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Dirac Comb (2)

e Constant & §/-Function

— Duality
fx) =K
F(w) = Ké(w)

— And vice versa

« Comb function

— Duality: the dual of a comb function is again a comb function
 Inverse wavelength/distances
« Amplitude scales with inverse wavelength
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Sampling

« Continuous function
— Assume band-limited

— Finite support of Fourier transform

» Depicted symbolically here as
triangle-shaped finite spectrum
(not meant to be a tent function!)

« Sampling at discrete points
— Multiplication with Comb function

in spatial domain

— Corresponds to convolution in

Fourier domain

= Multiple copies of the original
spectrum (convolution theorem!)

 Frequency bands overlap ?
— No : Sampling was high enough

(Nyquist limit!)
— Yes: aliasing artifacts !!!
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Reconstruction

) Only original freq uency band Space domain sl Fourier domain
desired . »

- Filtering AN N\

— In Fourier domain: » o

s{e)

« Multiplication with windowing function s(2)
around origin (low-pass filter)

— In spatial domain el N
» Convolution with inverse Fourier Hhst) Fla)s()
transform of windowing function II’I A/\

« Optimal filtering function
— Box function in Fourier domain

— Corresponds to sinc in spatial domain
« Unlimited region of support

« Spatial domain only allows
approximations due to finite support A

of practical filters (e)




Reconstruction Filter

« Simply cutting off the spatial support of the

sinc function to limit support is NOT a good solution

— Re-introduces high-frequencies = spatial ringing
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Sampling and Reconstruction

Original function and f(x) | F(u)|
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Sampling and Reconstruction

Reconstruction
with ideal sinc

Identical signal

Non-ideal filtering

Fourier: sinc? (mult.)
Space: tent (conv.)

Artificial high frequen.

are not cut off
= Aliasing artifacts
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Reconstruction with
tent function

(= piecewise linear
interpolation)
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Sampling at Too Low Frequency

Original function and
its band-limited
frequency spectrum

Signal sampling below
Nyquist:

Mult./conv. with comb

Comb spaced too far
(sampling rate <
2*bandlimit)

Spectral band overlap:

artificial low frequenci.

Ideal filtering

Fourier: box (mulit.)
Space: sinc (conv.)

Band overlap in
frequency domain
cannot be corrected
— Aliasing
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Sampling at Too Low Frequency

Reconstruction
with ideal sinc

Reconstruction fails
(frequency
components wrong
due to aliasing !)

Non-ideal filtering

Fourier: sinc? (mult.)
Space: tent (conv.)

Artificial high frequen.

are not cut off
= Reconstr. artifacts
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Reconstruction with
tent function

(= piecewise linear
interpolation)

Even worse
reconstruction
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Aliasing

* High frequency components from the copies appear
as low frequencies for the reconstruction process

* In Fourier space:
— Original spectrum
— Sampling comb
— Resulting spectrum
— Reconstruction filter

— Reconstructed spectrum

(a)

(b)

(c)

(d)

Nyquist satisfied

Nyquist

violated
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Aliasing in 1D

Nample points
A
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/,Functinn to he sampled
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Spatial frequency < Nyquist Spatial frequency = Nyquist

2 samples / period
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Aliasing in 2D

[wikipedia]

This original image sampled at these locations vyields this reconstruction.




Aliasing in 2D

« Spatial sampling = repeated frequency spectrum
« Spatial conv. with box filter = spectral mult. with sinc

{a) Simulation of a perfect line

(c) Simulation of a jagged line (d) Fourier transform of (c) -1 ‘ T




Causes for Aliasing

It all comes from sampling at discrete points
— Multiplication with comb function
— Comb function: replicates the frequency spectrum

* Issue when using non-band-limited primitives
— E.g., hard edges — infinitely high frequencies

* In reality, integration over finite region necessary
— E.g., finite pixel size in sensor, integrates in the analog domain

« Computer: analytic integration often not possible
— No analytic description of radiance or visible geometry available

« Only way: numerical integration
— Estimate integral by taking multiple point samples, average
» Leads to aliasing
— Computationally expensive & approximate

