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DFKI: An Overview
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German Research Center for
Artificial Intelligence (DFKI)

* Overview
— Largest independent Al research center worldwide (founded in 1988)

— Germany’s leading research center for innovative software technologies

— Multiple sites across Germany
* Saarbricken, Kaiserslautern, Bremen, Osnabriick/Oldenburg
* Labs in Berlin, Darmstadt; Offices in Libeck, Trier

— 27 research areas, 9 competence centers, 8 demonstration centers (living labs)
— More than 1400 research staff & support

— Research funding: ~83 M€ (2022, LAV)
— Almost 50% growth over three years: 76 M€ (+19%, 2021), 64 M€ (+12%, 2020), 57 M€ (2019)

— More than 100 spin-offs, more than 2500 new high-tech jobs
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Germany Has a Head-Start

DFKI: The World”s Largest Center for Research & Application in Al
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DFKI Covers the Complete Innovation
Cycle
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Commercialization/
Exploitation

‘Blue Sky' Applicat :
. pplication- Applied Shareholders
Basic Research inspired Research Transfer

Basic and Projects
Research Development

Spin-off
Labs at the DEK DFKI Companies

University projects ]POrl?jects PFKI projects with DEK]
for =

state external
governments, clients and
clients and shareholders
shareholders
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DFKI-Portfolio: Deep Expertise in Al
for a Broad Innovation Spectrum

Max Planck Society Fraunhofer Helmholtz Society

Application-Oriented Applied R&D Large Test- and
Basic Research and Transfer Demonstration Centers

The entire innovation chain in the horizontal spectrum of DFKI

DFKI Employees

on methods and applications
of Artificial Intelligence

Deep knowledge and excellence in
one important section of Computer Science

The vertical specialisation of DFKI
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DFKI-SB: From Local Strengths to a

European Strategy

AI Confederation of Laboratories for
Artificial Intelligence Research in Europe

Network of Al Excellence Centers

HUMANE J/ Al NET

UNIVERSITY OF LUXEMBOURG

Institute for Advanced Studies

. l
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Centre Inria

Nancy - Grand Est
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International Alliance for a
Human-Centric Approach to Al

European
Inria-DFKI
Partnership on Al
Jan 2020
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* Five Application-Oriented Projects (Total Investment: 6 M€ @ DFKI only, similar @ INRIA)

MePheSTO [« IMPRESS Moveon
2020 Digital Phenotyping for ** Improving @5 Towards robust spatial scene understanding
Psychiatric Disorders from Language Embeddings in dynamic environments using intermediate
Social Interaction with Semantic Knowledge representations
\ EI\('SGAGE, R , RiAg,r' . Other Projects
2021 ‘ ext Generation - easoning o.n ngCU- ural Data: already in Preparation
High-Performance Computing Integrating Metrics and G Al
for Hybrid Al (= LEAM-Initiative) Qualitative Perspectives (e.g. Green-Al)
* Joint Activities
Weekly Coordination Meetings & DFKI-INRIA Summer-School At least one joint
Regular Alignment with Executive Level (IDESSAI 2021, 2022, ...) workshop per year

* Tight Collaboration at European Level First DFKI-INRIA=

Al e e = BDV 2 EuiAi

The Al Data Robotics
Association eu ROBOTICS

- Next DFKI-INRIA-Workshop,
’ :I Bordeaux;Oct 2022

Workshop, Na
Jan 2020




CLAIRE-Network & "CERN for Al"

Worldwide Largest s
TAd <@SaA Global Attractor for
‘ ' Research Network Euy/d A
for Al Osl Talents from across
' Den Haag the Globe P
lrnela— Brissel Stockholm T™O w
>440 Research Groups and _Place to be“ for -
Organizations from Across Al Talents, for -

All of Europe Interaction & Innovation

+-

i=— 24.000+ Al Researchers &

oooooooooo
RRRRRRRRRRRR

Symbol for European

- Staff from 37 Countries CeNTRE ceNTRE Excellence & Ambition ﬁ?
in Al -
AI Confederation of Laboratories for
>~ Artificial Intelligence Research in Europe S C s2artand informatis



DFKI Research Area:
Agents and Simulated Reality (ASR)
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DFKI-ASR: Agents and Simulated Reality

How to design Al systems
that can provide guarantees
and that humans can
understand and trust?

