Computer Graphics

Camera & Projective Transformations

Philipp Slusallek

Motivation

« Rasterization works on 2D primitives (+ depth)
 Need to project 3D world onto 2D screen

 Based on
— Positioning of objects in 3D space
— Positioning and parameters of the virtual camera

Coordinate Systems

Local (object) coordinate system (3D)

— QObject vertex positions
— Can be hierarchically nested in each other (scene graph, transf. stack)

World (global) coordinate system (3D)
— Scene composition and object placement
» Mostly rigid objects: translation, rotation per object, (scaling)
« Animated objects: time-varying transformation in world or local space
— lllumination can be computed in this space

Cameralview/eye coordinate system (3D)
— Coordinates relative to camera pose (position & orientation)

« Camera itself specified relative to world space
— lllumination can also be done in this space

Normalized device coordinate system (2.5D)

— After perspective transformation, rectilinear, in [0, 1]3

— Normalization to view frustum (for rasterization and depth buffer)

— Rasterization & shading done here (e.g., interpolation across triangle)

Window/screen (raster) coordinate system (2D)
— 2D transformation to place image in window on the screen

Hierarchical Coordinate Systems

 Used in Scene Graphs

— Group objects hierarchically
— Local coordinate system is relative to parent coordinate system

— Apply transformation to the parent to change the whole sub-tree
(or sub-graph)

Hierarchical Coordinate Systems

Hierarchy of transformations
T root
T ShoulderR
T _ShoulderRJoint

T _UpperArmR
T _ElbowRdJoint
T LowerArmR
T WristRJoint

T _ShoulderL
T ShoulderLJoint

T _UpperArmL
T _ElbowLJoint
T LowerArmL

Positions the character in the world
Moves to the right shoulder

Rotates in the shoulder (3 DOF) <€ User
Moves to the Elbow

Rotates in the Elbow (1 DOF) € User
Moves to the wrist

Rotates in the wrist (1 DOF) € User
Further for the right hand and the fingers
Moves to the left shoulder

Rotates in the shoulder (3 DOF) <€ User
Moves to the Elbow

Rotates in the Elbow (1 DOF) € User
Moves to the wrist

Further for the left hand and the fingers

— Each transformation is relative to its parent

« Concatenated by multiplying (from right) and pushing onto a stack

» Going back by poping from the stack

— This transformation stack was so common, it was built into OpenGL

Coordinate Transformations

* Model transformation

— Obiject space to world space

— Can be hierarchically nested

— Typically an affine transformation
— As just discussed

* View transformation
— World space to eye space
— Typically an affine transformation

« Combination of both: Modelview transformation

— Used by traditional OpenGL (although world space is
conceptually intuitive, it was not explicitly exposed in OpenGL)

Coordinate Transformations

* Projective transformation

— Eye space to normalized device space
— Parallel or perspective projection (defined by view frustum)
— 3D to 2D: With preservation of depth (2.5 D)

* Viewport transformation
— Normalized device space to window (raster) coordinates

Camera Parameters: Rend.Man

« RenderMan camera specification

Distance of Screen Window from origin given by “field of view” (fov)
 fov: Full angle of segment (-1,0) to (1,0), when seen from origin

CW given implicitly

No offset on screen

Note: Left-handed
coordinate system!

All geometry is
assumed to be in
camera coordinates!

* Or needs to be
transformed into it

Simple Camera Parameters

« Camera definition (typically used in ray tracers)
— o0 € R3 : center of projection, point of view (PRP)
— CW € R3 : vector to center of window
* “Focal length”: projection of vector to CW onto VPN
— focal = |(CW —o0) - VPN]|
— x,y € R3: span of half viewing window
* VPN = (yx x)/|(yxx)|

* VUP=—y
* width = 2|x]|
* height = 2|y|

« Aspect ratio: camera, 4, = |x|/|y]

PRP: Projection reference point
VPN: View plane normal

VUP: View up vector

CW: Center of window

Fulll Camera Transformation

« Goal

— Compute the transformation between points in 3D and
pixels on the screen

— Required for rasterization algorithms (e.g., OpenGL)
* They project all primitives from 3D to 2D
» Rasterization happens in 2D (actually 2.5D, XY plus Z attribute)

 Given
— Camera pose (pos. & orient.)
» Extrinsic parameters

— Camera configuration
* Intrinsic parameters

— Pixel raster description
» Resolution and placement on screen |Za
* In the following: Stepwise Approach

— Express each transformation step in homogeneous coordinates
— Multiply all 4x4 matrices to combine transformations

