Computer Graphics

- Rasterization -

Philipp Slusallek

Rasterization

* Definition
— Given some 2D geometry (point, line, circle, triangle, polygon,...),
specify which pixels of a raster display each primitive covers
« Often also called “scan-conversion”
— Anti-aliasing: instead of only fully-covered pixels (single sample),
specify what parts of a pixel are covered (multi/super-sampling)

 Perspectives
— OpenGL lecture: from an application programmer’s point of view
— This lecture: from a graphics package implementer’s point of view
— Looking at rasterization of (i) lines and (ii) polygons (areas)

« Usages of rasterization in practice
— 2D-raster graphics, e.g. Postscript, PDF, SVG, ...
— 3D-raster graphics, e.g. SW rasterizers (Mesa, OpenSWR), HW
— 3D volume modeling and rendering
— Volume operations (CSG operations, collision detection)
— Space subdivision (spatial indices): construction and traversal

Rasterization

 Assumptions

— Pixels are sample points on a 2D integer grid
 OpenGL: at cell bottom-left, integer-coordinate
« X11, Foley: at the cell center (we will use this)

— Simple raster operations
« Just setting pixel values or not (binary decision)
* More complex operations later: compositing/anti-aliasing

— Endpoints snapped to (sub-)pixel integer coordinates
« Simple and consistent computations with fixed-point arithmetic

— Limiting to lines with gradient/slope |[m| < 1 (mostly horizontal)
« Separate handling of horizontal and vertical lines
» For mostly vertical, swap x and y (|1/m| < 1), rasterize, swap back

— Special cases in SW, trivial in HW :-)

— Line width is one pixel
* |m|] <1: 1 pixel per column (X-driving axis)
« |m|>1: 1 pixel per row (Y-driving axis)

Lines: As Functions

Specification
— Initial and end points: (xp, vp), (x., V), (dx,dy) = (X, — Xp, Ve — Vp)
— Functional form: y = mx + B
— End points with integer coordinates = rational slope m = dy/dx

Goal

— Find that pixel per column whose distance to the line is smallest

Brute-force algorithm
— Assume that +X is the driving axis - set pixel in every column
for x; = x, to X,
yi=m®x;+B
setPixel(x;, Round(y;)) // Round(y;) = Floor(y; + 0.5)
Comments
— Variables m and thus y; need to be calculated in floating-point
— Not well suited for direct HW implementation
A floating-point ALU is significantly larger in HW than integer

Lines: DDA

« DDA: Digital Differential Analyzer
— Origin of incremental solvers for simple differential equations
* The Euler method
— Per time-step: x’= x + dx/dt, y’= y + dy /dt
* Incremental algorithm
— Choose dt=dx, then per pixel
* X =Xt 1
* Vi EM T Xt B=m(x;+ 1)+ B=(m*x;+B)+m=y +m
« setPixel(x;1, Round(y;.1))

« Remark

— Utilization of coherence through incremental calculation
» Avoids the “costly” multiplication

— Accumulates error over length of the line
» Up to 4k additions on UHD!

— Floating point calculations may be moved to fixed point
» Must control accuracy of fixed point representation
« Enough extra bits to hide accumulated error (>>12 bits for UHD)

Lines: Bresenham (1963)

DDA analysis

— Critical point: decision whether we need rounding up or down

* ldea
— Integer-based decision through implicit functions
— Impilicit line equation
e F(x,y)=ax+by+c=0
— Herewithy =mx + B Z%X-I_B = 0=dyx—dxy+ Bdx
e a=dy, b=-dx, c=Bdx
— Results in

e F(x,y)=dyx—dxy+dxB =0
F(x,y) =0

F(x,y) <0

Lines: Bresenham

« Decision variable d (the midpoint formulation)

— Assume we are at x=i, calculating next step at x=i+1
— Measures the vertical distance of midpoint from line:

dizi =FMjy1) =F(x; +1,y;,+1/2)
=alx;+1)+b(y; +1/2)+c

/’/
e

* Preparations for the next pixel

,/
P
7’

IF (d.., < 0)

di.,=d,, +a=dy, +dy // Incremental calculation

ELSE /[Increment in x and y
d,,=d,,+a+b=d,, +dy—dx
y=y+1

ENDIF

X=x+1

Lines: Integer Bresenham

* Initialization
1 1
d, =F(xb+1,yb+5) =a(xb+1)+b(yb +E)+C

=axb+byb+c+a+§=F(xb,yb)+a+§=a+§
— Because F(xy, yp) is zero by definition (line goes through (x,, Vy))
» Pixel is always set (but check consistency rules — later)

* Elimination of fractions
— Any positive scale factor maintains the sign of F(x,y)
o 2F(xp,yp) = 2(axp, + by, +¢) > dgegre = 2a+ b

e Observation:

— When the start and end points have integer coordinates then
b = -dx and a = dy are also integers

» Floating point computation can be eliminated
— No accumulated error!!

