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Rendering
Ingredients: 3D scene

Set of objects in ℝ! defined by:
– Shape:

» primitives: spheres, boxes, triangles, …
» implicit functions: quadrics, noise functions, ...
» boolean operations on other shapes
» ...

– Material: light reflectance and emission
» functions: diffuse, specular
» texture
» noise functions
» transparency properties

– Advanced objects:
» volumes
» point clouds
» ...



Rendering
Ingredients: camera

Defined in ℝ! by:
– Type:

» perspective, orthographic, fisheye ...
– Parameters:

» origin, direction, field-of-view ...



Rendering
Typical assumptions:

– Light reflected only off surfaces, objects
– Empty space is transparent
– No quantum effects
– No relativistic effects



Rendering algorithms
– Ray Tracing

» Physically-based simulation of light transport
» Deep recursion
» Many effects supported out of the box
» Slow, if no care taken



Rendering algorithms
– Rasterization

» Imperative drawing of scene
• Projecting whole objects
• Shading the produced shapes

» Shallow recursion
» Poor support for effects
» Fast



RAY-TRACING PRINCIPLES



Ray Tracing Is…
• Fundamental rendering algorithm

– Simulates physical behavior of light
• Automatic, simple and intuitive

– Easy to understand and implement
– Delivers “correct“ images by default

• Powerful and efficient
– Many optical global effects
– Shadows, reflections, refractions, …
– Efficient real-time implementation in SW and HW
– Can work in parallel and distributed environments
– Logarithmic scalability with scene size: O(log n) vs. O(n)
– Output sensitive and demand driven

• Concept of light rays is not new
– Empedocles (492-432 BC), Renaissance (Dürer, 1525), …
– Uses in lens design, geometric optics, …

Perspective Machine, Albrecht Dürer



Light Transport

• Light Distribution in a Scene
– Dynamic equilibrium



Light Transport

• Light Distribution in a Scene
• Forward Light Transport 

– from the light sources
– reflect at surfaces
– record when camera is hit
– Particle Tracing
Most photons will not reach the camera
Intermediate results useful in more advanced algorithms



Light Transport

• Light Distribution in a Scene
• Forward Light Transport
• Backward Light Transport

– backward from the camera
– reflect at surfaces
– record when light source is hit
– Ray Tracing
Shoot shadow rays to hit light explicitly
Shoot more rays to find more paths and light sources
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Ray Tracing Algorithm

render(camera, scene)
foreach pixel in image

ray = camera.generatePrimaryRay(pixel)
color = trace(ray, scene)
image[pixel] = color

return image



Ray Tracing Algorithm

trace(scene, ray)
hit = findIntersection(scene, ray)
return shade(scene, ray, hit.coord, hit.obj)

findIntersection(scene, ray)
bestHit = {none,infinite}
foreach obj in scene

hit = obj.intersect(ray)
if hit succesful

if hit.dist < bestHit.dist
bestHit = hit

return bestHit



Ray Tracing Algorithm
shade(scene, ray, coord, obj)

material = obj.material
color = material.emission

foreach light in scene.lights
shadowray = light-hit
if shadowtrace(scene, shadowray, light)

color += light.radianceAt(hit) * material.reflectance

foreach secondaryRay in material.generateSecondaryRays()
irradiance = trace(scene, secondaryRay)
color += irradiance * material.reflectance

return color

shadowtrace(scene, ray, light)
hit = scene.findIntersection(ray)
return (hit before light)



Ray Tracing Algorithm

camera.generatePrimaryRay

obj.intersect(ray)

material.emission

light.radianceAt

material.reflectance

material.generateSecondaryRays



RAY-TRACING FEATURES



Ray Tracing Features
• Incorporates into a single framework

– Hidden surface removal
• Front to back traversal
• Early termination once first hit point is found

– Shadow computation
• Shadow rays/ shadow feelers are traced between a point on a 

surface and a light sources
– Exact simulation of some light paths

• Reflection (reflected rays at a mirror surface)
• Refraction (refracted rays at a transparent surface, Snell’s law)

• Limitations
– Many reflections (exponential increase in number of rays)
– Indirect illumination requires many rays to sample all incoming 

directions
– Easily gets inefficient for full global illumination computations
– Solution: Pick a single secondary ray at random (Monte Carlo)

• Problem: Introduces noise that can require many samples to vanish



Ray Tracing Can…
• Produce Realistic Images

– By simulating light transport
– Test yourself: https://cgifurniture.com/3d-rendering-vs-product-

photography-quiz/

https://cgifurniture.com/3d-rendering-vs-product-photography-quiz/
https://cgifurniture.com/3d-rendering-vs-product-photography-quiz/


What is Possible?
• Models Physics of Global Light Transport

– Dependable, physically-correct visualization



Realistic Visualization: VR/AR



Lighting Simulation



What is Possible?
• Huge Models

– Logarithmic scaling in scene size

12.5 Million
Triangles

~1 Billion
Triangles



Outdoor Environments
90 x 10^12 (trillion) triangles



Boeing 777

Boeing 777: ~350 million individual polygons, ~30 GB on disk



Volume Visualization
Iso-surface rendering



Games?



Games!



Ray Tracing in CG
• In the Past (until end of 80ies)

– Was computationally very demanding (minutes to hours per frame)
– Tried hard to speed it up, but always too slow à only off-line use

• “Lost generation” (1990ies)
– Believed ray tracing would not be suitable for HW implementations
– Believed ray tracing would always be slower than rasterization

• More Recently
– Interactive ray tracing on supercomputers [Parker, U. Utah‘98]
– Interactive ray tracing on PCs [Wald‘01]
– Distributed real-time ray tracing on PC clusters [Wald’01]
– RPU: First full HW implementation [Siggraph 2005]
– Commercial tools: Embree (Intel/CPU), OptiX (Nvidia/GPU)
– Complete film industry has switched to ray tracing (Monte-Carlo)

• Own conference
– Symposium on Interactive RT, now High-Performance Graphics (HPG)

• Ray tracing systems
– Research: PBRT (offline, physically-based, based on book, OSS), 

Mitsuba-2 renderer (EPFL), Rodent (SB), …
– Products: Blender (OSS), V-Ray (Chaos Group), Arnold & VRED 

(Autodesk), Corona (Render Legion), MentalRay/iRay (MI), … 



Ray Casting Outside CG
• Tracing/Casting a ray

– Special type of query
• “Is there a primitive along a ray”
• “How far is the closest primitive”

• Other uses than rendering
– Visibility computation
– Volume computation
– Collision detection
– Acoustics
– Radar
– …


