Computer Graphics

- Rasterization -

Philipp Slusallek
Rasterization

Definition
- Given some 2D geometry (point, line, circle, triangle, polygon,…), specify which pixels of a raster display each primitive covers
 - Often also called “scan-conversion”
- Anti-aliasing: instead of only fully-covered pixels (single sample), specify what parts of a pixel are covered (multi/super-sampling)

Perspectives
- OpenGL lecture: from an application programmer’s point of view
- This lecture: from a graphics package implementer’s point of view
- Looking at rasterization of (i) lines and (ii) polygons (areas)

Usages of rasterization in practice
- 2D-raster graphics, e.g. Postscript, PDF, SVG, …
- 3D-raster graphics, e.g. SW rasterizers (Mesa, OpenSWR), HW
- 3D volume modeling and rendering
- Volume operations (CSG operations, collision detection)
- Space subdivision (spatial indices): construction and traversal
Rasterization

Assumptions
- Pixels are sample **points** on a 2D integer grid
 - OpenGL: at cell bottom-left, integer-coordinate
 - X11, Foley: at the cell center (we will use this)
- Simple raster operations
 - Just setting pixel values or not (binary decision)
 - More complex operations later: compositing/anti-aliasing
- Endpoints snapped to (sub-)pixel integer coordinates
 - Simple and consistent computations with fixed-point arithmetic
- Limiting to lines with gradient/slope $|m| \leq 1$ (mostly horizontal)
 - Separate handling of horizontal and vertical lines
 - For mostly vertical, swap x and y ($|1/m| \leq 1$), rasterize, swap back
 - Special cases in SW, trivial in HW :-)
- Line width is one pixel
 - $|m| \leq 1$: 1 pixel per column (X-driving axis)
 - $|m| > 1$: 1 pixel per row (Y-driving axis)
Lines: As Functions

• **Specification**
 – Initial and end points: \((x_b, y_b), (x_e, y_e), (dx, dy) = (x_e - x_b, y_e - y_b)\)
 – Functional form: \(y = mx + B\)
 – End points with integer coordinates \(\Rightarrow\) rational slope \(m = \frac{dy}{dx}\)

• **Goal**
 – Find that pixel per column whose distance to the line is smallest

• **Brute-force algorithm**
 – Assume that +X is the driving axis \(\rightarrow\) set pixel in every column

 \[
 \text{for } x_i = x_b \text{ to } x_e \\
 y_i = m \times x_i + B \\
 \text{setPixel}(x_i, \text{Round}(y_i)) \quad // \text{Round}(y_i) = \text{Floor}(y_i + 0.5)
 \]

• **Comments**
 – Variables \(m\) and thus \(y_i\) need to be calculated in floating-point
 – Not well suited for direct HW implementation
 • A floating-point ALU is significantly larger in HW than integer
Lines: DDA

- **DDA: Digital Differential Analyzer**
 - Origin of incremental solvers for simple differential equations
 - The Euler method
 - Per time-step: \(x' = x + \frac{dx}{dt}, \ y' = y + \frac{dy}{dt} \)

- **Incremental algorithm**
 - Choose \(dt=dx \), then per pixel
 - \(x_{i+1} = x_i + 1 \)
 - \(y_{i+1} = m \times x_{i+1} + B = m(x_i + 1) + B = (m \times x_i + B) + m = y_i + m \)
 - setPixel\((x_{i+1}, \text{Round}(y_{i+1}))\)

- **Remark**
 - Utilization of coherence through incremental calculation
 - Avoids the “costly” multiplication
 - Accumulates error over length of the line
 - Up to 4k additions on UHD!
 - Floating point calculations may be moved to fixed point
 - Must control accuracy of fixed point representation
 - Enough extra bits to hide accumulated error (>>12 bits for UHD)
Lines: Bresenham (1963)

- **DDA analysis**
 - Critical point: decision whether we need rounding up or down

- **Idea**
 - Integer-based decision through implicit functions
 - Implicit line equation
 - \(F(x, y) = ax + by + c = 0 \)
 - Here with \(y = mx + B = \frac{dy}{dx} x + B \) \(\Rightarrow 0 = dy x - dx y + B dx \)
 - \(a = dy, \quad b = -dx, \quad c = Bdx \)
 - Results in
 - \(F(x, y) = dy x - dx y + dx B = 0 \)

\[F(x, y) = 0 \]
\[F(x, y) < 0 \]
\[F(x, y) > 0 \]
Lines: Bresenham

- **Decision variable d (the midpoint formulation)**
 - Assume we are at $x=i$, calculating next step at $x=i+1$
 - Measures the vertical distance of midpoint from line:
 \[
 d_{i+1} = F(M_{i+1}) = F(x_i + 1, y_i + 1/2) = a(x_i + 1) + b(y_i + 1/2) + c
 \]

