Computer Graphics

HDR Imaging

Philipp Slusallek

Overview

- HDR Acquisition
- Tone-Mapping

High Dynamic Range Imaging

Contrast Handling

- Input: HDR intensities in real-world scenes (e.g., from rendering)
- Output: Typically, LDR devices

Acquisition of HDR input

- HDR cameras
 - Still rather exotic
- LDR cameras
 - Requires multiple exposures to fully cover the high dynamic range
 - Now often integrated (e.g., into smartphones)

Display

- HDR displays
 - Modern displays are now getting more and more HDR capable
 - Sometime >1000 individual LED in backlight or micro-LED display
- Display on LDR monitors
 - *Tone mapping* to perceptively compress HDR to LDR

Part I HDR Acquisition

Acquisition of HDR from LDR

• Limited dynamic range of cameras is a problem

- Shadows are underexposed
- Bright areas are overexposed
- Sensor's temporal sampling density is not sufficient \rightarrow saturation

Good sign

 Some modern CMOS imagers have a higher (and often sufficient) dynamic range than most traditional CCD sensors

Basic idea of multi-exposure techniques

- Combine multiple images with different exposure settings
- Makes use of available sequential dynamic range
- Other techniques available
 - E.g., HDR video

Exposure Bracketing

Acquiring HDR from LDR input devices

- Take multiple photographs with different times of exposure

Issues

- How many exposure levels?
- How much difference between exposures?
- How to combine them?

Application

Capture HDR env. maps from series of input images

HDR in Real World Images

In photography

- F-number = focal length / aperture diameter
- 1 f-stop incr.: f-# * $\sqrt{2}$ \rightarrow aperture area / 2

Natural scenes

- 37 stops (~10 orders of magnitude)
- 18 stops (2¹⁸ = ~262 000) at given time of day

Humans

- After adaptation: 30 stops (~9 orders of magnitude)
- Simultaneously: 17 stops (~4 orders of magnitude)

Analog cameras

- 10-16 stops (~3 orders of magnitude)
- Fish-eye pix of sky with diff. exposures show saturation (e.g., sun)

Doubling the f-number decreases the aperture area by a factor of four (i.e., need to quadruple exposure time to preserve same brightness)

Dynamic Range of Cameras

• E.g. photographic camera with standard CCD sensor

1:1,000

1:10

1:100 (appro.)

1:100,000,000

- Dynamic range of sensor
- Exposure time (handheld cam.): 1/60s 1/6,000s 1:100
- Varying aperture: f/2.0 f/22.0
- Electronic: exposure bias / varying "sensitivity"
- Total (sequential) dynamic range

But simultaneous dynamic range still only 1:1,000

- Aperture: varying depth of field
- Exposure time: only works for static scenes
- Similar situation for analog cameras
 - Chemical development of film instead of electronic processing
 - \rightarrow Allows for varying sensitivity

Multi-Exposure Techniques

Analog film

- Several emulsions of different sensitivity levels [Wyckoff 1960s]
 - Dynamic range of about 10⁸

Digital domain

- Similar approaches for digital photography
- Commonly used method [Debevec et al. 97]
 - Select a small number of pixels from all images
 - Perform optimization of response curve with smoothness constraint
- Newer method by [Robertson et al. 99]
 - Optimization over all pixels in all images

General idea of HDR imaging

- Combine multiple images with different exposure times
 - Pick for each pixel a well-exposed image
 - Response curve needs to be known to calibrate values betw. images
 - Change only exposure time, not aperture due to diff. depth-of-field !!

Multi-Exposure Techniques

Principle of the approach

- Calculate an HDR image using the given response curve
- Optimize response curve to better match resulting HDR image
- Iterate till convergence: approx non-linear process w/ linear steps

• Input

- Series of images *i* with exposure times t_i and pixels *j*
- Response curve f applied to incident energy yields pixel values y_{ij}

$$y_{ij} = f\left(I_{y_{ij}}\right) = f\left(t_i x_j\right)$$

Task

- Recover response curve: $f^{-1}(y_{ij}) = I_{y_{ij}}$
- Determine irradiance x_j at pixel *j* from energies $I_{y_{ij}}$:

$$x_j = I_{y_{ij}} / t_i$$

 Calculate estimates of HDR input values x_j from images via maximum-likelihood approach

$$x_{j} = \frac{\sum_{i} w_{ij} t_{i}^{2} x_{ij}}{\sum_{i} w_{ij} t_{i}^{2}} = \frac{\sum_{i} w_{ij} t_{i} I_{y_{ij}}}{\sum_{i} w_{ij} t_{i}^{2}}$$