How can synthetic data from
parametric models and
simulations be used for
training, validating, and
certifying Al systems?

How can Al-systems be realized technically
> in a reliable and efficient way? S | C searond nformatics

Campus




Flexible F ntrol L ultiagent

DFKI multi-agent technology is running the steelworks, 2 tila,
247 for >12 years, 5 researchers transferred




Physically-Based Image Synthesis
with Real-Time Ray Tracing

||||||

200

A
f{r.

Key product offered now by aIIwmajor GPU/HW vendors:
e.g. Intel (Embree), Nvidia (OptiX), AMD (Radeon Rays), ...




_ pieem |
Efficient Simulation of lllumination:

Light Propagation and Sensor Models

-

- VCM now part of most commercial renders:
e.g. RenderMan, V-Ray, ...



Recent Advances in Lighting Sim.

* Importance Caching for Complex lllumination
— By lliyan Georgie

4 Saarland Informatics
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Recent Advances in Lighting Sim.

e Light Transport Simulation with Vertex Connection and Merging (VCM)
— By lliyan Georgiev et al., Siggraph 2012

Relative contributions
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Recent Advances in Lighting Sim.

e Light Transport Simulation with Vertex Connection and Merging (VCM)
— By lliyan Georgiev et al., Slggraph 2012

Reference n ==

4

PPM (184)
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Recent Advances in Lighting Sim.

* Optimal Multiple Importance Sampling
— By |. Kondapaneni, P. Vévoda, P. Grittmann, et al., Siggraph 2019

Trained technique Uniform technique

—— i

Optimal ry
weights 4~ N g
MSE: 1.82
(9.6x)

==
s =

a) Reference b) MIS weights c) 7Equal—samp|e comparfson

Optimal weights

=

Power A \
heuristic 4. -~ = N
MSE: 17.4 *
(baseline)

Power heuristic

-1
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Recent Advances in Lighting Sim.

* Variance-Aware Path Guiding
— By A. Rath, P. Grittmann, S. Herholz, P. Vévoda, et al., Siggraph 2020

[relMSE]

Error

0.14
: 0.01
oo e e
VCM+MLT Muiiller et al. Ours Reference
0. 245 (o 6x) 0.306 (0.5x) 0.149 (baseline) 0.084 (1.8x) relMSE (60s) 3 20 60 Time [s]
S
Ean
w =
=
1.0
g 1 0.01
L ———————————————
Grossy KITCHEN VCM+MLT Muiiller et al. Ours Reference
0. 086 (0 9x) 0.134 (0.6x) 0.076 (baseline) 0.041 (1.8x) relMSE (90s) 3 20 90 Time [s]
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Recent Advances in Motion Synthesis

* IMoS: Intent-Driven Full-Body Motion Synthesis for Human-Object

Interactions

* By Anindita Ghosh, Rishabh Dabral, Vladislav Golyanik, Christian Theobalt, Philipp Slusallek, at
Eurographics 2023
“brush” + toothbrush

Input: “take picture” + camera
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AnyDSL Compiler Framework

4 N\ N\ ( N\ N\ ( )

Computer Phvsics Ray Parallel
Vision DySL Tracing Runtime
DSL DSL DSL

Developer
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Impala Language & Unified Program Representation

AnyDSL Compiler Framework (Thorin)
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Material Science: Understanding & Predicting
Effects of 3D Structures Across Scales
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CIIaborative Robotics and

Simulated Reality (VW, Airbus, ...
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- ars D N
Autonomous Driving: Training using Synthetlc'\s -‘

-and Realistic Models (TUV VDA, ZF, Contl,
r




Challenge: Better Simulation (e.g. Radar
Rendering)

