
Alexander Rath
Philipp Slusallek

Slides by Piotr Danilewski

Computer Graphics

- Introduction to Ray Tracing -



RENDERING



Rendering

© 20th Century Studios 2022



Rendering
3D scene
camera

2D image



Rendering
Ingredients: 3D scene

Set of objects in ℝ! defined by:



Rendering
Ingredients: 3D scene

Set of objects in ℝ! defined by:
– Shape:

» primitives: spheres, boxes, triangles, …
» implicit functions: quadrics, noise functions, ...
» boolean operations on other shapes
» ...



Rendering
Ingredients: 3D scene

Set of objects in ℝ! defined by:
– Shape:

» primitives: spheres, boxes, triangles, …
» implicit functions: quadrics, noise functions, ...
» boolean operations on other shapes
» ...

– Material: light reflectance and emission
» functions: diffuse, specular
» texture
» noise functions
» transparency properties



Rendering
Ingredients: 3D scene

Set of objects in ℝ! defined by:
– Shape:

» primitives: spheres, boxes, triangles, …
» implicit functions: quadrics, noise functions, ...
» boolean operations on other shapes
» ...

– Material: light reflectance and emission
» functions: diffuse, specular
» texture
» noise functions
» transparency properties

– Advanced objects:
» volumes
» point clouds
» ...



Rendering
Ingredients: camera

Defined in ℝ! by:
– Type:

» perspective, orthographic, fisheye ...
– Parameters:

» origin, direction, field-of-view ...



Rendering
Typical assumptions:

– Light reflected only off surfaces, objects
– Empty space is transparent
– No quantum effects
– No relativistic effects



Rendering algorithms
– Ray Tracing

» Physically-based simulation of light transport
» Deep recursion
» Many effects supported out of the box
» Slow, if no care taken



Rendering algorithms
– Rasterization

» Imperative drawing of scene
• Projecting whole objects
• Shading the produced shapes

» Shallow recursion
» Poor support for effects
» Fast



RAY-TRACING PRINCIPLES



Ray Tracing Is…
• Fundamental rendering algorithm

– Simulates physical behavior of light
• Automatic, simple and intuitive

– Easy to understand and implement
– Delivers “correct“ images by default

• Powerful and efficient
– Many optical global effects
– Shadows, reflections, refractions, …
– Efficient real-time implementation in SW and HW
– Can work in parallel and distributed environments
– Logarithmic scalability with scene size: O(log n) vs. O(n)
– Output sensitive and demand driven

• Concept of light rays is not new
– Empedocles (492-432 BC), Renaissance (Dürer, 1525), …
– Uses in lens design, geometric optics, …

Perspective Machine, Albrecht Dürer



Light Transport

• Light Distribution in a Scene
– Dynamic equilibrium



Light Transport

• Light Distribution in a Scene
• Forward Light Transport 

– from the light sources
– reflect at surfaces
– record when camera is hit
– Particle Tracing
Most photons will not reach the camera
Intermediate results useful in more advanced algorithms



Light Transport

• Light Distribution in a Scene
• Forward Light Transport
• Backward Light Transport

– backward from the camera
– reflect at surfaces
– record when light source is hit
– Ray Tracing
Shoot shadow rays to hit light explicitly
Shoot more rays to find more paths and light sources



Ray Tracing Pipeline

Ray Generation

Ray Traversal

Intersection

Shading

Pixel Color

Ray Generation

Ray Traversal

primary ray

generator



Ray Tracing Pipeline

Ray Generation

Ray Traversal

Intersection

Shading

Pixel Color

Ray Generation

Ray Traversal

primary ray

generator



Ray Tracing Pipeline

Ray Generation

Ray Traversal

Intersection

Shading

Pixel Color

Ray Generation

Ray Traversal

primary ray

traverse index structure
find candidate



Ray Tracing Pipeline

Ray Generation

Ray Traversal

Intersection

Shading

Pixel Color

Ray Generation

Ray Traversal

primary ray

intersect blue box?



Ray Tracing Pipeline

Ray Generation

Ray Traversal

Intersection

Shading

Pixel Color

Ray Generation

Ray Traversal

primary ray

traverse index structure
find next candidate



Ray Tracing Pipeline

Ray Generation

Ray Traversal

Intersection

Shading

Pixel Color

Ray Generation

Ray Traversal

primary ray

intersect green box?



Ray Tracing Pipeline

Ray Generation

Ray Traversal

Intersection

Shading

Pixel Color

Ray Generation

Ray Traversal

box material?



Ray Tracing Pipeline

Ray Generation

Ray Traversal

Intersection

Shading

Pixel Color

Ray Generation

Ray Traversal

shadow ray

secondary ray

I

I



Ray Tracing Pipeline

Ray Generation

Ray Traversal

Intersection

Shading

Pixel Color

Ray Generation

Ray Traversal
light source occluded

secondary ray

I

I



Ray Tracing Pipeline

Ray Generation

Ray Traversal

Intersection

Shading

Pixel Color

Ray Generation

Ray Traversal

I

I

box material?