- Use a bell-shaped weighting function w_{ij} = w(y_{ij})
 - Do not trust as much pixel values at extremes
 - Under-exposed: high relative error prone to noise
 - Over-exposed: saturated value
- Use an initial camera response curve
 - Simple assumption: linear response

- Optimizing the response curve *I*(*y*_{ii})
 - Minimization of objective function O (sum of weighted errors)

$$0 = \sum_{i,j} w_{ij} \left(I_{y_{ij}} - t_i x_j \right)^2$$

Using standard Gauss-Seidel relaxation yields

$$I_m = \frac{1}{Card(E_m)} \sum_{i,j \in E_m} t_i x_j$$
$$E_m = \{(i,j): y_{ij} = m\}$$

- Normalization of *I* so that $I_{128} = 1$

- Both steps ...
 - Calculation of an HDR image using I
 - Optimization of I using the HDR image

... are now iterated until convergence

- Criterion: decrease of O below some threshold
 - Usually about 5 iterations are enough

Logarithmic plot of the response curve[®]

 $y_{ij} = f(\exp(v_{ij}))$

Typical S shape of inverse function

Choice of Weighting Function

• w(y_{ii}) for response [Robertson et al. 99]

$$w_{ij} = \exp\left(-4\frac{\left(y_{ij} - 127.5\right)^2}{127.5^2}\right)$$

- Gaussian-like bell-shaped function
- For 8-bit images, centered around $(2^8 1) / 2 = 127.5$
- Possible width correction at both ends: over/under-exposure
- Motivated by general noise model: downweight high relative error

w(y_{ij}) for HDR reconstruction [Robertson et al. 03]

- Introduce certainty function *c* as derivative of response curve with logarithmic exposure axis: S-shape response→bell-shaped curve
- Approxim. response curve with cubic spline to compute derivative

$$w_{ij} = w(y_{ij}) = c(I_{y_{ij}})$$

Weighting Function

Consider response curve gradient

- Higher weight where response curve maps to large extent

- Difference between exposures levels
 - Ideally such that respective trusted regions (central part of weighting function) are roughly adjacent

HDR Generation

What difference to pick between exposures levels?

- Most often a difference of 2 stops (factor of 4) between exposures is sufficient
- See [Grossberg & Nayar 2003] for more details
- How many input images are necessary to get good results?
 - Depends on dynamic range of scene illumination and on quality requirements
 - Often 3 images are fine (normal + lower & higher exposure)

Algorithm of Robertson et al.

Discussion

- Method is very easy
- Doesn't make assumptions about response curve shape
- Converges quickly
- Takes all available input data into account
 - As opposed to [Debevec et al. 97]
- Can be extended to > 8-bit color depth
 - 16 bits should be followed by smoothing
 - Quantization to 8 bits eliminates large amount of noise
 - Higher precision with 16 bits more likely to still contain notable noise

Part II

Tone Mapping

Terms and Definitions

Dynamic range

- Factor between the highest and the smallest representable value
- 2 strategies to increase dynamic range:
 - Make white brighter, or make black darker (more practical)
 - Reason for trend towards reflective rather than diffuse displays

Contrast

- Simple contrast: $C_{S} = \frac{L_{max}}{L_{min}}$ - Weber fraction: $C_{W} = \frac{\Delta L}{L_{min}}$ with $\Delta L = L_{max} - L_{min}$ - Michelson contrast: $C_{M} = \frac{|L_{max} - L_{min}|}{L_{max} + L_{min}}$ - Logarithmic ratio: $C_{L} = \log_{10} \left(\frac{L_{max}}{L_{min}}\right)$ - Signal to noise ratio (SNR): $C_{SNR} = 20 \cdot \log_{10} \left(\frac{L_{max}}{L_{min}}\right)$

Contrast Measurement

Contrast detection threshold

- Smallest detectable intensity difference in a uniform field of view
- E.g., Weber-Fechner perceptual experiments

Contrast discrimination threshold

- Smallest visible difference between two similar signals
- Works in supra-detection-threshold domain (i.e., signals above it)
- Often sinusoidal or square-wave pattern Contrast Discrimination

Why Tone Mapping?

Mapping HDR radiance values to LDR pixel values?