Lines: Arbitrary Directions

- 8 different cases
— Driving (active) axis: X or £Y
— Increment/decrement of y or x, respectively

Thick Lines

* Pixel replication

(©]
o
(©]

— Problems with even-numbered widths
— Varying intensity of a line as a function of slope

o000
000
000

 The moving pen

— For some pen footprints the thickness of a line might change as a
function of its slope

— Should be as “round” as possible

* Real Solution: Draw 2D area
— Allows for anti-aliasing and fractional width
— Main approach these days!

Handling Start and End Points

« End points handling (not available in current OpenGL)
— Joining: handling of joints between lines
« Bevel: connect outer edges by straight line
« Miter: join by extending outer edges to intersection
» Round: join with radius of half the line width
— Capping: handling of end point
« Butt: end line orthogonally at end point
« Square: end line with oriented square
« Round: end line with radius of half the line width
— Avoid overdraw when lines join

AAA A A A

JOIN BEVEL JOIN MITER JOIN_ ROUND
I | [

/\<\ /\<\ /6\ CAP_BUTT CAP_SQUARE CAP_ROUND

Bresenham: Circle

- Eight different cases, here +X, y-- a_\p\o F>0
F=0

Initialization: x =0,y =R ° °F<0°
F(x,y) = x2+y?-R?
d = F(x+1, y-1/2) -x,y)MX.y)
IFd<O

d = F(x+2,y-1/2)
ELSEIFd>0

d = F(x+2,y-3/2) o <
('Xa'Y)

y — y_1 (,ya'X)
ENDIF
X = X+1

AV
v

(Xa_Y)
— Works because |slope| is smaller than 1

« Eight-way symmetry: only one 45" segment is
needed to determine all pixels in a full circle

Reminder: Polygons

« Types /\

— Triangles

— Trapezoids
— Rectangles

— Convex polygons

— Concave polygons
— Arbitrary polygons
* Holes
» Overlapping

« Two approaches
— Polygon tessellation into triangles
» Only option for OpenGL

« Must mark internal edges
so they are not drawn for outlines

— Direct scan-conversion
* Mostly in early SW algorithms

Inside-Outside Tests

 What is the interior of a polygon?

— Jordan curve theorem

* ,Any continuous simple closed curve in
the plane, separates the plane into two
disjoint regions, the inside and the outside,

one of which is bounded.* Even-odd
* What to do with non-simple polygons? , P
— Even-odd rule (odd parity rule) NN
« Counting the number of edge crossings with +1
a ray starting at the queried point P till infinity
* Inside, if the number of crossings is odd Winding

— (Non-zero) winding number rule
« Counts # times polygon wraps around P

— Signed intersections with a ray
* Inside, if the number is not equal to zero

— Differences only in the case of
non-simple curves (e.g. self-intersection) Even-odd NZ-Winding

Triangle Rasterization

Raster3 box(vertex v[3])

{

int x, y; T
bbox b;

bound3 (v, &b);
for (y = b.ymin; y < b.ymax; y++)
for (x = b.xmin; x < b.xmax; x++)
if (inside(v, x, y)) // upcoming

fragment(x,y) ;

}

« Brute-force algorithm
— lterate over all pixels within bounding box

* Possible approaches for dealing with scissoring
— Scissoring: Only draw on AA-Box of the screen (region of interest)
 Test triangle for overlap with scissor box, otherwise discard
» Use intersection of scissor and bounding box, otherwise as above
» Important if clipping only against enlarged region! (- see later)

Rasterization w/ Edge Functions

« Approach (Pineda, 88)
— Implicit edge functions for every edge
Fi(x,y) =ax+ by +c
— Point is inside triangle, if every
F;(x,y) has the same sign

— Perfect for parallel evaluation
at many points

 Particularly with wide SIMD machines (GPUs, SIMD CPU instructions)
— Requires “triangle setup”: Computation of 3 edge functions (a, b, ¢)
— Evaluation can also be done in homogeneous coordinates

« Hierarchical approach
— Can be used to efficiently check large rectangular blocks of pixels
 Divide screen into tiles/bins (possibly at several levels)
« Evaluate F at tile corners
* Recurse only where necessary, possibly until subpixel level

X+dX, Y+dY)

"Right” side
+

Gap and T-Vertices

e Observations

— Pixels set can be non-connected
— May have overlap and gaps at T-edges

Non-connected pixels: OK Not OK: Model must be changed

Problem on Edges

« Consistency: edge singularity (shared by 2 triangles)
— What if term d = ax+by+c = 0 (pixel centers lies exactly on the line)
— For d <= 0: pixels would get set twice | |
* Problem with some algorithms
« Transparency, XOR, CSG, ...
— Missing pixels for d < 0 (set by no tri.)

