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Curves
• Curve descriptions

– Explicit functions
• y(x)= ± sqrt(r2 - x2), restricted domain (x Î [-1, 1])

– Implicit functions
• x2 + y2 = r2 unknown solution set

– Parametric functions
• x(t)= r cos(t), y(t)= r sin(t),   t Î [0, 2p]
• Flexibility and ease of use

• Typically, use of polynomials
– Avoids complicated functions (e.g., pow, exp, sin, sqrt)
– Typically, use of polynomials with low degree
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Parametric curves
• Separate function in each coordinate

– Parameterized over an additional variable t (think: time)
– Describes movement of a particle along the curve
– But we are mostly interested in the resulting curve itself

– In 3D: 𝑓(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡))



Monomials
• Monomial basis

– Simple basis: 1, t, t2, ... (t usually in [0 .. 1])
• Polynomial representation

– Coefficients can be determined from a sufficient number of 
constraints (e.g., interpolation of given points)

• Given (n+1) parameter values ti and points Pi

• Solution of a linear system in the Ai − possible, but inconvenient

• Matrix representation

𝑃(𝑡) = 𝑥(𝑡) 𝑦(𝑡) 𝑧(𝑡) =)
!"#

$

𝑡!𝐴!
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Degree (= Order – 1)

Coefficients ÎR3

𝑃(𝑡) = 𝑥(𝑡) 𝑦(𝑡) 𝑧(𝑡) = 𝑇(𝑡) 𝐴

= 𝑡$ 𝑡$%& ⋯ 1
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⋮
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Derivatives
• Derivative = tangent vector

– Polynomial of degree (n-1)

• Continuity and smoothness between two 
parametric curves
– C0 = G0 = same point
– Parametric continuity C1

• Tangent vectors are identical à (a)
– Geometric continuity G1

• Same direction of tangent vectors only à (b)
– Similar for higher order derivatives



More on Continuity
• At one point:

• Geometric Continuity:
– G0: curves are joined together at that point
– G1: first derivatives are proportional at joint point

• Same direction but not necessarily same length
– G2: first and second derivatives are proportional

• Parametric Continuity:
– C0: curves are joined
– C1: first derivative equal
– C2: first and second derivatives are equal.

• If t is the time, this implies the acceleration is continuous. 
– Cn: all derivatives up to and including the nth are equal. 



Linear Interpolation
• Hat Functions and Linear Splines (C0/G0 continuity)
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Can easily be generalized for arbitrary
vector of parameters 𝑡! to be interpolated
with arbitrary control points 𝑦! ∈ ℝ$



Lagrange Interpolation
• Interpolating basis functions

– Lagrange polynomials for a set of parameter values T={t0, ..., tn}

• Properties
– Good for interpolation at given parameter values

• At each ti: One basis function = 1, all others = 0
– Polynomial of degree n (n factors linear in t)

• Infinitely continuous derivatives everywhere

• Lagrange Curves
– Use with control points to be interpolated as coefficients

L./ t =:
0"#
!10

$
𝑡 − 𝑡0
𝑡! − 𝑡0

, with 𝐿!$(𝑡0) = 𝛿!0 = >1 𝑖 = 𝑗
0 otherwise

𝑃(𝑡) =)
!"#

$

𝐿!$(𝑡)𝑃!



Lagrange Interpolation
• Simple Linear Interpolation

– T={t0, t1}

• Simple Quadratic Interpolation
– T={t0, t1, t2}
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Problems
• Problems with a single polynomial

– Degree depends on the number of interpolation constraints
– Strong overshooting for high degree (n > 7)
– Problems with smooth joints
– Numerically unstable
– No local changes



Splines
• Functions for interpolation & approximation

– Standard curve and surface primitives in 3D modeling & fonts
– Key frame and in-betweens in animations
– Filtering and reconstruction of images

• Historically
– Name for a tool in ship building

• Flexible metal strip that tries to stay straight
– Within computer graphics:

• Piecewise polynomial function (e.g., cubic)
• Decouples continuity, degree, and #control points

Segment 1 Segment 2 Segment 3 Segment 4

What Continuity ?