- Luminance range for human visual perception
 - Min 10⁻⁵ cd/m²: shadows under starlight
 - Max 10⁵ cd/m² : snow in direct sunlight
- Luminance of typical desktop displays
 - Typically, up to ~500 cd/m² : about 2-3 orders of magnitude

Goal

- Compress the dynamic range of an input image to fit output range
- Reproduce HVS to closely match perception of the real scene
 - Brightness and contrast
 - Adaptation of the eye to environment
 - Bright/dark input: glare, color perception, loss of visual acuity, ...

General Principle

Original approach [Tumblin/Rushmeier]

- Create model of the observer
- Requirement: observer looking at displayed virtual image should perceive the same brightness as when staring at the real scene
- Compute tone-mapping as concatenation/inversion of operators
- Model usually operates only on luminance (not on color)

Other models aim for visually pleasing images

Heuristic Approaches

- Linearly scale brightest value to 1 (in gray value)
 - Problem: light sources are often several orders of magnitude brighter than the rest \rightarrow the rest will be black

Linearly scale brightest non-light-source value

- Capping light source values to 1
- Scale the rest to a value slightly below 1
- Problem: bright reflections of light sources
- General problem of simple linear scaling
 - Absolute brightness gets lost
 - Scaling of light source intensity gets factored out \rightarrow has no effect

Much better: linear scaling in the logarithmic domain

- Linear scaling of perceived brightness instead of input luminance
- Much closer to human perception
- Typically using log₁₀

Maintaining Contrast

Contrast-based linear scaling factor [Ward 94]

- Make just visible differences in real world just visible on display
 - Preserve the visibility in the scene based on Weber's contrast
- Just noticeable contrast differences according to Blackwell [CIE 81] (subjective measurements)

 $\Delta L(L_a) = 0.0594(1.219 + L_a^{0.4})^{2.5}$

• $L_d = m L_w$

Maintaining Contrast

Approach using "just noticeable difference" (JND)

- Find m such that JND $\Delta L(L_{wa})$ at world adaptation luminance L_{wa} and JND $\Delta L(L_{da})$ at display adaptation luminance L_{da} verify

$$\Delta L(L_{da}) = m(L_{Wa}) \Delta L(L_{Wa})$$

- Substitution results in

$$m(L_{wa}) = \left[\frac{1.219 + L_{da}^{0.4}}{1.219 + L_{Wa}^{0.4}}\right]^{2.5}$$

- Compute L_{da} from maximum display luminance: $L_{da} = L_{dmax} / 2$
- Normalize scaling factor sf in [0, 1]

$$sf = \frac{1}{L_{amax}} \left[\frac{1.219 + (L_{amax}/2)^{0.4}}{1.219 + L_{Wa}^{0.4}} \right]^{2.5}$$

Maintaining Contrast

Deriving the real-world adaptation L_{wa}

- Depends on light distribution in field of view of observer
- Simple approximation using a single value
 - Eyes try to adjust to average incoming brightness
 - Brightness *B* based on input luminances:
 - $B = k L_{in}^{a}$: Power-law [Stevens 61]
 - Comfortable brightness based on average of input luminances:

 $- \log_{10}(L_{wa}) = \mathsf{E}\{\log_{10}(L_{in})\} + 0.84 \Longrightarrow L_{wa} = 10^{(\sum_{n} \log_{10}(L_{in}) / n))$

Problems of this approach

- Single factor for entire image
 - Does not handle different adaptation for different locations in image
 - We do not perceive absolute differences in luminance: neighborhood
- Brightness adaptation mainly acts on 1° field of view of fovea rather than periphery \rightarrow would require eye tracking
- Adaptation to average results in clamping for too bright regions

Histogram Adjustment

• Optimal mapping of the dynamic range [Ward 97]

- Compute an adjustment image
 - Assume known viewpoint with respect to the scene
 - Blur input image with distance-dependent kernel
 - Filter (average) non-overlapping regions covering 1° field of view, i.e., foveal solid angle of adaptation
 - Reference uses simple box filter
 - Reduce resolution
- Compute the histogram of the image
 - Bin the luminance values
- Adjust the histogram based on restrictions of HVS
 - Limit contrast enhancement

⇒ Distributes contrast in the image in a visually meaningful way, but does not try to model human vision per se as outlined by [Tumblin/Rushmeier]

Histogram Adjustment

Definitions

- $B_w = \log(L_w)$: compute world brightness from world luminance
- $-b_i$: create *N* bins *i* corresponding to ranges of B_w
- $f(b_i)$: number of B_w samples in bin b_i : \propto PDF
- $P(b)=\Sigma f(b_i)/T$: normalized sum of $f(b_i)$ for $b_i < b$: CDF (\int of PDF)
- T : sum over all $f(b_i)$, i.e., total number of samples

$$T = \sum f(b_i)$$

$$\Delta b = \frac{\log(L_{wmax}) - \log(L_{wmin})}{N}$$

- Bin step size Δb (in log(cd/m²)) defined by min/max world luminance for the scene and number of histogram bins N
- Therefore, the PDF is

