Computer Graphics
- Splines -

Philipp Slusallek




Curves

« Curve descriptions
— Explicit functions

« y(x)= % sqrt(r?- x2), restricted domain (x € [-1, 1])
— Implicit functions
* X2+ y2=7r2 unknown solution set

— Parametric functions
« X(t)=rcos(t), y(t)=rsin(t), t e [0, 2n]
* Flexibility and ease of use
« Typically, use of polynomials
— Avoids complicated functions (e.g., pow, exp, sin, sqrt)
— Typically, use of polynomials with low degree




Curves

« Curve descriptions
— Explicit functions

« y(x)= % sqrt(r?- x2), restricted domain (x € [-1, 1])
— Implicit functions
* X2+ y2=7r2 unknown solution set

— Parametric functions
« X(t)=rcos(t), y(t)=rsin(t), t e [0, 2n]
* Flexibility and ease of use
« Typically, use of polynomials
— Avoids complicated functions (e.g., pow, exp, sin, sqrt)
— Typically, use of polynomials with low degree




Parametric curves

« Separate function in each coordinate
— Parameterized over an additional variable t (think: time)
— Describes movement of a particle along the curve
— But we are mostly interested in the resulting curve itself

= In3D: f(6) = (x(0), ¥(¢), z(¢))

y(®) y()
A AP




Monomials

 Monomial basis
— Simple basis: 1, t, t2, ... (tusually in [0 .. 1])

* Polynomial representation
|—> Degree (= Order — 1)

P) = (x(t) y(&) z(t)) = Z tiA,— Coefficients eR?
i=0 Monomials
— Coefficients can be determined from a sufficient number of
constraints (e.g., interpolation of given points)

« Given (n+1) parameter values t; and points P;
« Solution of a linear system in the A, — possible, but inconvenient

« Matrix representation

P@®) =) y@) z@)=T(@)A
I Ax,n A'y,n Az,n

:[tn tn_l 1] Ax,n—l Ay,.n—l Az,n—l

Axo Ayo Az




Derivatives

* Derivative = tangent vector
— Polynomial of degree (n-1)

e Continuity and smoothness between two
parametric curves @

q qQaCu)
— CY =G0 = same point q,
— Parametric continuity C’ |

« Tangent vectors are identical - (a)
— Geometric continuity G’ o)

« Same direction of tangent vectors only - (b) 2
— Similar for higher order derivatives




More on Continuity

« At one point:

« Geometric Continuity:
— GO: curves are joined together at that point
— G1: first derivatives are proportional at joint point
« Same direction but not necessarily same length
— G2: first and second derivatives are proportional

« Parametric Continuity:
— CO: curves are joined
— C1: first derivative equal
— C2: first and second derivatives are equal.
 If tis the time, this implies the acceleration is continuous.
— Cn: all derivatives up to and including the nth are equal.




Linear Interpolation

 Hat Functions and Linear Splines (C0/G0 continuity)

y2 ° 1
\ Vs T(t)

v

1 2 3 4

-1 0 1

(0 t<—1

1+t —-1<t<0
1-t 0<t<1
0 t=>1

T(t) =+

\

v

1 2 3 4 Can easily be generalized for arbitrary

tor of parameters t; to be interpolated
P(t) = E P,T;(t) = y,T To(p) | Veeoro 2
(©) i) =y L) + Y3 T30 | g arbitrary control points y;, € R"




Lagrange Interpolation

 Interpolating basis functions
— Lagrange polynomials for a set of parameter values T={t, ..., t,}

n

t—t; L
Li (D) = 1_[ L with L’i‘(tj) =6 = {1 L=

L 1t — ¢ 0 otherwise
j=0

i#]

* Properties
— Good for interpolation at given parameter values
« At each t;; One basis function = 1, all others =0
— Polynomial of degree n (n factors linear in t)
« Infinitely continuous derivatives everywhere

« Lagrange Curves
— Use with control points to be interpolated as coefficients

P(t) = ) L}O)P:
=0




Lagrange Interpolation

« Simple Linear Interpolation

— T={to, t;} t—t,

Ly (6) = e —t,
t—t

IO —

+ Simple Quadratic Interpolation

— T={to, ty to}

t—t, t—t,

L3 (t) =
o) to —t; to — to

1




Problems

* Problems with a single polynomial
— Degree depends on the number of interpolation constraints
— Strong overshooting for high degree (n > 7)
— Problems with smooth joints
— Numerically unstable
— No local changes

Lg(u)‘




Splines

* Functions for interpolation & approximation
— Standard curve and surface primitives in 3D modeling & fonts
— Key frame and in-betweens in animations
— Filtering and reconstruction of images

* Historically
— Name for a tool in ship building
» Flexible metal strip that tries to stay straight
— Within computer graphics:
« Piecewise polynomial function (e.g., cubic)
« Decouples continuity, degree, and #control points

What Continuity ?

