Computer Graphics

Texture Filtering

Philipp Slusallek

Sensors

 Measurement of signal

— Conversion of a continuous signal to discrete samples by
integrating over the sensor field

» Weighted with some sensor sensitivity function P
R(la.]) - fAij E(X' Y) Pij (Xr Y) dxdy

— Similar to physical processes
 Different sensitivity of sensor to photons

« Examples
— Photo receptors in the retina
— CCD or CMOS pixels in a digital camera

« Virtual cameras in computer graphics
— Analytic integration is expensive or even impossible
* Needs to sample and integrate numerically
— Ray tracing: mathematically ideal point samples
« Origin of aliasing artifacts !

The Digital Dilemma

« Nature: continuous signal (2D/3D/4D)

— Defined at every point

|

Acquisition: sampling
— Rays, pixels/texels, spectral values, frames, ... (aliasing !)

.

Representation: discrete data o0 ot
— Discrete points, discretized values coos

Pixels are usually point sampled
(possibly multi-/super-sampled)

.

Reconstruction: filtering
— Recreate continuous signal (ideally also taking next step in account)

.

Display and perception (on some mostly unknown device!)
— Hopefully similar to the original signal, no artifacts

Aliasing Example

* Ray tracing

— Textured plane with one ray for each pixel (say, at pixel center)
» No texture filtering: equivalent to modeling with b/w tiles

— Checkerboard period eventually becomes smaller than two pixels
» At the Nyquist sampling limit

— Rays sample textured plane at only one point per pixel
« Can be either black or white — essentially “by chance”
« Can have correlations at certain locations (low vs. high frequencies)

Not filtered

Filtering

« Magnification (Zoom-in, texel > pixel)

— Maps few texels onto many pixels

— Reconstruction filter: oFlixel

* Nearest neighbor interpolation: o o o
— Take the nearest texel

 Bilinear interpolation:

— Interpolation between 4 nearest texels
— Need fractional accuracy of coordinates Te|xture

» Possibly also higher order interpolation

* Minification (Zoom-out, pixel > texel) g

— Maps many texels to one pixel 5

 Aliasing: Reconstructing high-frequency

signals with low-frequency sampling
— Anti-aliasing (low-pass filtering) P i
» Averaging over (many) texels associated
with the given pixel o
exgure

« Can be computationally expensive!

Aliasing Artifacts

* Aliasing | e et
— When texture insufficiently sampled | | — D | ;
— Incorrect pixel values | | Bl
— “Randomly” changing pixels :
when moving . .

= 5y anti-aliasing anti-aliasing
 Integration of “Pre-Image ‘ (\ T =

— Integration over pixel footprint -

i .. Pre-image of shade
. A L | pixel centie
In texture space
T With Withcut
| / \ [ti-aliasi anti-al L g
| 4 } —— [] []
‘ L\ ‘ Pixel
& ‘) shade

< ,) P
—o
Inverse Pixel

\ Pre-pixel image ‘ IR
(d | TP 8

Pixel Pre-Image in Texture Space

« Circular pixel footprints have elliptic pre-images on
planar surfaces due to projection

« Square screen pixels form quadrilaterals

— On planar surfaces
— On curved surfaces, shape can be arbitrary (non-connected, etc...)

 Possible approximation by rectangle or quadrilateral
— Or taking multiple samples within a pixel (see later)

V4

a b c

b
[/
[11/
)
N

Approximating a quadrilateral texture

area with (a) a square d
llipse. Too small an area causes aliasing; tao large
n area causes blurring.

texture

/\%
N

N 7

Space-Variant Filtering

« Space-variant filtering
— Mapping from texture space (u,v) to screen space (x,y) not affine
« E.g., due to projection (see later, in context of rasterization)
— Filtering changes with position

« Space-variant filtering methods
— Direct convolution
« Numerically compute the integral, e.g., with many samples
» Potentially really costly
— Pre-filtering
» Pre-compute the integral for predefined regions of the texture
— Lookup of integral much more efficiently at runtime
« Must approximate actual pixel footprint with pre-computed regions

Direct Convolution

Convolution in texture space
— Texels weighted according to distance from pixel center

« E.g. pyramidal filter kernel, truncated sinc, etc.

« Essentially a low-pass filter Texture space Screen space
Inverse /—\\
pixel \.\
map s
2Xx2 pixel area
//
ConVOIUtion in image space Pyramidal filter kernel

Center the filter function on the pixel (in image space) and find its
bounding rectangle

Transform the rectangle to the space, where it is a quadrilateral,
whose sides are assumed to be straight

* More efficient: Find a suitable axis-aligned bounding box/rectangle
Map all texels inside this texture region to screen space
Form a weighted average of the mapped texels

* E.g. using a two-dimensional lookup table indexed by each texel's
location within the pixel

EWA Filtering

« EWA: Elliptical Weighted Average

— Compensate aliasing artifacts caused by perspective projection
— EWA Filter = low-pass filter ® warped reconstruction filter
— Gaussian filtered with Gaussian is still a Gaussian

« Can use rasterization HW for fast rendering
— Draw rectangle with suitable texture coord. that projects to pixel