- **Preparations for the next pixel**

 IF $(d_{i+1} \leq 0)$ // Increment in x only

 $d_{i+2} = d_{i+1} + a = d_{i+1} + dy$ // Incremental calculation

 ELSE // Increment in x and y

 $d_{i+2} = d_{i+1} + a + b = d_{i+1} + dy - dx$

 $y = y + 1$

 ENDIF

 $x = x + 1$
Lines: Integer Bresenham

- **Initialization**

 $d_1 = F\left(x_b + 1, y_b + \frac{1}{2}\right) = a(x_b + 1) + b\left(y_b + \frac{1}{2}\right) + c$

 $= ax_b + by_b + c + a + \frac{b}{2} = F(x_b, y_b) + a + \frac{b}{2} = a + \frac{b}{2}$

 - Because $F(x_b, y_b)$ is zero by definition (line goes through (x_b, y_b))

 • Pixel is always set (but check consistency rules → later)

- **Elimination of fractions**

 - Any positive scale factor maintains the sign of $F(x,y)$

 • $2F(x_b, y_b) = 2(ax_b + by_b + c) \rightarrow d_{start} = 2a + b$

- **Observation:**

 - When the start and end points have integer coordinates then
 $b = -dx$ and $a = dy$ are also integers

 • Floating point computation can be eliminated

 - No accumulated error!!
Lines: Arbitrary Directions

- **8 different cases**
 - Driving (active) axis: ±X or ±Y
 - Increment/decrement of y or x, respectively
Thick Lines

• **Pixel replication**
 – Problems with even-numbered widths
 – Varying intensity of a line as a function of slope

• **The moving pen**
 – For some pen footprints the thickness of a line might change as a function of its slope
 – Should be as “round” as possible

• **Real Solution: Draw 2D area**
 – Allows for anti-aliasing and fractional width
 – Main approach these days!
Handling Start and End Points

• End points handling (not available in current OpenGL)
 – Joining: handling of joints between lines
 • Bevel: connect outer edges by straight line
 • Miter: join by extending outer edges to intersection
 • Round: join with radius of half the line width
 – Capping: handling of end point
 • Butt: end line orthogonally at end point
 • Square: end line with oriented square
 • Round: end line with radius of half the line width
 – Avoid overdraw when lines join
Bresenham: Circle

- Eight different cases, here +X, y--

 Initialization: \(x = 0, y = R\)
 \(F(x,y) = x^2 + y^2 - R^2\)
 \(d = F(x+1, y-1/2)\)
 IF \(d < 0\)
 \(d = F(x+2, y-1/2)\)
 ELSE IF \(d > 0\)
 \(d = F(x+2, y-3/2)\)
 \(y = y - 1\)
 ENDIF
 \(x = x + 1\)

 - Works because |slope| is smaller than 1

- Eight-way symmetry: only one 45° segment is needed to determine all pixels in a full circle
Reminder: Polygons

- **Types**
 - Triangles
 - Trapezoids
 - Rectangles
 - Convex polygons
 - Concave polygons
 - Arbitrary polygons
 - Holes
 - Overlapping

- **Two approaches**
 - Polygon tessellation into triangles
 - Only option for OpenGL
 - Must mark internal edges so they are not drawn for outlines
 - Direct scan-conversion
 - Mostly in early SW algorithms
Inside-Outside Tests

• What is the interior of a polygon?
 – Jordan curve theorem
 • „Any continuous simple closed curve in the plane, separates the plane into two disjoint regions, the inside and the outside, one of which is bounded.“

• What to do with non-simple polygons?
 – Even-odd rule (odd parity rule)
 • Counting the number of edge crossings with a ray starting at the queried point \(P \) till infinity
 • Inside, if the number of crossings is odd
 – (Non-zero) winding number rule
 • Counts \# times polygon wraps around \(P \)
 – Signed intersections with a ray
 • Inside, if the number is not equal to zero
 – Differences only in the case of non-simple curves (e.g. self-intersection)
Triangle Rasterization

Raster3_box(vertex v[3])
{
 int x, y;
 bbox b;
 bound3(v, &b);
 for (y = b.ymin; y < b.ymax; y++)
 for (x = b.xmin; x < b.xmax; x++)
 if (inside(v, x, y)) // upcoming
 fragment(x, y);
}

• **Brute-force algorithm**
 – Iterate over all pixels within bounding box

• **Possible approaches for dealing with scissoring**
 – Scissoring: Only draw on AA-Box of the screen (region of interest)
 • Test triangle for overlap with scissor box, otherwise discard
 • Use intersection of scissor and bounding box, otherwise as above
 • Important if clipping only against enlarged region! (→ see later)
Rasterization w/ Edge Functions

- **Approach (Pineda, `88)**
 - Implicit edge functions for every edge
 \[F_i(x, y) = ax + by + c \]
 - Point is *inside* triangle, if every
 \[F_i(x, y) \] has the same sign
 - Perfect for parallel evaluation at many points
 - Particularly with wide SIMD machines (GPUs, SIMD CPU instructions)
 - Requires “triangle setup”: Computation of 3 edge functions \((a, b, c)\)
 - Evaluation can also be done in homogeneous coordinates