« Solution: “shadow” test
— Pixels are not drawn on the right and bottom edges
— Pixels are drawn on the left and upper edges

« Evaluated via derivatives a and b

— Testing for all edges also solves problem at vertices
inside(value d, value a, value b)
{ // ax + by + ¢ =0
return (d < 0) || (d == 0 && 'shadow(a, b)),

}

shadow (value a, value b)

{
}

return (a > 0) || (a == 0 && b > 0);

Ray Tracing vs. Rasterization

* In-Triangle test (for common origin)
— Rasterization:
* Project to 2D, clip
« Set up 2D edge functions, evaluate for each sample (using 2D point)
— Ray tracing:
« Set up 3D edge functions, evaluate for each sample (using direction)
— The ray tracing test can also be used for rasterization in 3D
» Avoids projection & clipping
 Enumerating scene primitives
— Rasterization (simple):
« Sequentially enumerate them all in any order
— Rasterization (advanced):
« Build (coarse) spatial index (typically on application side)
» Traverse with view frustum (large)
— Possibly one frustum for every image tile separately, when using tiled rendering
— Ray Tracing:
 Build (detailed) spatial index
« Traverse with (infinitely thin) ray or with some (typically small) frustum
— Both approaches can benefit greatly from spatial index!

Ray Tracing vs. Rasterization (ll)

Binning (finding relevant pixels in a large frustum)

— Test to (hierarchically) find pixels likely covered by a primitive
— Rasterization:

» Great speedup due to very large view frustum (many pixels)
— Ray tracing (frustum tracing)

« Can speed up, depending on frustum size [Benthin'09]

— Ray Tracing (single/few rays)
* Not needed

Conclusion

— Both algorithms can use the same in-triangle test
* In 3D, requires floating point, but boils down to 2D computation

— Both algorithms can benefit from spatial index
» Benefit depends on relative cost of in-triangle test (HW vs. SW)

— Both algorithms can benefit from 2D binning to find relevant samples
» Benefit depends on ratio of covered/uncovered samples per frustum

Both approaches are very similar
— Different organization (size of frustum, binning)
— There is no reason RT needs to be slower for primary rays (exc. FP)

HW-Supported Ray Tracing (finally)

Imagination-Grafikchip: 5 Mal schneller als GeForce GTX 980 Ti beim
Raytracing

11.01.2016 17:25 Uhr

/1) heise onlin Martin Fischer () vorlesen

performance

/ Dramatically lower power andg

A4

\

T [T 111110
i B w

%‘4 faiiih

-

i

Flinf Mal schneller als eine GeForce GTX 980 Ti soll die Mobil-GPU PowerVR GR6500 sein, allerdings nur bei bestimmten
Raytracing-Anwendungen.

Die Mobil-Grafikeinheit PowerVR GR6500 soll fiinf Mal schneller arbeiten als Nvidias
GeForce GTX 980 Ti bei nur einem Zehntel der Leistungsaufnahme; allerdings nur bei
bestimmten Raytracing-Anwendungen.

HW-Supported Ray Tracing (finally)

[Druckversion - Nvidia GeFor X +

Raytracing-Be... ¥ @

i Apps B Private @B Lehrstuhl @8 Uni @8 IVCI @8 DFKI @ CISPA MPI (& MPI-SWS » | @ Weitere Lesezeichen

& C @ https://www.heise.de/newsticker/meldung/Nvidia-GeForce-RTX-2070-208

«zuriick zum Artikel

Intel’s new Xe GPU will have hardware-

Nvidia GeForce RTX 2070, 2080, 2080 Ti: Raytrac accelerated ray tracing

stolzen Preisen

20.08.2018 19:51 Uhr
Martin Fischer

August 13, 2020 Intel has now confirmed that

AMD unveils three Radeon 6000
graphics cards with ray tracing and

the Xe-HPG microarchitecture exists and that it

will have ray tracing.

RTX-beating performance
The RX6800, 6800 XT and 6900 XT are coming soon.

@ News by Will Judd, Senior Staff Writer, Digital Foundry
= Updated on 28 October 2020

It's time for BIG NAVI, as AMD has unveiled their new Radeon graphics cards: the $579 RX
6800, $649 RX 6800 XT and $999 RX 6900 XT. AMD claims that the cards should meet or beat
Nvidia's flagship RTX 30-series graphics cards, all the way up to the $1499 RTX 3090, often at
lower price and while consuming less power. The 6000-series cards are also the first desktop
AMD GPUs to support real-time ray tracing, variable rate shading and other DirectX 12 Ultimate
features. Allin all, it's an exciting package for AMD fans - and would-be Nvidia users that might
have become frustrated with poor RTX 30-series availability.

N

/

(=)

besonders effizient bei Raytracing-Berechnungen

eratinn varaestellt Die heiden Hinh-Fnd-Mandelle