* Key Differences
— Longer wavelength: Geometric optics (rays) not sufficient

— Need for some wave optics
 Interference of multi-path interactions (coherent radiation, GO/PO)
* Need for polarization and phase information
e Diffraction from rough surfaces and edges

— Highly different goals
* Optical: Focus on diffuse effects (+ some highlights, reflections, etc.)
* Radar: Focus on specular transport only (i.e. caustic paths)

 Completely novel approach (beyond ray tracing)
— Using latest Monte-Carlo techniques (BiDir, MIS, VCM, ...)
— Using recent work on Path Guiding [Rath et al., Siggraph ™ 19]

* Bringing together radar & latest research on MC rendering

S I Saarland Informatics
Campus



Radar Simulation
Using Modern Monte-Carlo Algorithms
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Radar Simulation
Using Modern Monte-Carlo Algorithms
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Radar Simulation
Using Modern Monte-Carlo Algorithms
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Two-Way Ground Reflection
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Radar Simulation
Using Modern Monte-Carlo Algorithms
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Our Simulation

Ours (Physical Optics + Monte Carlo)

Dihedral reflector (15cm)

—— Our measurement
~—— Our simulation
102
I/‘\ l Illll\ A \ ’\\
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I
10°
-50 —45 —-40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30

Angle [°]

runtime: 33 seconds
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Signal strength

Commercial Software

EM.lllumina (Physical Optics + Finite Elements)

Dihedral reflector (15cm)

102 IP’\\V,/‘\ UIIAV\\ /INA‘ I\'"\VIM\\
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ALY AN WA
C YUY ] ~—~—— | e raant \l 1\
A }AAPAANIII o ; /\VmVAVAt M el ‘I ' I\
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10°
—— Our measurement |
~—— EM.lllumina
=50 —4'15 —210 —'35 -30 =25 =20 —Z‘I.S -10 —'5 0 5 10 15 20 25 30

Angle [°]

runtime: 13.4 hours

EM.lllumina is based on the
same physical model
(physical optics), but — like
virtually all available
simulators — uses Finite
Elements instead of Monte
Carlo

This makes it a lot slower
than our method (by a factor
of 1,400) and produces
results that are not as
accurate
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Other Results from Academia

Bidirectional Antenna Coupling (Taygur et al.) * Bidirectional Antenna
Coupling (Taygur et al.) is a
Dinedral reflector (15cm) state-of-the-art algorithm

ol 1 | ]| eirectona Myguretan) that find connections

Al e ean A between RX and TX antenna
by starting paths from both
sides and connecting them
in the middle

* Unfortunately, it makes
asymptotic assumptions and
is therefore also less
accurate for smaller features

-50 —45 —-40 -35 -30 =25 -20 =15 -10 -5 0 5 10 15 20 25 30
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Challenge: Do we Need a Better Basis for
our Simulation?

* In the past: Two big markets, focused on nice images
— Gaming: Very nice images (at 60+ Hz)
* Must compromise realism for frame rate

— Film & Marketing: Even nicer images (at hours per image)
* Will compromise realism for the story and artistic expression

— Both are being used for simulations for Autonomous Driving
* But: Strong need for correct images
— Lidar, radar, multi-spectral, polarization, measured materials, ...
— Need for “error bar per pixel” & validation
— Existing engines unlikely to adapt to these fundamental changes

 Towards “Predictive Rendering” engine
— Focused on physical accuracy (“sensor realistic”) & high throughput
— Based on latest graphics research results (and GPU-HW)

Sl

Saarland Informatics
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Digital Reality:
Using Al to Optimize and Certify Al

(using autonomous driving as an example)
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State of Al

Pentium FDIV: The processor bug that shook

[ ]
e Success stories

20 years already

60000

— HW Verification, Knowledge Graphs, Search & Optimization,
— Perception: Vision, Speech,
— Game playing: Chess, Go, video games, ...

— Some complex tasks: translation, autonomous driving, ...

