Computer Graphics

- Introduction -

Philipp Slusallek Philippe Weier Alexander Rath

Overview

Today

- Administrative stuff
- What is Computer Graphics ?
- A Primer on Rendering
- Introduction to our Rendering Framework : Lightwave

Next lecture

- Overview of Ray Tracing

General Information

Core Lecture (Stammvorlesung)

- Applied Computer Science (Praktische Informatik)
- Lectures in English

Time and Location

- Mon 10:15 11:45 , *E1.3, HS 001*
- Thu 8:30 10:00 , *E1.3, HS 001*

• ECTS:

- 9 credit points

Web Page

- http://graphics.cg.uni-saarland.de/courses/
- Schedule, slides as PDF, etc.
- Teams
 - Literature, assignments, other information
- Sign up by joining the Teams link on our Web page now

People

Lecturers

– Prof. Dr.-Ing. Philipp Slusallek, <u>slusallek@cg.uni-saarland.de</u>

Assistants

- Philippe Weier, weier@cg.uni-saarland.de
- Alexander Rath, <u>rath@cg.uni-saarland.de</u>
- Ömercan Yazici, yazici@cg.uni-saarland.de

Tutors

- Eric Windholz, <u>s8erwind@uni-saarland.de</u>
- Tobias Dick, <u>s8todick@uni-saarland.de</u>
- Leonard Butz, s8lebutz@uni-saarland.de
- David Hares, s8dahare@uni-saarland.de

Grading

Practical/Theoretical Assignments

- Counts 35% towards final grade
- Minimum: 50% to pass

• Exams

- No mid-term
- Final exam counts 50% towards final grade
- Minimum: 50% to pass

Rendering Competition (exam prerequisite)

- Counts 15% towards final grade
- Grading based on implemented features
- Bonus points for Artistic quality

Cheating

- 0% of assignment grade on first attempt
- Possibility to fail the entire course if repeated

Chance for Repeated Exam

- Oral exam (if possible) at the end of the semester break

Exercise Groups

Potential tutorial slots are

- 12:00-14:00 Wednesday
- 14:00-16:00 Wednesday
- 16:00-18:00 Wednesday
- 14:00-16:00 Thursday
- 16:00-18:00 Thursday

• *Mandatory* poll in Teams to assign your group a slot

- (Optional but encouraged) Indicate your partner (groups of 2 max)
- Choose 3 slots in order of preference
- We assign you a slot/tutor which tries to meet your preferences
- If NONE of the provided slots works for you let us know ASAP
- Hard Deadline to fill in poll : Thursday 2. Nov 23:59

Practical Assignments

• Build your own Rendering Engine!

- Three large programming assignments in which you gradually build your own renderer
- This will be the basis for the → Rendering Competition (more on that later)

Grading

- Results of the assignments will contribute to the final grade
- Bonus points (towards the exam) by implementing advanced features are sometimes possible

Handing in assignments

- Via Teams before the deadline indicated on the assignment sheet
- Submit the Git Tag associated with the last commit of the completed assignment

Tutorial slots

- Two Q&A sessions per assignment.
- One presentation session. During that session, a few groups are randomly chosen to answer a few questions and present their work. Those sessions are therefore *mandatory*.

Practical Assignments Schedule

	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Week 1			Assignment Released				
Week 2			Q&A S	ession			
Week 3			Q&A S Next Assignment Released	ession			Assignment Deadline 23:59
Week 4/1			Presentat Next Q&A	ion Session A Session			

Theoretical Assignments

Theoretical assignment sheets

- Weekly assignments
- Starts after practical assignments

Grading

- Results of the exercises will contribute to the final grade
- Bonus points (towards the exam) are sometimes possible

Handing in assignments

- Via Teams before the deadline
- Submit a 300dpi PDF with your solutions. Solutions can be handwritten, but we encourage Latex generated PDFs to ease correction.