Ray Tracing Pipeline

Ray Generation

Ray Traversal

Intersection

Shading

Pixel Color

Ray Generation

Ray Traversal

I

I
II

II

shadow ray



Ray Tracing Pipeline

Ray Generation

Ray Traversal

Intersection

Shading

Pixel Color

Ray Generation

Ray Traversal

I

I
II

II

no occlusion



Ray Tracing Pipeline

Ray Generation

Ray Traversal

Intersection

Shading

Pixel Color

Ray Generation

Ray Traversal

I

I
II

II

emission? E



Ray Tracing Pipeline

Ray Generation

Ray Traversal

Intersection

Shading

Pixel Color

Ray Generation

Ray Traversal

I

II

E

E II I



Ray Tracing Algorithm

render(camera, scene)
foreach pixel in image

ray = camera.generatePrimaryRay(pixel)
color = trace(ray, scene)
image[pixel] = color

return image



Ray Tracing Algorithm

trace(scene, ray)
hit = findIntersection(scene, ray)
return shade(scene, ray, hit.coord, hit.obj)

findIntersection(scene, ray)
bestHit = {none,infinite}
foreach obj in scene

hit = obj.intersect(ray)
if hit succesful

if hit.dist < bestHit.dist
bestHit = hit

return bestHit



Ray Tracing Algorithm
shade(scene, ray, coord, obj)

material = obj.material
color = material.emission

foreach light in scene.lights
shadowray = light-hit
if shadowtrace(scene, shadowray, light)

color += light.radianceAt(hit) * material.reflectance

foreach secondaryRay in material.generateSecondaryRays()
irradiance = trace(scene, secondaryRay)
color += irradiance * material.reflectance

return color

shadowtrace(scene, ray, light)
hit = scene.findIntersection(ray)
return (hit before light)



Ray Tracing Algorithm

camera.generatePrimaryRay

obj.intersect(ray)

material.emission

light.radianceAt

material.reflectance

material.generateSecondaryRays



RAY-TRACING FEATURES



Ray Tracing Features
• Incorporates into a single framework

– Hidden surface removal
• Front to back traversal
• Early termination once first hit point is found

– Shadow computation
• Shadow rays/ shadow feelers are traced between a point on a 

surface and a light sources
– Exact simulation of some light paths

• Reflection (reflected rays at a mirror surface)
• Refraction (refracted rays at a transparent surface, Snell’s law)

• Limitations
– Many reflections (exponential increase in number of rays)
– Indirect illumination requires many rays to sample all incoming 

directions
– Easily gets inefficient for full global illumination computations
– Solution: Pick a single secondary ray at random (Monte Carlo)

• Problem: Introduces noise that can require many samples to vanish



Ray Tracing Can…
• Produce Realistic Images

– By simulating light transport
– Test yourself: https://cgifurniture.com/3d-rendering-vs-product-

photography-quiz/

https://cgifurniture.com/3d-rendering-vs-product-photography-quiz/
https://cgifurniture.com/3d-rendering-vs-product-photography-quiz/


What is Possible?
• Models Physics of Global Light Transport

– Dependable, physically-correct visualization



Realistic Visualization: VR/AR



Lighting Simulation



What is Possible?
• Huge Models

– Logarithmic scaling in scene size

12.5 Million
Triangles

~1 Billion
Triangles



Outdoor Environments
90 x 10^12 (trillion) triangles



Boeing 777

Boeing 777: ~350 million individual polygons, ~30 GB on disk



Volume Visualization
Iso-surface rendering



Games?



Games!



Ray Tracing in CG
• In the Past (until end of 80ies)

– Was computationally very demanding (minutes to hours per frame)
– Tried hard to speed it up, but always too slow à only off-line use

• “Lost generation” (1990ies)
– Believed ray tracing would not be suitable for HW implementations
– Believed ray tracing would always be slower than rasterization

• More Recently
– Interactive ray tracing on supercomputers [Parker, U. Utah‘98]
– Interactive ray tracing on PCs [Wald‘01]
– Distributed real-time ray tracing on PC clusters [Wald’01]
– RPU: First full HW implementation [Siggraph 2005]
– Commercial tools: Embree (Intel/CPU), OptiX (Nvidia/GPU)
– Complete film industry has switched to ray tracing (Monte-Carlo)

• Own conference
– Symposium on Interactive RT, now High-Performance Graphics (HPG)

• Ray tracing systems
– Research: PBRT (offline, physically-based, based on book, OSS), 

Mitsuba-2 renderer (EPFL), Rodent (SB), …
– Products: Blender (OSS), V-Ray (Chaos Group), Arnold & VRED 

(Autodesk), Corona (Render Legion), MentalRay/iRay (MI), … 



Ray Casting Outside CG
• Tracing/Casting a ray

– Special type of query
• “Is there a primitive along a ray”
• “How far is the closest primitive”

• Other uses than rendering
– Visibility computation
– Volume computation
– Collision detection
– Acoustics
– Radar
– …


