
Philipp Slusallek

Computer Graphics

Texture Filtering



Sensors
• Measurement of signal

– Conversion of a continuous signal to discrete samples by 
integrating over the sensor field

• Weighted with some sensor sensitivity function P

– Similar to physical processes
• Different sensitivity of sensor to photons

• Examples
– Photo receptors in the retina
– CCD or CMOS pixels in a digital camera

• Virtual cameras in computer graphics
– Analytic integration is expensive or even impossible

• Needs to sample and integrate numerically
– Ray tracing: mathematically ideal point samples

• Origin of aliasing artifacts !
2

R(i,j) = ∫!!" E x, y P"#(x, y)𝑑𝑥𝑑𝑦



The Digital Dilemma
• Nature: continuous signal (2D/3D/4D)

– Defined at every point

• Acquisition: sampling
– Rays, pixels/texels, spectral values, frames, ... (aliasing !)

• Representation: discrete data
– Discrete points, discretized values

• Reconstruction: filtering
– Recreate continuous signal (ideally also taking next step in account)

• Display and perception (on some mostly unknown device!)
– Hopefully similar to the original signal, no artifacts

3

not

Pixels are usually point sampled
(possibly multi-/super-sampled)



Aliasing Example
• Ray tracing

– Textured plane with one ray for each pixel (say, at pixel center)
• No texture filtering: equivalent to modeling with b/w tiles

– Checkerboard period eventually becomes smaller than two pixels
• At the Nyquist sampling limit

– Rays sample textured plane at only one point per pixel
• Can be either black or white – essentially “by chance”
• Can have correlations at certain locations (low vs. high frequencies)

4Not filtered Filtered



Filtering
• Magnification (Zoom-in, texel > pixel)

– Maps few texels onto many pixels
– Reconstruction filter:

• Nearest neighbor interpolation:
– Take the nearest texel

• Bilinear interpolation:
– Interpolation between 4 nearest texels
– Need fractional accuracy of coordinates

• Possibly also higher order interpolation

• Minification (Zoom-out, pixel > texel)
– Maps many texels to one pixel

• Aliasing: Reconstructing high-frequency 
signals with low-frequency sampling

– Anti-aliasing (low-pass filtering)
• Averaging over (many) texels associated 

with the given pixel
• Can be computationally expensive!

5

Texture

Pixel

Texture

Pixel



Aliasing Artifacts
• Aliasing

– When texture insufficiently sampled
– Incorrect pixel values
– “Randomly” changing pixels 

when moving
• Integration of “Pre-Image”

– Integration over pixel footprint 
in texture space

6



Pixel Pre-Image in Texture Space
• Circular pixel footprints have elliptic pre-images on 

planar surfaces due to projection
• Square screen pixels form quadrilaterals

– On planar surfaces
– On curved surfaces, shape can be arbitrary (non-connected, etc…)

• Possible approximation by rectangle or quadrilateral
– Or taking multiple samples within a pixel (see later)

7



Space-Variant Filtering
• Space-variant filtering

– Mapping from texture space (u,v) to screen space (x,y) not affine
• E.g., due to projection (see later, in context of rasterization)

– Filtering changes with position
• Space-variant filtering methods

– Direct convolution
• Numerically compute the integral, e.g., with many samples
• Potentially really costly

– Pre-filtering
• Pre-compute the integral for predefined regions of the texture

– Lookup of integral much more efficiently at runtime
• Must approximate actual pixel footprint with pre-computed regions

8



Direct Convolution
• Convolution in texture space

– Texels weighted according to distance from pixel center
• E.g. pyramidal filter kernel, truncated sinc, etc.
• Essentially a low-pass filter

• Convolution in image space
– Center the filter function on the pixel (in image space) and find its 

bounding rectangle
– Transform the rectangle to the space, where it is a quadrilateral, 

whose sides are assumed to be straight
• More efficient: Find a suitable axis-aligned bounding box/rectangle

– Map all texels inside this texture region to screen space
– Form a weighted average of the mapped texels

• E.g. using a two-dimensional lookup table indexed by each texel’s
location within the pixel

9



EWA Filtering
• EWA: Elliptical Weighted Average

– Compensate aliasing artifacts caused by perspective projection
– EWA Filter = low-pass filter Ä warped reconstruction filter
– Gaussian filtered with Gaussian is still a Gaussian

• Can use rasterization HW for fast rendering
– Draw rectangle with suitable texture coord. that projects to pixel 

10

Rasterization 
of distorted 
rectangle

projecting to 
circle on pixel 

with 
supersampling

Low-Pass
Filter

EWA texture resampling filter

Projection

Convolution

Texture Space

Pixel

Projection

(𝑢!, 𝑣!)