 Amazing progress in recent years
— Most visible due to Deep Neural Networks (DNNs)
— Focus shifting to hybrid/neuro-symbolic/neuro-explicit approaches

 Still many fundamental challenges e ;____290_8__2_0191
3 1013 1020 170 I
— With severe consequences to the practical use of Al [=[=E]
/ . / ,,;/’,/\ e s
75 'J «"
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Challenges:
Functionality vs. Robustness

* Al/DL is highly capable already ...

gy ¥ = =
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Trusted Al via Digital Reality:
Using Al to Optimize & Certify Al

Al functionality is not enough —
need ability to certify its capabilities —
according to well-defined standards




Autonomous Systems:
The Problem

* Our World is extremely complex

— Geometry/Shape, Appearance, Motion, Weather, Environment, ...
e Systems must make accurate and reliable decisions

— Especially in Critical Situations

— Increasingly making use of (deep) machine learning
* Learning of critical situations is essentially impossible

— Often little (good) data even for “normal” situations

— Critical situations rarely happen in reality — per definition!

— Extremely high-dimensional models

=» Goal: Scalable Learning from synthetic input data
— Continuous benchmarking & validation (“Virtual Crash-Test")

D m S I C 22?1::335(1 Informatics



Reality

* Training and Validation in Reality

— E.g. driving millions of miles to gather data
— Difficult, costly, and non-scalable

1. m S I C gziqu;:sd Informatics



Digital Reality

* Training and Validation in the Digital Reality

— Arbitrarily scalable (given the right platform)
— But: Where to get the models and the training data from?

Digital
Reality

. m S I C gg:;::?l?sci Informatics



Digital Reality: Al to Optimize and Certify Al

N

Geometry
Material
Behavior
Models Motion

(Rules) Environment

Partial

Model Learning

Modeling &
Learning

Digital

Reality
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Digital Reality: Al to Optimize and Certify Al

A Reasoning >

Coverage of Variability via

Directed Search Concrete
Instances of

Relevant
Scenarios

Scenarios

Configuration &
Learning

Partial
Models
(Rules)

Model Learning

Modeling &
Learning

Digital

Reality
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Digital Reality: Al to Optimize and Certify Al

AN

Model Learning

Reasoning

Relevant

Coverage of Variability via

Directed Search

Scenarios

Configuration &
Learning

Partial
Models
(Rules)

Modeling &
Learning

Concrete
Instances of
Scenarios

Adaptation to the

(e.g. used sensors)

Simulation/
Rendering

Synthetic Sensor Data,
Labels, ...

Digital
Reality

Simulated Environment
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Digital Reality: Al to Optimize and Certify Al

Reasoning

AN

Relevant

Coverage of Variability via
Directed Search

Scenarios

Configuration &
Learning

Partial
Models
(Rules)

Model Learning

Modeling &
Learning

Concrete
Instances of
Scenarios

Adaptation to the
Simulated Environment
(e.g. used sensors)

Simulation/
Rendering

Synthetic Sensor Data,
Labels, ...

Digital
Reality

Training, Validation, and Certification of Al Systems =

Buiuiea] ¥ uoneNWIS
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Digital Reality: Al to Optimize and Certify Al

AN

Model Learning

Reasoning

Relevant

Scenarios

Configuration &
Learning

Partial
Models
(Rules)

Modeling &
Learning

Coverage of Variability via
Directed Search

Continuous
Validation &
Adaptation

Concrete
Instances of
Scenarios

Adaptation to the

(e.g. used sensors)

Simulation/
Rendering

Synthetic Sensor Data,
Labels, ...

Digital
Reality

Validation / Adaptation / Certification

Simulated Environment
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Digital Reality: Al to Optimize and Certify Al

=1

AN

Model Learning

Reasoning

Coverage of Variability via

-~ PRI Y o WS

Continuous Learning Loop
Not just for Automated Driving:

Configuration &
Learning

Continuous
Modeling & Validation &
Learning Adaptation

Adaptation to the

(e.g. used sensors)

Rendering

Synthetic Sensor Data,
Labels, ...