 $\mathrm{d} P(b) / \mathrm{d} b = f(b_i) / (T \Delta b)$

Naïve Histogram Equalization

 Compute display brightness B_d = log(L_d) using min and max display luminance L_{dmin} and L_{dmax}

Histogram Adjustment

Histogram Adjustment

Linear mapping (scaling) vs. histogram adjustment

Histogram Adj. w/ Linear Ceiling

- Problem
 - Too exaggerated contrast in large highly-populated regions of the dynamic range: enhances features more than the HVS would
- Idea
 - Contrast-limited histogram equalization using a linear ceiling (linear scaling works well for low contrast images)

$$\frac{dL_d}{L_d} \le \frac{dL_w}{L_w} \Rightarrow \frac{dL_d}{dL_w} \le \frac{L_d}{L_w}$$

- Differentiate $L_d = \exp(B_d)$ with respect to L_w using the chain rule

$$\frac{dL_d}{dL_w} = \exp(B_d) \frac{f(B_w)}{T\Delta b} \frac{\log(L_{d max}) - \log(L_{d min})}{L_w} \le \frac{L_d}{L_w}$$

Result

- Limiting the sample count per bin in the histogram
- \Leftrightarrow limit the magnitude of the PDF, i.e., the slope of the CDF

$$f(B_w) \le \frac{T\Delta b}{\log(L_{dmax}) - \log(L_{dmin})}$$

Histogram Adj. w/ Linear Ceiling

- Implementing the contrast limitation
 - Truncate too large bins w/ redistribution to neighbors (repeatedly)
 - Ditto without redistribution (gives better results)
 - Use modified $f(B_w)$ in histogram equalization vs. naïve approach

Histogram Adj. w/ Linear Ceiling

Linear mapping (simple scaling)

Naïve histogram equalization

Histogram adjustment with linear ceiling on contrast

HA based on Hum. Contr. Sensi.

Adjustment for JND

- Limiting the contrast to the ratio of JNDs (global scale factor)

$$\frac{dL_d}{dL_w} \le \frac{\Delta L_t(L_d)}{\Delta L_t(L_w)}$$

- That results in

$$f(B_w) \le \frac{\Delta L_t(L_d)}{\Delta L_t(L_w)} \frac{L_w}{L_d} \frac{T\Delta b}{\left[\log(L_{dmax}) - \log(L_{dmin})\right]}$$

- Implementation is similar as for previous histogram equalization

HA based on Hum. Contr. Sensi.

HA based on Hum. Contr. Sensi.

Reduction of contrast sensitivity in dark scenes

Comparison

[Tumblin/Rushmeier]

- Sound methodology from a theoretical standpoint
- Maybe not optimal models of HVS used in practical experiments

Maximum linear scaling tone mapping

[Tumblin/Rushmeier] tone mapping Contrast-based lin. scal. [Ward 94] tone mapping Histogram adjustment [Ward 97] tone mapping

Comparison

[Tumblin/Rushmeier] tone mapping Contrast-based linear scaling [Ward 94] tone mapping Histogram adjustment [Ward 97] tone mapping

Local Tone Mapping

- Usual contrast enhancement techniques
 - Global tone-map. operator: apply same operation on entire image
 - Either enhance everything or require manual intervention
 - Change image appearance
- Tone map. often gives numerically optimal solution
 - No dynamic range left for enhancement

Local operators

− HVS adapts locally \Rightarrow apply \neq tone-mapping operators in \neq areas

Idea: Enhance Local Contrast

Enhanced tone-mapped image

Adaptive Counter-Shading

Create apparent contrast based on Cornsweet illusion

Introduce sharp visible edges between similar-brightness regions

Countershading

- Gradual darkening / brightening towards a contrasting edge
- Restore contrast of small features with economic use of dyn. range

Construction of Simple Profile

- Profile from low-pass filtered reference
- Size and amplitude adjusted manually
- This is unsharp masking

Where to Insert the Profiles?

Measure lost contrast at several feature scales

Adaptive Counter-Shading

Objectionable visibility of counter-shading profiles

Progress of restoration

Final contrast restoration

Subtle Correction of Details

Reference HDR image (clipped)

Tone mapping

Counter-shading of tone mapping

Counter-shading profiles

Improved Separation