(𝑢", 𝑣")

(𝑢#, 𝑣#)

(𝑢$, 𝑣$)



EWA Filtering

Without EWA filtering

With EWA filtering

11



Footprint Assembly
• Footprint assembly: Approximation of pixel integral

– Good for space variant filtering
• E.g. inclined view of terrain

– Approximation of the pixel area
by rectangular texel-regions

– More footprints à better accuracy
• In practice

– Often fixed number of area samples
– Done by sampling multiple locations

within a pixel (e.g., 2x2), each with
smaller footprint

èAnisotropic (Texture) Filtering (AF)
• GPUs allow selection of max #samples (e.g., 4x, 8x, etc.)

– Selected depending on amount of anisotropy
• Each sample has its own footprint area/extent
• Each gets independently projected and filtered

12



Pre-Filtering
• Direct convolution methods are slow

– A pixel pre-image can be arbitrarily large
• Along silhouettes
• At the horizon of a textured plane

– Can require averaging over thousands of texels
– Texture filtering cost grows in proportion to projected texture area

• Speed-up
– The texture can be prefiltered before rendering

• Only a few samples are accessed for each screen space sample
– Two data structures are commonly used for prefiltering:

• Integrated arrays (summed area tables - SAT)
• Image pyramids (MIP-maps)

13



Summed Area Tables (SAT)
• Per texel, store sum over area from (0, 0) to (u, v)

• Evaluation of 2D integrals over AA-boxes in constant time!

• Needs many bits per texel (sum over million of pixels!)

14

A

,
𝐵𝑥

𝐴𝑥
,
𝐶𝑦

𝐴y
I(x, y)𝑑𝑥𝑑𝑦 = A − B − C + D

B

C
D

D

A

C
D

B



MIP-Mapping
• Texture available in multiple resolutions

– Pre-processing step that filters textures in each step
– Discrete number of texture sizes (powers of 2)

• Rendering
– Select appropriate texture resolution level n (per sample !!!)

• s.t.: texel size(n) < 
extent of sample footprint 

< texel size(n+1)
– Needs derivative of texture coordinates
– Can be computed from differences 

between pixels (divided differences)
• à Rendering of Quads (2x2 pixels)

15



MIP-Mapping (2)
• Multum In Parvo (MIP): “much in little”
• Hierarchical resolution pyramid

– Repeated filtering over texture by 2x
• Rectangular arrangement (RGB)
• Reconstruction

– Tri-linear interpolation of 8 nearest texels
• Bilinear interpolation in levels n and n+1
• Linear interpolation between the two levels

– “Brilinear”: Trilinear only near transitions
• Avoid reading 8 texels, most of the time

16

u

v

u
v
d d

Reducing the domain for linear 
interpolation improves performance



MIP-Map Example

17



Hardware Texture Filtering
• Bilinear filtering (in std. textured tunnel benchmark)

– Clearly visible transition between MIP-map levels

18www.extremetech.com



Hardware Texture Filtering
• Trilinear filtering

– Hides the transitions between MIP-map levels

19www.extremetech.com



Hardware Texture Filtering
• Anisotropic filtering (8x)

– Makes the textures much sharper along azimuthal coordinate

20www.extremetech.com



Hardware Texture Filtering
• Bilinear vs. Brilinear vs. anisotropic filtering

– Using colored MIP-map levels

21www.extremetech.com

Actually
brilinear

Isotropic

Anisotropic



Texture Caching in Hardware
• All GPUs have small texture caches

– Designed for local effects (streaming cache)
• No effects between meshes, frames, or such!

• Mipmapping ensures ~1:1 ratio
– Between pixel and texels
– Both horizontally & vertically

• Pixels rendered in small 2D groups
– Basic block is 2x2 „quad“

• Used to compute „derivatives“
• Using divided differences (left/right, up/down)

– Lots of local coherence
• Bi-/tri-linear filtering needs adjacent

texels (up to 8 for trilinear)
– Most often just 1-2 new texels per pixel 

that are not in (local) cache

22

Texture

Pixel

Texture

Pixel

No problem

Big problem

MipMap-Level