- **Hierarchical approach**
 - Can be used to efficiently check large rectangular blocks of pixels
 - Divide screen into tiles/bins (possibly at several levels)
 - Evaluate \(F\) at tile corners
 - Recurse only where necessary, possibly until subpixel level
Gap and T-Vertices

• **Observations**
 – Pixels set can be non-connected
 – May have overlap and gaps at T-edges

Non-connected pixels: OK
Not OK: Model must be changed
Problem on Edges

- **Consistency**: edge singularity (shared by 2 triangles)
 - What if term \(d = ax+by+c = 0 \) (pixel centers lies exactly on the line)
 - For \(d \leq 0 \): pixels would get set twice
 - Problem with some algorithms
 - Transparency, XOR, CSG, ...
 - Missing pixels for \(d < 0 \) (set by no tri.)
- **Solution**: “shadow” test
 - Pixels are not drawn on the right and bottom edges
 - Pixels are drawn on the left and upper edges
 - Evaluated via derivatives \(a \) and \(b \)
 - Testing for all edges also solves problem at vertices

```c
inside(value d, value a, value b)
{
    // ax + by + c = 0
    return (d < 0) || (d == 0 && !shadow(a, b));
}
shadow(value a, value b)
{
    return (a > 0) || (a == 0 && b > 0);
}
```
Ray Tracing vs. Rasterization

• In-Triangle test (for common origin)
 – Rasterization:
 • Project to 2D, clip
 • Set up 2D edge functions, evaluate for each sample (using 2D point)
 – Ray tracing:
 • Set up 3D edge functions, evaluate for each sample (using direction)
 – The ray tracing test can also be used for rasterization in 3D
 • Avoids projection & clipping

• Enumerating scene primitives
 – Rasterization (simple):
 • Sequentially enumerate them all in any order
 – Rasterization (advanced):
 • Build (coarse) spatial index (typically on application side)
 • Traverse with view frustum (large)
 – Possibly one frustum for every image tile separately, when using *tiled rendering*
 – Ray Tracing:
 • Build (detailed) spatial index
 • Traverse with (infinitely thin) ray or with some (typically small) frustum
 – Both approaches can benefit greatly from spatial index!
Ray Tracing vs. Rasterization (II)

- **Binning (finding relevant pixels in a large frustum)**
 - Test to (hierarchically) find pixels likely covered by a primitive
 - Rasterization:
 - Great speedup due to very large view frustum (many pixels)
 - Ray tracing (frustum tracing)
 - Can speed up, depending on frustum size [Benthin'09]
- Ray Tracing (single/few rays)
 - Not needed

- **Conclusion**
 - Both algorithms can use the same in-triangle test
 - In 3D, requires floating point, but boils down to 2D computation
 - Both algorithms can benefit from spatial index
 - Benefit depends on relative cost of in-triangle test (HW vs. SW)
 - Both algorithms can benefit from 2D binning to find relevant samples
 - Benefit depends on ratio of covered/uncovered samples per frustum

- **Both approaches are very similar**
 - Different organization (size of frustum, binning)
 - There is no reason RT needs to be slower for primary rays (exc. FP)
Imagination-Grafikchip: 5 Mal schneller als GeForce GTX 980 Ti beim Raytracing

Fünf Mal schneller als eine GeForce GTX 980 Ti soll die Mobil-GPU PowerVR GR6500 sein, allerdings nur bei bestimmten Raytracing-Anwendungen.

Die Mobil-Grafikeinheit PowerVR GR6500 soll fünf Mal schneller arbeiten als Nvidias GeForce GTX 980 Ti bei nur einem Zehntel der Leistungsaufnahme; allerdings nur bei bestimmten Raytracing-Anwendungen.
AMD unveils three Radeon 6000 graphics cards with ray tracing and RTX-beating performance
The RX 6800, 6800 XT and 6900 XT are coming soon.

It’s time for BIG NAVI, as AMD has unveiled their new Radeon graphics cards: the $579 RX 6800, $649 RX 6800 XT and $999 RX 6900 XT. AMD claims that the cards should meet or beat Nvidia’s flagship RTX 30-series graphics cards, all the way up to the $1499 RTX 3090, often at lower price and while consuming less power. The 6000-series cards are also the first desktop AMD GPUs to support real-time ray tracing, variable rate shading and other DirectX 12 Ultimate features. All in all, it’s an exciting package for AMD fans - and would-be Nvidia users that might have become frustrated with poor RTX 30-series availability.

Intel’s new Xe GPU will have hardware-accelerated ray tracing

August 13, 2020 Intel has now confirmed that the Xe-HPG microarchitecture exists and that it will have ray tracing.