ...
— Uses in lens design, geometric optics, ...

Light Transport

Light Source

| _ Camera Image Plane

|

« Light Distribution in a Scene
— Dynamic equilibrium

Light Transport

Light Source

Camera Image Plane

l\

« Light Distribution in a Scene

 Forward Light Transport
— from the light sources
— reflect at surfaces

— record when camera is hit /

— Particle Tracing

Most photons will not reach the camera
Intermediate results useful in more advanced algorithms

Light Transport

Light Source

Camera Image Plane

l\

« Light Distribution in a Scene
 Forward Light Transport
 Backward Light Transport

— backward from the camera

— reflect at surfaces

— record when light source is hit
— Ray Tracing

Shoot shadow rays to hit light explicitly

Shoot more rays to find more paths and light sources

Ray Tracing Pipeline

‘;/ F Ray Generation <+

/ \)

!

Ray Traversal

Intersection

generator

’ Shading

[Pixel Color]

primary ray

Ray Tracing Pipeline

‘;/ F Ray Generation <+

/ \)

!

Ray Traversal

Intersection

generator

’ Shading

[Pixel Color]

primary ray

Ray Tracing Pipeline

A
v /
traverse index structure ')\V Ray Generation
find candidate /

Ray Traversal a

[o

!

Intersection

~~ <)

’ Shading

[Pixel Color]

primary ray

Ray Tracing Pipeline

intersect blue box? 'g)\P Ray Generation
=

Ray Traversal

Intersection —

[

Pixel Color]

primary ray

Ray Tracing Pipeline

A
v /
traverse index structure ')\V Ray Generation
find next candidate /

Ray Traversal -

[o

!

Intersection

’ Shading

[Pixel Color]

primary ray

Ray Tracing Pipeline

intersect green box? ')\P Ray Generation
=

Ray Traversal

Intersection —

[

Pixel Color]

primary ray

Ray Tracing Pipeline

';/)\“ Ray Generation
=

Ray Traversal

Intersection

’ Shading —

l

Pixel Color]

—
~~~
—
—
—

1

box material?




Ray Tracing Pipeline

shadow ray ,

secondary ray

Ray Generation <+

. o

!

Ray Traversal

Intersection

@ Shading

[ Pixel Color ]




Ray Tracing Pipeline

v A /
'\ /)\P Ray Generation

Ray Traversal a
J \ 1 J
/) Intersection —

) ’ Shading

G[ [ Pixel Color ]

secondary ray




Ray Tracing Pipeline

'\ DL Ray Generation

Ray Traversal

Intersection

’ @ Shading —
|

Pixel Color ]

box material? [




Ray Tracing Pipeline

‘;/ F Ray Generation <+

/ \ )

!

\ ! Ray Traversal

Intersection

shadow ray

-~
-
—
—
—

G [ Pixel Color ]




Ray Tracing Pipeline

no occlusion

—~—
~—
—
—
—

Ray Generation

i

r

Ray Traversal a

1 y

Intersection —

@ mShading

[

Pixel Color ]




Ray Tracing Pipeline

. [ Vi / .
emission? —"—A)\V @ Ray Generation

Ray Traversal

Intersection

—~—
~—
—
—
—

G [ Pixel Color ]




Ray Tracing Pipeline

Ray Traversal

Ray Generation

Intersection

Shading

Pixel Color

E&w-®




Ray Tracing Algorithm

render (camera, scene)
foreach pixel in image
ray = camera.generatePrimaryRay(pixel)
color = trace(ray, scene)
image[pixel] = color
return image




Ray Tracing Algorithm

trace(scene, ray)
hit = findIntersection(scene, ray)
return shade(scene, ray, hit.coord, hit.obj)

findIntersection(scene, ray)
bestHit = {none,infinite}
foreach obj in scene
hit = obj.intersect(ray)
if hit succesful
if hit.dist < bestHit.dist
bestHit = hit
return bestHit




Ray Tracing Algorithm

shade(scene, ray, coord, obj)
material = obj.material
color = material.emission

foreach 1ight in scene.lights
shadowray = 1light-hit
if shadowtrace(scene, shadowray, 1light)
color += light.radianceAt(hit) * material.reflectance

foreach secondaryRay in material.generateSecondaryRays()
irradiance = trace(scene, secondaryRay)
color += irradiance * material.reflectance

return color

shadowtrace(scene, ray, light)
hit = scene.findIntersection(ray)
return (hit before Tight)




Ray Tracing Algorithm

camera.generatePrimaryRay

obj.intersect(ray)

material.emission

light.radianceAt
] g

material.reflectance

material.generateSecondaryRays




RAY-TRACING FEATURES



Ray Tracing Features

* Incorporates into a single framework
— Hidden surface removal
» Front to back traversal
« Early termination once first hit point is found
— Shadow computation

« Shadow rays/ shadow feelers are traced between a point on a
surface and a light sources

— Exact simulation of some light paths
» Reflection (reflected rays at a mirror surface)
« Refraction (refracted rays at a transparent surface, Snell’s law)

* Limitations
— Many reflections (exponential increase in number of rays)
— Indirect illumination requires many rays to sample all incoming
directions
— Easily gets inefficient for full global illumination computations
— Solution: Pick a single secondary ray at random (Monte Carlo)

* Problem: Introduces noise that can require many samples to vanish




Ray Tracing Can...

* Produce Realistic Images
— By simulating light transport

— Test yourself: https://cqifurniture.com/3d-rendering-vs-product-
photography-quiz/



https://cgifurniture.com/3d-rendering-vs-product-photography-quiz/
https://cgifurniture.com/3d-rendering-vs-product-photography-quiz/

What is Possible?

 Models Physics of Global Light Transport

— Dependable, physically-correct visualization




Realistic Visualization: VR/AR




Lighting Simulation




What is Possible?

 Huge Models

— Logarithmic scaling in scene size

{
&
X

i

12.5 Million ~1 Billion
Triangles

Triangles

s e




Outdoor Environments

90 x 1072 (trillion) triangles




Boeing 777

Boeing 777: ~350 million individual polygons, ~30 GB on disk




Volume Visualization

|so-surface rendering







Games

]
—
ps—
|-
1
—
[—
[—
=T
[==]




Ray Tracing in CG

* In the Past (until end of 80ies)

— Was computationally very demanding (minutes to hours per frame)
— Tried hard to speed it up, but always too slow - only off-line use

« “Lost generation” (1990ies)
— Believed ray tracing would not be suitable for HW implementations
— Believed ray tracing would always be slower than rasterization

 More Recently
— Interactive ray tracing on supercomputers [Parker, U. Utah'98]
— Interactive ray tracing on PCs [Wald'01]
— Distributed real-time ray tracing on PC clusters [Wald’01]
— RPU: First full HW implementation [Siggraph 2005]
— Commercial tools: Embree (Intel/CPU), OptiX (Nvidia/GPU)
— Complete film industry has switched to ray tracing (Monte-Carlo)

« Own conference
— Symposium on Interactive RT, now High-Performance Graphics (HPG)

 Ray tracing systems
— Research: PBRT (offline, physically-based, based on book, OSS),
Mitsuba-2 renderer (EPFL), Rodent (SB), ...
— Products: Blender (OSS), V-Ray (Chaos Group), Arnold & VRED
(Autodesk), Corona (Render Legion), MentalRay/iRay (Ml), ...




Ray Casting Outside CG

« Tracing/Casting a ray
— Special type of query
» “Is there a primitive along a ray”
* “How far is the closest primitive”

* Other uses than rendering
— Visibility computation
— Volume computation
— Collision detection

— Acoustics
— Radar