Tutorial slots

- Weekly Q&A sessions
- Discuss lectures and any issues you might have with your tutor

Add features to your path tracer

- Implement rendering features from our provided list or your own!
- Every feature gives points based on its implementation difficulty
- If a feature you like is not provided you can discuss it with us, and we will attribute points to it if feasible.
- Tip : choose features based on the scene you want to render for the competition!

Create a realistic image of a virtual environment

- We provide you with a "Theme"
- Create a realistic and aesthetic 3D scene that follows that theme
- Deadline towards end of the course (will be announced).

Results:

- One rendered image
- Web page or Markdown Document with technical details info

Computer Graphics WS 2023/24

Text Books

Suggested Readings:

- Matt Pharr, Wenzel Jakob, Greg Humphreys: Physically Based Rendering : From Theory to Implementation, Morgan Kaufmann Series, 3. Ed., 2016, now freely available: <u>http://www.pbr-book.org/</u>
- Peter Shirley: Fundamentals in CG, 5. Ed, AK Peters, 2016
- John Hughes, et al.: Computer Graphics Principles and Practice, Addison-Wesley, 3. Ed, 2013
- Eric Haines and Tomas Akenine-Möller: Ray-Tracing Gems, <u>http://www.realtimerendering.com/raytracinggems</u>
- Thomas Akenine-Möller, Eric Haines, et al., Real-Time Rendering, AK Peters, 4th Ed., 2018
- Older
 - A. Glassner: An Introduction to Ray-Tracing, Academic Press, '89
 - D. Ebert: Texturing & Modeling A procedural approach, MK, '03

Course Syllabus (Tentative)

- Overview of Ray Tracing
- Geometry Intersections
- Spatial Index / Acceleration Structures
- Vector Algebra Review
- Geometric Transformations
- Light Transport / Rendering Equation
- Material Models
- Shading
- Texturing
- Volumes
- Spectral Analysis / Sampling Theory
- Anti-Aliasing
- Distribution Ray Tracing
- Human Vision
- Color

- Splines
- Clipping
- Rasterization
- OpenGL & Shading Language

What is Computer Graphics ?

What is Computer Graphics?

Scientific/Information Visualization

[© Texas A&M University]

[© Oak Ridge National Laboratory]

Simulation & Augmented Reality [© NASA] [© ENIB]

Philipp Slusallek, Philippe Weier, Alexander Rath

Industrial Design & Engineering: Automotive / Aerospace

- Non-photorealistic rendering: art/stylized/pen&ink illustration
- Painterly/Toon Shading, Computational Aesthetics

[O University of Washington]

Computer Graphics WS 2023/24

Philipp Slusallek, Philippe Weier, Alexander Rath

- Architectural / Interior Design
- Landscape / Urban Planning
- Archeological Reconstruction

[© PBRT]

[© Radiance

Entertainment Industry: Animated films

Computer Graphics WS 2023/24

Entertainment Industry: Special effects for motion pictures

Computer Graphics WS 2023/24

Philipp Slusallek, Philippe Weier, Alexander Rath

Entertainment Industry: Video games

Computer Graphics WS 2023/24

Philipp Slusallek, Philippe Weier, Alexander Rath

Saarland Informatics Campus

Research & Innovation in SB

Philipp Slusallek, Philippe Weier, Alexander Rath

Currently 35 Professors are Working for DFKI

Prof.

Jochen Kuhn

Prof.

Prof.

Christoph Lüth Günter Neumann David Schlangen

Prof.

Prof.

Tim E. Güneysu Dieter Hutter

Prof.

Udo Frese

Prof.

Wrap-Up

Computer Graphics

- Rendering, Modeling, Visualization, Animation, Imaging, ...

Young, dynamic area

- "Everything is possible" mentality
- Progress driven by research & technology
- Flexible transfer between research and industry

Big industry !

- Intel, Nvidia, AMD, Apple, ARM, Meta, ...
- Automotive, aerospace, engineering, ...
- Entertainment: games, film, TV, animations, ...

Innovation areas

– Digital Reality, Visualization, Industrie-4.0, Big Data, Smart Cities, ...

Interdisciplinary field

 Relations to mathematics, physics, engineering, psychology, art, entertainment, …

Questions?