Hermite Interpolation
• Hermite Basis (cubic)

– Interpolation of position P and tangent P´ information
for t= {0, 1}

– Very easy to piece together with G1/C1 continuity

– Basis functions

𝐻#-(𝑡) = (1 − 𝑡),(1 + 2𝑡)
𝐻&-(𝑡) = 𝑡(1 − 𝑡),

𝐻,-(𝑡) = −𝑡,(1 − 𝑡)
𝐻--(𝑡) = (3 − 2𝑡)𝑡,

0 1 𝐻#- 𝐻--

𝐻,-

𝐻&-



Hermite Interpolation
• Properties of Hermite Basis Functions

– 𝐻! (𝐻") interpolates smoothly from 1 to 0 (0 to 1)
– 𝐻! and 𝐻" have zero derivative at 𝑡 = 0 and 𝑡 = 1

• No contribution to derivative (only via 𝐻& and 𝐻,)
– 𝐻# and 𝐻$ are zero at 𝑡 = 0 and 𝑡 = 1

• No contribution to position (only via 𝐻# and 𝐻-)
– 𝐻# (𝐻$) has slope 1 at 𝑡 = 0 (𝑡 = 1)

• Unit factor for specified derivative vector

• Hermite polynomials
– 𝑃!, 𝑃# are positions ∈ ℝ"

– 𝑃!´ , 𝑃#´ are derivatives (tangent vectors) ∈ ℝ"

𝑃(𝑡) = 𝑃#𝐻#-(𝑡) + 𝑃#´𝐻&-(𝑡) + 𝑃&´𝐻,-(𝑡) + 𝑃&𝐻--(𝑡)

𝐻#- 𝐻--

𝐻,-

𝐻&-



Examples: Hermite Interpolation

G1 continuity



Matrix Representation
• Matrix representation

𝑃(𝑡) = 𝑡- 𝑡, ⋯ 1

𝐴',$ 𝐴´*,$ 𝐴+,$
𝐴',$%& 𝐴*,$%& 𝐴+,$%&

⋮
𝐴',# 𝐴*,# 𝐴+,#

=

𝑡- 𝑡, ⋯ 1
2

𝑀&& 𝑀&, 𝑀&-
𝑀,& ⋱

Basis Matrix M (4x4)

𝐺',- 𝐺*,- 𝐺+,-
𝐺',, 𝐺*,, 𝐺+,,
𝐺',& 𝐺*,& 𝐺*,&
𝐺',# 𝐺*,# 𝐺+,#

Geometry Matrix G (4x3)

=

𝑡- 𝑡, ⋯ 1

𝑀&& 𝑀&, 𝑀&-
𝑀,& ⋱

5!

Basis Functions

𝑃#2

𝑃&2

𝑃´#2

𝑃´&2
6!



Matrix Representation
• For cubic Hermite interpolation we obtain:

• Solution: 
– Two matrices must multiply to unit matrix

𝑃#2 = (0 0 0 1)𝑀7𝐺7
𝑃&2 = (1 1 1 1)𝑀7𝐺7
𝑃´#2 = (0 0 1 0)𝑀7𝐺7
𝑃´&2 = (3 2 1 0)𝑀7𝐺7

𝑃#2

𝑃&2

𝑃#
𝑃&

= 𝐺7 =

0 0 0 1
1 1 1 1
0 0 1 0
3 2 1 0

𝑀7𝐺7or

𝑀7 =

0 0 0 1
1 1 1 1
0 0 1 0
3 2 1 0

%&

=

2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0



Bézier
• Bézier Basis [deCasteljau´59, Bézier´62] 

– Different curve representation
– Start and end point
– 2 point that are approximated 

by the curve (cubics)
– 𝑃!´ = 3(𝑏# − 𝑏!) and 𝑃#´ = 3(𝑏" − 𝑏$)

• Factor 3 due to derivative of t3

𝐺7 =

𝑃#"
𝑃&"
𝑃´#"
𝑃´&"

=

1 0 0 0
0 0 0 1
−3 3 0 0
0 0 −3 3

𝑏#2

𝑏&2

𝑏,2

𝑏-2

= 𝑀78𝐺8



Basis Transformation
• Transformation

– 𝑃 𝑡 = 𝑇𝑀&𝐺& = 𝑇𝑀& 𝑀&'𝐺' = 𝑇 𝑀&𝑀&' 𝐺' = 𝑇𝑀'𝐺'

• Bézier Curves & Basis Functions

𝑀8 = 𝑀7𝑀78 =

−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0

𝑃(𝑡) =)𝐵!$(𝑡)𝑏!

with basis functions 𝐵!$(𝑡) =
𝑛
𝑖 𝑡!(1 − 𝑡)$%!