Digital
Reality

< Validation / Adaptation / Certification

Simulated Environment
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Challenge: Better Models of the World
(e.g. Pedestrians)

* Long history in motion research (>40 years)
— E.g. Gunnar Johansson's Point Light Walkers (1974)
— Significant interdisciplinary research (e.g. psychology)
* Humans can easily discriminate different styles
— E.g. gender, age, weight, mood, ...
— Based on minimal information
* Can we teach machines the same?

— Detect if pedestrian will cross the street
— Parameterized motion model & style transfer

— Predictive models & physical limits

. b d Saarland Informatics
’ : \I SIC Campus



Challenge: Pedestrian Motion

* Characterizing Pedestrian Motion
— Clear motion differences when crossing the street

velocity

orientation

BUS: “Looking over the shoulder”

CROSSING: “Crossing the street”

Bus

Crossing

Orientation angle towards street:
Head _
Shoulders
Hips —
Trajectory
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Improved Sampling Strategies
for NN Training in Sparse Environments

* How can we train more efficiently

— by focusing on the most relevant training data

lll '
.7*'*\"4.“ =y

— particularly near decision boundaries

plane

nforgettable

0.04

& 003-~---—~——~——~7—— 5

30.8' - : g

£ | 0.02 1+ -

s %07 =~ 0 01 . N

S | ! 3

5 0.4 0.00 6 ‘ 2.0 §

* How can we train more robustly £
y = Sa

0.0

: - 0 5 1:0 1i5 2;0 25 30
by adversarial perturbations? O W M e —
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Structure of MOMENTUM

Human Motion

N

Sampling of large
parameter spaces

Human-centric

{/
. |

shared
environment

=

Human Behavior

Integration into

shared environment

Data and sensor
synthesis

Machine-centric

Robust learning

Hybrld learning
and planning

HC: Human-Centric
MC: Machine-Centric
DR: Digital Reality (Integration)

SIC
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Key Research Questions (Selection)

Cross-Cultural (JA-DE) VR-Study of
Pedestrian Behavior & Motion in the Real World

*  Simulation of agent behavior

*  Storing behavioral history, H
current agent state and
upcoming behavior as RDF

etion parposss \

1. Generate Occluded Dataset 2. Train Encoder-Decoder 3. Use Encoded Weights as Model Init

(e.g., on ModelNet40) Completion Model q

-

v

Fewahot Learning Object Classific. o

Robust Semi- & Self-Supervised Learning and Unsupervised
Domain Adaptation for Improving Difficult Object Detection
from Varying Sensor Data (Lidar, Radar, ...)

—_— -
generative model neural network

Partial observation (state description)

+  What did the agent do and why
*  What is the agent doing and why
*  What will the agent do and why

-~J

Novel Agent Framework for Modelling

bad
® o ] of environment
. °
e e
e 2
e L ] Deep reinforcement learning N Online approximated POMOP planning S
(]
5 n Model:
o Infer:predict w":
. DataiIn . :
Action reward
der metri
(trainin g) Action
< Model: > a=(a,a;)
stat 1[)2“‘-!10"1 Symbol:In H Infer:deduce H Symbol:Out }-—>
[ Estimated 3 :
ouxiliory/history data state value, Belief m‘ mmvdm,
action policy (a,) action policy (a,)

Belief state descriptions (operational, training), action policy (training)

Directed and Adaptive Sampling of Neuro-Explicit AI Approaches: e.qg.
High-Dimensional Parameter Spaces Hybrid Planning and Learning

and Synthezising Realistic High-Level Behavior
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Cross-Cultural Pedestrian Models
Studying Motion, Behavior & Intentions in VR

* CrossCDR user study in Germany
— DFKI Saarbriicken, room , Reuse”

— COV19-induced hygenic concept and entry restrictions for Japan
— Data privacy and ethical issues checked for JP
— Instructors: Janis Sprenger, Saori Ohtani, André Antakli, Shoma Kudo

Coordination: Matthias Klusch (DFKI), Yoshi Kobayashi (AIST)
. -ﬂ SIC (Siifnrl;i?sd Informatics



Thank you very much
for your attention !

R | S I Saarland Informatics
- Campus



s I C gg:ra]:::gsd Informatics