Segment 1 Segment 2 Segment 3 Segment 4




Hermite Interpolation

 Hermite Basis (cubic)

— Interpolation of position P and tangent P * information
for t= {0, 1}
— Very easy to piece together with G1/C1 continuity

v
f(t)
]\ A
0 1

— Basis functions

1

H3(t) = (1 —t)%(1 + 2t)
H3(t) = t(1 — t)?
H3(t) = —t?(1 —t)
H3(t) = (3 — 2t)t?




Hermite Interpolation

* Properties of Hermite Basis Functions
— Hy (H3) interpolates smoothly from 1to 0 (0 to 1)
— Hy and H; have zero derivative att = 0andt =1
* No contribution to derivative (only via H; and H,)
— Hiand H,arezeroatt =0andt =1
* No contribution to position (only via H, and H;)
— H; (Hy;) hasslopelatt= 0(t=1)
 Unit factor for specified derivative vector

 Hermite polynomials
— P,, P; are positions € R3
— P,, P, are derivatives (tangent vectors) € R3

P(t) = PyH3 (t) + PoH3(t) + Py H; (t) + PLH3(t)

1

(t)
A




Examples: Hermite

Interpolation

y()
4 Tangent vector

direction R, at point
P,; magnitude varies
for each curve

Tangent vector
direction R, at point
P,; magnitude fixed

F': for each curve
y(t)
A
S/
Y
p, /

» X(f)

N

P, P,

G1 continuity

> X(t)




Matrix Representation

« Matrix representation

P@) =[t3 ¢

-Mll
M21

Ax,n A’y,n

1] Ax,n—l Ay,.n—l

L Axo Ay
MlZ M13

M

BasisFunctions




Matrix Representation

* For cubic Hermite interpolation we obtain:

PF=(0 0 0 1)MyGy Py 0

PF=(1 1 1 1)MyGy Pl o1

PT=(0 0 1 0)MyGy or p, | "o

PT =3B 2 1 0)MyGy P, 3
* Solution:

— Two matrices must multiply to unit matrix

00 0 1\ ' 2 -2 1 1
vo—|1 1 11} _[-3 3 -2 -1
H=10 0 1 0 0O 0 1 0

32 10 1 0 0 0

NN O kO

N = W

MyGy

O O R -




Bézier

- Beézier Basis [deCasteljau " 59, Bézier " 62]

Different curve representation
Start and end point

2 point that are approximated
by the curve (cubics)

P, = 3(b; — by) and P; = 3(b3 — by)
* Factor 3 due to derivative of {3

_POT_

PlT
P'OT

| P r ]

S W o o

o o O

w o = o

o b,

qlu?

q'(s)

_bg)"_

by
by

11b] ]

g

= MypGp




Basis Transformation

« Transformation
— P(t) = TMyGy = TMy(MypGg) = T(MyMpyp)Gg = TMpGp
—1 3 =3 1]

f(t)

3 -6 3 0

Mg = MyMyg = _3 3 0 0 4
1 0 0 o (1)

P(t) = ) Bi(t)b; =

(1_t)3b0 + 3t(1_t)2 bl + 3t2(1_t)b2 + t3b3

« Bézier Curves & Basis Functions

P(t) = ) BI(Ob,

Bernstein-
Polynomials

with basis functions B}*(t) = (Tll) ti(1 —e)n !




Properties: Bezier Curves

« Advantages:

End point interpolation
Tangents explicitly specified
Smooth joints are simple

* P;, P, Ps collinear - G’ continuous
Geometric meaning of control points
Affine invariance

— Vt: );B;i(t) =1
Convex hull property

« ForO<t<1:B;(t) =0
Symmetry: B;(t) = B,,_;(1 — t)

 Disadvantages
— Smooth joints need to be maintained explicitly

« Automatic in B-Splines (and NURBS)

(2

1 ba

% / ',,,./




DeCasteljau Algorithm

 Direct evaluation of the basis functions
— Simple but expensive

« Use recursion
— Recursive definition of the basis functions

BI'(t) =B (t) + (1 — )B(¢)
— Inserting this once yields

P(t) = z OB (t) = Z bL(6)BI1(t)

— with the new Bézier points also given by a recursion:

BE(H) =t (t) + (1 — ObET (1) and bY(e) = b,




DeCasteljau Algorithm

« DeCasteljau-Algorithm:

— Recursive degree reduction of the Bezier curve by using the
recursion formula for the Bernstein polynomials

n n-1

P() = ) BYBI() = ) BEOBITI(®) = - = b(D) -1
=0 =0

bE(6) = () + (1 - OB L)

 Example:
— t=0.5




DeCasteljau Algorithm

« Subdivision using the deCasteljau-Algorithm

— Take boundaries of the deCasteljau triangle as new control points
for left/right portion of the curve

« Extrapolation
— Backwards subdivision

« Reconstruct full triangle from just one side




Catmull-Rom-Splines

+ Goal
— Smooth (C')-joints between (cubic) spline segments

« Algorithm
— Tangent at P; given by vector from neighboring points P;_; to P;,4
— Can easily construct (cubic) Hermite spline between control points

 Advantage
— Arbitrary number of control points
— Interpolation without overshooting
— Local control




Matrix Representation

« Catmull-Rom-Spline
— Piecewise polynomial curve
— Four control points per segment
— For n control points we obtain (n-3) polynomial segments

_P_T-
-1 3 =3 1] JT
: 1{2 -5 4 1||B+
i — —T=
B(t) TMCRGCR Tz _1 0 1 _0 Bg_}_z
| 0 2 0 0. pr
[ Ti+3

* Application
— Smooth interpolation of a given sequence of points
— Key frame animation, camera movement, etc.
— Only G'-continuity
— Control points should be roughly equidistant in time




Choice of Parameterization

* Problem
— Often only the control points are given
— How to obtain a suitable parameterization t; ?