𝑃(𝑡) =)𝐵!-(𝑡)𝑏! =

(1−t)-𝑏# + 3𝑡(1−t), b&+ 3𝑡,(1−t)𝑏, + 𝑡-𝑏-

𝐵#-

𝐵&- 𝐵,-

𝐵--

Bernstein-
Polynomials



Properties: Bézier Curves
• Advantages:

– End point interpolation
– Tangents explicitly specified
– Smooth joints are simple

• 𝑃-, 𝑃9, 𝑃: collinear à G1 continuous
– Geometric meaning of control points
– Affine invariance 

– ∀𝑡: ∑!𝐵! 𝑡 = 1
– Convex hull property

• For 0 < 𝑡 < 1: 𝐵! 𝑡 ≥ 0
– Symmetry: 𝐵( 𝑡 = 𝐵)*((1 − 𝑡)

• Disadvantages
– Smooth joints need to be maintained explicitly 

• Automatic in B-Splines (and NURBS)



DeCasteljau Algorithm
• Direct evaluation of the basis functions 

– Simple but expensive
• Use recursion

– Recursive definition of the basis functions

– Inserting this once yields:

– with the new Bézier points also given by a recursion:

𝐵!$(𝑡) = tB!%&
$%&(𝑡) + (1 − 𝑡)𝐵!$%&(𝑡)

𝑃(𝑡) =)
!"#

$

𝑏!#𝐵!$(𝑡) = )
!"#

$%&

𝑏!&(𝑡)𝐵!$%&(𝑡)

𝑏!;(𝑡) = tb!<&;%&(𝑡) + (1 − 𝑡)𝑏!;%&(𝑡) and 𝑏!#(𝑡) = 𝑏!



DeCasteljau Algorithm
• DeCasteljau-Algorithm:

– Recursive degree reduction of the Bezier curve by using the 
recursion formula for the Bernstein polynomials

• Example:
– t= 0.5

𝑏!;(𝑡) = tb!<&;%&(𝑡) + (1 − 𝑡)𝑏!;%&(𝑡)

𝑃(𝑡) =)
!"#

$

𝑏!#𝐵!$(𝑡) = )
!"#

$%&

𝑏!&(𝑡)𝐵!$%&(𝑡) = ⋯ = 𝑏!$(𝑡) ⋅ 1



DeCasteljau Algorithm
• Subdivision using the deCasteljau-Algorithm

– Take boundaries of the deCasteljau triangle as new control points 
for left/right portion of the curve 

• Extrapolation
– Backwards subdivision

• Reconstruct full triangle from just one side



Catmull-Rom-Splines
• Goal 

– Smooth (C1)-joints between (cubic) spline segments
• Algorithm

– Tangent at 𝑃( given by vector from neighboring points 𝑃(*# to 𝑃(+#
– Can easily construct (cubic) Hermite spline between control points

• Advantage
– Arbitrary number of control points
– Interpolation without overshooting 
– Local control



Matrix Representation
• Catmull-Rom-Spline

– Piecewise polynomial curve 
– Four control points per segment
– For n control points we obtain (n-3) polynomial segments 

• Application
– Smooth interpolation of a given sequence of points
– Key frame animation, camera movement, etc. 
– Only G1-continuity
– Control points should be roughly equidistant in time 

𝑃!(𝑡) = 𝑇𝑀=>𝐺=> = 𝑇
1
2

−1 3 −3 1
2 −5 4 1
−1 0 1 0
0 2 0 0

𝑃!2

𝑃!<&2

𝑃!<,2

𝑃!<-2
__



Choice of Parameterization
• Problem

– Often only the control points are given 
– How to obtain a suitable parameterization ti ?

• Example: Chord-Length Parameterization 

– Arbitrary up to a constant factor
• Warning

– Distances are not affine invariant ! 
– Shape of curves changes under transformations !!   