Projection

’ (ullvl)
Rasterization > Convolution ®
‘ — (s, V) (i v2)
4y)

of distorted

—>
rectangle {/
projecting to ' 5 .
circle on pixel —_—

with
supersampling Projection

Low-Pass (us, v3)
Filter
Texture Space

EWA texture resampling filter

10

EWA Filtering

: fff% i Without EWA filtering
—= == ii‘i "%

PN

With EWA filtering

Footprint Assembly

* Footprint assembly: Approximation of pixel integral
— Good for space variant filtering
« E.g. inclined view of terrain
— Approximation of the pixel area
by rectangular texel-regions
— More footprints = better accuracy

* In practice

— Often fixed number of area samples /
— Done by sampling multiple locations .
y sampling multip <\v '/

/ ./>

within a pixel (e.g., 2x2), each with
smaller footprint
=>» Anisotropic (Texture) Filtering (AF)
« GPUs allow selection of max #samples (e.g., 4x, 8x, etc.)
— Selected depending on amount of anisotropy
« Each sample has its own footprint area/extent

« Each gets independently projected and filtered

Pre-Filtering

* Direct convolution methods are slow
— A pixel pre-image can be arbitrarily large
* Along silhouettes
» At the horizon of a textured plane
— Can require averaging over thousands of texels
— Texture filtering cost grows in proportion to projected texture area

« Speed-up
— The texture can be prefiltered before rendering
« Only a few samples are accessed for each screen space sample
— Two data structures are commonly used for prefiltering:
 Integrated arrays (summed area tables - SAT)
* Image pyramids (MIP-maps)

Summed Area Tables (SAT)

* Per texel, store sum over area from (0, 0) to (u, v)

A

B

C

D

« Evaluation of 2D integrals over AA-boxes in constant time!

Ax Ay

j f I(x,y)dxdy =A—B—-C+D

Bx Cy

B A
¥
D

 Needs many bits per texel (sum over million of pixels!)

14

MIP-Mapping

« Texture available in multiple resolutions

— Pre-processing step that filters textures in each step
— Discrete number of texture sizes (powers of 2)

* Rendering

— Select appropriate texture resolution level n (per sample ')

+ s.t.: texel size(n) <
extent of sample footprint

— Needs derivative of texture coordinates -

— Can be computed from differences
between pixels (divided differences)

« - Rendering of Quads (2x2 pixels)

< texel size(n+17)

MIP-Mapping (2)

* Multum In Parvo (MIP): “much in little e

« Hierarchical resolution pyramid
— Repeated filtering over texture by 2x

 Rectangular arrangement (RGB)

* Reconstruction
— Tri-linear interpolation of 8 nearest texels
 Bilinear interpolation in levels n and n+1 ,
+ Linear interpolation between the two levels

creasing D
A [/

d
: / / _
v
u , _
— “Brilinear”: Trilinear only near transitions
. . . Reducing the domain for linear
« Avoid reading 8 texels, most of the time interpolation improves performance

16

MIP-Map Example

17

Hardware Texture Filtering

« Bilinear filtering (in std. textured tunnel benchmark)
— Clearly visible transition between MIP-map Ivels

www.extremetech.com

18

Hardware Texture Filtering

« Trilinear filtering
— Hides the transitions between MIP-map levels
/ \\\v e
/ /// »'5,_\\ N .

7 4 = 2
/4
1 / 7. o5
/ 4 o
A } 4
i/ 4 e

/7’ J /,:/ Zv

i/

- s
- -
| ' yZ
| | f

"Y/ //
I/ [/ e
| I

‘ i / =

1 / i

| i i /

R ll‘" .‘\‘

1 ll‘; i
|
A
|/l

|)

7////‘

www.extremetech.com

19

Hardware Texture Filtering

« Anisotropic filtering (8x)

— Makes the textures much sharper along azimuthal coordinate

7, € /Xeut

| >

%////l

www.extremetech.com

20

Hardware Texture Filtering

« Bilinear vs. Brilinear vs. anisotropic filtering
— Using colored MIP -map Ievels
Isotropic ' 2

Bilinear

Actually
UL =TS brilinear

Anisotropic | L;\\K\\%j”/////‘ . ‘ , ‘ ‘ “ | \u

M‘m

\I "

/ 8xAF

\l
www.extremetech.com 21

Texture Caching in Hardware

All GPUs have small texture caches \|e(<\
\'e)

— Designed for local effects (streaming cache) IS
* No effects between meshes, frames, or such! WO o

P

ixel

Mipmapping ensures ~1:1 ratio o:

— Between pixel and texels
— Both horizontally & vertically

Pixels rendered in small 2D groups Telture

— Basic block is 2x2 ,quad®

» Used to compute ,derivatives”® : g

- Using divided differences (left/right, up/down) &~
— Lots of local coherence

P |

« Bi-/tri-linear filtering needs adjacent __/'Z\ N
texels (up to 8 for trilinear) I ICHY B
— Most often just 1-2 new texels per pixel =
that are not in (local) cache eKiUre

22