10

Camera Transformation

 Need camera position and orientation in world space
— External (extrinsic) camera parameters
» Center of projection: projection reference point (PRP)
» Optical axis: view-plane normal (VPN)
* View up vector (VUP)
— Not necessarily orthogonal to VPN, but not co-linear

 Needed Transformations
1) Translation of PRP to the origin (-PRP)
2) Rotation such that viewing direction is along negative Z axis
2a) Rotate such that VUP is pointing up on screen

VUP

PRP
VPN

Camera Transformation

 Goal:Camera: at origin, view along —Z, Y upwards

— Assume right-handed coordinate system!
— Translation of PRP to the origin
— Rotation of VPN to Z-axis

— Rotation of projection of VUP to Y-axis

« Rotations
— Build orthonormal basis for the camera and form inverse
« Z'=VPN, X’= normalize(VUP x VPN), Y'=Z2" x X’

* Viewing transformation VV
— Translation T followed by rotation R

Viewing Transformation

« Define projection (perspective or orthographic)
— Needs internal (intrinsic) camera parameters
— Screen window (Center Window (CW), width, height)
« Window size/position on image plane (relative to VPN intersection)
« Window center relative to PRP determines viewing direction (= VPN)
— Focal length (f)
 Distance of projection plane from camera along VPN
« Smaller focal length means larger field of view
— Alternative: Field of view (fov) (defines width of view frustum)
« Often used instead of screen window and focal length
— Only valid when screen window is centered around VPN (often the case)
 Vertical (or horizontal) angle plus aspect ratio (width/height)
— Or two angles (both angles may be half or full angles, beware!)
— Near and far clipping planes
« Given as distances from the PRP along VPN
» Near clipping plane avoids singularity at origin (division by zero)
» Far clipping plane restricts the depth for fixed-point representation in HW

Shearing Transformation

« Step 1: VPN may not go through center of window

— Possible oblique viewing configuration

e Shear

— Shear space such that window center is along Z-axis
— Window center CW (in 3D view coordinates)

 RenderMan: CW = ((right+left)/2, (top+bottom)/2, -focal)T

« Shear matrix Image plane
cWwW,
/1 0 —— =% 0\ f
CW, — -> >
_ CW, — left
H=[0 1 - 0
CW, cW
0O O 1 0 X
00 0 1 | right

View from top

Normalizing

« Step 2: Scaling to canonical viewing frustum

— Goal: Scale in X and Y such that screen window boundaries open
at 45-degree angles (at focal plane)

— Scale in Z such that far clipping plane is at Z= -1

. X

A 45°
> /
> -Z > -Z
-near — 4
-focal -near -focal
. . -f
+ Scaling matrix o far “far 3\
— 0 0O O 2focal
/far 1 \ width 0 0 0
0 — 0 0 2focal
- S = Sfaery = far) 0 height 0 O
0 0O — 0 0 0 1 O
far
\ 0 0 0 1 / 0 0 0 1

Perspective Transformation

« Step 3: Perspective transformation

— From canonical perspective viewing frustum (= cone at origin
around -Z-axis, 45° opening) to regular box [-1 .. 1] x [0 .. 1]

« Mappingof XandY

— Lines through the origin are mapped to lines parallel to the Z-axis
* X'=x/-z and y’= y/-z (coordinate given by slope with respect to -z!)

— Do not change X and Y additively (first two rows stay the same)

— Set W to —z so we divide by it when converting back to 3D

» Determines last row

* Perspective transformation

1 0 0 0
p[0 1 0 0
A B C D
0 0 -1 0

Still unknown

— Note: Perspective projection =

perspective transformation + parallel projection

A 45°

A

('1! 1)

('1! '1)

16

Perspective Transformation

« Computation of the coefficients A, B, C, D
— No shear of Z with respectto Xand Y
- A=B=0
— Mapping of two known points

« Computation of the two remaining parameters C and D
— n = near / far (due to previous scaling by 1/far)
* Following mapping must hold
— (0,0,—1,1DT = P(0,0,—1,1)T and (0,0,0,1)T = P(0,0,—n, 1)T

* Resulting Projective transformation

1 0 O 0 A 45° A
0 1 0 0
— P = 1 n)
0 O
1-n 1-n o > ® +
0O 0 -1 0 -Z

— Transforms Z non-linearly (in 3D)

zZ+n
z(1-n)

[] I—

17

Parallel Projection to 2D

- Parallel projection P,,,,.44¢; to [-1 .. 1]
— Formally scaling in Z with factor O
— Typically still maintains Z in [0,1] for depth buffering
* As a vertex attribute (see OpenGL later)