𝑡# = 0

𝑡! =)
0"&

!

dist(𝑃! − 𝑃!%&)



Parameterization
• Chord-Length versus uniform Parameterization

– Analog: Think P(t) as a moving object with mass that may 
overshoot

Uniform

Chord-Length



Spline Surfaces



Parametric Surfaces
• Same Idea as with Curves

– P: R2 ® R3

– P(u,v) = (x(u,v), y(u,v), z(u,v))TÎ R3 (also P(R4))
• Different Approaches

– Triangular Splines
• Single polynomial in (u,v) via barycentric 

coordinates with respect to a 
reference triangle (e.g., B-Patches)

– Tensor Product Surfaces
• Separation into polynomials in u and in v

– Subdivision Surfaces
• Start with a triangular mesh in R3

• Subdivide mesh by inserting new vertices
– Depending on local neighborhood

• Only piecewise parameterization (in each triangle)



Tensor Product Surfaces
• Idea

– Create a “curve of curves"
• Simplest case: Bilinear Patch

– Two lines in space

– Connected by lines

– Bézier representation (symmetric in u and v)

– Control mesh given by Pij

𝑃(𝑢, 𝑣) = (1 − 𝑢)𝑃&(𝑣) + 𝑢𝑃,(𝑣) =
(1 − 𝑢)((1 − 𝑣)𝑃## + 𝑣𝑃&#) + 𝑢((1 − 𝑣)𝑃#& + 𝑣𝑃&&)

P00 P01

P10

P11

u
v

𝑃(𝑢, 𝑣) = )
!,0"#

&

𝐵!&(𝑢)𝐵0&(𝑣)𝑃!0

𝑃&(𝑣) = (1 − 𝑣)𝑃## + 𝑣𝑃&#
𝑃,(𝑣) = (1 − 𝑣)𝑃#& + 𝑣𝑃&&



Tensor Product Surfaces
• General Case

– Arbitrary basis functions in u and v
• Tensor Product of the function space in u and v

– Commonly same basis functions and same degree in u and v

• Interpretation
– Curve defined by curves

– Symmetric in u and v

𝑃(𝑢, 𝑣) =)
!"#

?

)
0"#

$

𝐵!?(𝑢)𝐵0$(𝑣)𝑃!0

𝑃(𝑢, 𝑣) =)
!"#

?

𝐵!´(𝑢))
0"#

$

𝐵0(𝑣)𝑃!0

@#
´(A)



Matrix Representation
• Similar to Curves

– Geometry now in a „tensor“ (m x n x 3)

– Degree
• u: m
• v: n
• Along the diagonal (u=v): m+n

– Not nice ® „Triangular Splines“

𝑃(𝑢, 𝑣) = 𝑈𝐺?B$B?𝑉2 = 𝑢? ⋯ 𝑢 1
𝐺$$ ⋯ 𝐺$#
⋮ ⋱ ⋮
𝐺#$ ⋯ 𝐺##

𝑣$
⋮
𝑣
1

=

𝑈𝐵C 𝐺CD𝐵D2𝑉2



Tensor Product Surfaces
• Properties Derived Directly From Curves
• Bézier Surface:

– Surface interpolates corner vertices of mesh
– Vertices at edges of mesh define boundary curves
– Convex hull property holds
– Simple computation of derivatives
– Direct neighbors of corners vertices define tangent plane

• Similar for Other Basis Functions



Tensor Product Surfaces
• Modifying a Bézier Surface



Tensor Product Surfaces
• Representing the Utah Teapot as a set continuous 

Bézier patches
– http://www.holmes3d.net/graphics/teapot/



Operations on Surfaces
• deCausteljau/deBoor Algorithm

– Once for u in each column
– Once for v in the resulting row
– Due to symmetry also in other order

• Similarly, we can derive the related algorithms
– Subdivision
– Extrapolation
– Display
– ...



Ray Tracing of Spline Surfaces
• Several approaches

– Tessellate into many triangles (using deCasteljau or deBoor)
• Often the fasted method
• May need enormous amounts of memory

– Recursive subdivision
• Simply subdivide patch recursively
• Delete parts that do not intersect ray (Pruning)
• Fixed depth ensures crack-free surface
• May cache intermediate results for next rays

– Bézier Clipping [Sederberg et al.]
• Find two orthogonal planes that intersect in the ray
• Project the surface control points into these planes
• Intersection must have distance zero

è Root finding
è Can eliminate parts of the surface 

where convex hull does not intersect ray
• Must deal with many special cases – rather slow



Bézier Clipping



Bézier Clipping



Higher Dimensions
• Volumes

– Spline: R3 ® R
• Volume density
• Rarely used

– Spline: R3 ® R3

• Modifications of points in 3D
• Displacement mapping
• Free Form Deformations (FFD)

FFD