« Example: Chord-Length Parameterization
to =0

l
£ = z dist(P; — P,_,)
=1

— Arbitrary up to a constant factor

 Warning
— Distances are not affine invariant !
— Shape of curves changes under transformations !!




Parameterization

 Chord-Length versus uniform Parameterization
— Analog: Think P(t) as a moving object with mass that may

overshoot
/
77 / ,
// / Uniform
/ L//
/
{
- R
-~
ol Chord-Length
(\ /
= \
\\\ \
\\ \
\S 7




Spline Surfaces




Parametric Surfaces

« Same Idea as with Curves

~- P:R25 R3

— P(u,v) = (x(u,v), y(u,v), z(u,v))Te R3 (also P(R#))
* Different Approaches

— Triangular Splines

 Single polynomial in (u,v) via barycentric
coordinates with respect to a

reference triangle (e.g., B-Patches)

— Tensor Product Surfaces
« Separation into polynomials in u and in v

— Subdivision Surfaces
« Start with a triangular mesh in R3

« Subdivide mesh by inserting new vertices
— Depending on local neighborhood
* Only piecewise parameterization (in each triangle)




Tensor Product Surfaces

 |ldea
— Create a “curve of curves"

Pog u P01
- Simplest case: Bilinear Patch v /,_/' 9

— Two lines in space A

P>(v) = (1 —v)Pyo + vPy;

P?(v) = (1 = v)Pyy + vPy;

P10
— Connected by lines
P(u,v) = (1 —w)P*(v) + uP?(v) =
(1 —w)((1 —v)Pyo + vPyo) + u((1 —v)Pyy + vPyy) P11

— Bézier representation (symmetric in u and v)

1
P(u,v) = 2 B; (W)B; (v)P;

i,j=0

— Control mesh given by P;




Tensor Product Surfaces

* General Case
— Arbitrary basis functions in u and v
« Tensor Product of the function space in u and v
— Commonly same basis functions and same degree in u and v

P =Y S B e,

i=0 j=0

* Interpretation
— Curve defined by curves

P(w,v) = ) Bi(w) ) Bi(v)Py
i—0 =0

A

— Symmetric in u and v




Matrix Representation

« Similar to Curves
— Geometry now in a ,tensor® (m x n x 3)

(nn

P(u,v) = UGmonomVT =@M - u 1)< E
Gon

UBy GyyBLVT

— Degree
* u: m
° V. n
 Along the diagonal (u=v): m+n

— Not nice — ,Triangular Splines”




Tensor Product Surfaces

* Properties Derived Directly From Curves

« Beézier Surface:
— Surface interpolates corner vertices of mesh
— Vertices at edges of mesh define boundary curves
— Convex hull property holds
— Simple computation of derivatives
— Direct neighbors of corners vertices define tangent plane

 Similar for Other Basis Functions




Tensor Product Surfaces

* Modifying a Bézier Surface




Tensor Product Surfaces

* Representing the Utah Teapot as a set continuous

Bézier patches
— http://www.holmes3d.net/graphics/teapot/




Operations on Surfaces

« deCausteljau/deBoor Algorithm
— Once for u in each column
— Once for v in the resulting row
— Due to symmetry also in other order

« Similarly, we can derive the related algorithms
— Subdivision
— Extrapolation
— Display




Ray Tracing of Spline Surfaces

« Several approaches

— Tessellate into many triangles (using deCasteljau or deBoor)
« Often the fasted method
« May need enormous amounts of memory

— Recursive subdivision
« Simply subdivide patch recursively
« Delete parts that do not intersect ray (Pruning)
« Fixed depth ensures crack-free surface
« May cache intermediate results for next rays

— Bézier Clipping [Sederberg et al.]
« Find two orthogonal planes that intersect in the ray
 Project the surface control points into these planes
* Intersection must have distance zero

=>» Root finding

= Can eliminate parts of the surface
where convex hull does not intersect ray

 Must deal with many special cases — rather slow




/

Bezier Clipping

Y

0,2

L;:

Lo [\

8}

(d)

(€)

()







Higher Dimensions

* Volumes

— Spline: R®—> R
* Volume density
« Rarely used

— Spline: R® - R3
* Modifications of points in 3D
« Displacement mapping
* Free Form Deformations (FFD)

FFD