 Normalizing Transform N
— From[-1 .. 1]?to NDC ([0 .. 1]%
— Scaling (by 1/2 in X and Y) and translation (by (1/2,1/2))

10 0 0 /2 0 0 1/2

o1 o o [0 1/2 0 1,2
Praraltet=\ o 0 oor1 o M=o 0o 1 o0
00 0 1 0 0 0 1

Viewport Transformation

 Normalized Device Coordinates (NDC)
— Intrinsic camera parameters transform to NDC

 [0,1]2 for x, y across the screen window
 [0,1] for z (depth)

 Mapping NDC to raster coordinates on the screen
— xres,yres . Size of window in pixels
» Should have same aspect ratios to avoid distortion

xres pixelspacin
— cameraygtip = pIreSpaIx

yres pixelspacing,, ’
« Horizontal and vertical pixel spacing (distance between pixel centers)
— Today, typically the same but can be different e.g. for some video formats
— Position of window on the screen
» Offset of window from origin of screen
— posx and posy given in pixels
« Depends on where the origin is on the screen (top left, bottom left)
— “Scissor box” or “crop window” (region of interest)
* No change in mapping but limits which pixels are rendered

Viewport Transformation

« Scaling and translation in 2D

— Scaling matrix to map to entire window on screen
* Sraster(xresr yTBS)
* No distortion if aspect ratios have been handled correctly earlier
— l.e. aspect ratio of window in world space == aspect ratio of raster window
* In some cases, one needs to reverse direction of y
— Some formats have screen origin at bottom left, some at top left
— Needs additional translation/scaling

— Positioning on the screen
* Translation T, .. (xpos, ypos)
« May be different depending on raster coordinate system
— Origin at upper left or lower left

Orthographic Projection

« Step 2a: Translation (orthographic)

— Bring near clipping plane into the origin
« Step 2b: Scaling to regular box [-1 .. 1]2 x [0 .. -1]
« Mappingof XandY

0 :
- B = Sxsznear — height

1

0 0 0
\ far—mear /
0 0 0 1

2
foem 0 0 0\
.) (

OO O
S O -k O
S = O O

Full Camera Transformation

« Complete transformation (combination of matrices)
— Perspective Projection

* Tcamera — lraster Sraster N Pparallel Ppersp Sfar Sxy HRT

— Orthographic Projection

* Tcamera — lraster Sraster N Pparallel Sxyz Tnear - HRT

* Other representations
— Other literature uses different conventions
 Different camera parameters as input
 Different canonical viewing frustum

 Different normalized coordinates
— [-1 .. 13 versus [0 ..1]3 versus ...

— Results in different transformation matrices — so be careful !!!

22

Per-Vertex Transformations

Traditional OpenGL

pipeline

— Hierarchical modeling
* Modelview matrix stack
* Projection matrix stack
— Each stack can be

object

independently pushed/popped
— Matrices can be applied/multiplied

to top stack element

- Today

— Arbitrary matrices as
attributes to vertex
shaders that apply
them as they wish (later)

— All matrix stack
handling must now be
done by application

window

eve clip normalized
device
Modelview] | |Projection | |Perspectivg | l'icny).u/'l
Matrix Matrix Division Transform
Modelview| |Projection | other calculations here
+ material < color
Modelview + shade model (flat)
. + polygon rendering mode
: + polygon culling

+ clipping

View transform
specified by position.,

o

orientation of
camera

77N
() Pro
N~

Screen transformation
specified by internal attributes
of camera

CCSSES

Local World
space Modelling and space Specification
positioning of lighting
- s . — -
of component . e - and surface
¢ _”F‘ YL ' Iransformation to world space specified ttributes
I:;h'::tl by placement of object if static or of obiect
jec animation system if moving
Eve Screen
space - R
o Clipping against

Rendering:

shading

view frustrum

hidden surface
calculation
rasterization

23

OpenGL

 Modern OpenGL

— Transformation provided by app, applied by vertex shader
— Vertex or Geometry shader must output clip space vertices
» Clip space: Just before perspective divide (by w)

* Viewport transformation
— glViewport(x, y, width, height)
— Now can even have multiple viewports
« glViewportindexed(idx, x, y, width, height)
— Controlling the depth range (after Perspective transformation)
» glDepthRangelndexed(idx, near, far)

Discussion

 Pinhole camera model
— Linear in homogeneous coordinates

« A lot of things that we ignored

— Complex lenses distortion, aberrations
— Flare

— Depth-of-field

— Vignetting

5 “n er]
3.5/35 4 Nm
B b e 7 TN

2.8/5C