* Important:
— Distinction between sampling errors and reconstruction errors




Sampling Artifacts

« Spatial aliasing
— Staircases, Moiré patterns (interference), etc...
« Solutions
— Increasing the sampling rate
« OK, but we have infinite frequencies at sharp edges
— Post-filtering (after reconstruction)
» Too late, does not work - only leads to blurred artifacts!
— Pre-filtering (blurring) of sharp features in analog domain (edges)
« Slowly make geometry “fade out” at the edges?
» Correct solution in principle, but blurred images might not be useful
» Analytic low-pass filtering hard to implement
— Super-sampling (see later)
* On the fly re-sampling: densely sample, filter, down sample
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Sampling Artifacts in Time

 Temporal aliasing

e OIC 090 C 0

 Solutions

— Increasing the frame rate
« OK
— Post-filtering (averaging several frames) @
» Does not work — creates replicas of details
— Pre-filtering (motion blur)
« Should be done on the original analog signal
» Possible for simple geometry (e.g., cartoons)
* Problems with texture, etc...
— Super-sampling (see later)

17



Antialiasing by Pre-Filtering

* Filtering before sampling

— Analog/analytic original signal | WMWWW
— Band-limiting the signal S
— Reduces Nyquist frequency | rowpass g
for chosen sampling-rate M
« ldeal reconstruction M/W\/ v
— Convolution with sinc
* Practical reconstruction

— Convolution with
+ Box filter, Bartlett (tent) Il H\
Il

\|
— Reconstruction error Sgnal

H\M
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Sources of High Frequencies

« Geometry

— Edges, vertices, sharp boundaries
— Silhouettes (view dependent)

 Texture
— E.g., checkerboard pattern, other discontinuities, ...

* lllumination
— Shadows, lighting effects, projections, ...

« Analytic filtering almost impossible
— Even with the simplest filters
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Comparison

« Analytic low-pass filtering (pixel/triangle overlap)
— ldeally eliminates aliasing completely
— Complex to implement
« Compute distance from pixel to a line
« Weighted or unweighted area evaluation
 Filter values can be stored in look-up tables

 Fails at corners
» Possibly taking into account slope

« Over-/Super-sampling /ﬁ\

— Very easy to implement
— Does not eliminate aliasing completely

« Sharp edges contain infinitely high frequencies
— But it helps: ...
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Re-Sampling Pipeline

 Assumption

— Energy in higher frequencies typically decreases quickly
— ldea: Reduced aliasing by sampling at higher frequency

» Algorithm
— Super-sampling
« Sample continuous signal with high frequency f;

 Aliasing (only here!) with energy beyond f; ( )
— Reconstruction of signal

* Filtering with g, (x): e.g., convolution with sincg,
» Exact representation with sampled values !!

— Analytic low-pass filtering of signal
* Filtering with filter g, (x) where f,<< f; e —

___________

 Signal is now band-limited w.r.t. f;

— Re-sampling with a sampling frequency that is compatible with f,
« No additional aliasing

— Filters g,(x) & g,(x) can be combined!




Super-Sampling in Practice

 Regular super-sampling

— Averaging of N samples per pixel
N: 4 (quite good already), 16 (often sufficient)
Samples: rays, z-buffer, motion, reflection, ...
Filter weights

Box filter

Others: B-spline, pyramid (Bartlett), hexagonal, ...

Sampling Patterns (left to right)

Regular: aliasing likely
Random: often clumps, incomplete coverage

Poisson Disc: close to perfect (“blue noise”), but can be costly
Jittered: randomized regular sampling, avoid biggest issues
Most often (in HW): rotated grid pattern

S
X
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Super-Sampling Caveats

 Popular mistake

— Sampling at the corners of every pixel ® o o
— Pixel color by averaging from corners
— Free super-sampling ?7?7?

* Problem

L o o Q
— Wrong reconstruction filter !!!
— Same sampling frequency, but
post-filtering with a tent function & 1 )\

— Blurring: loss of information
 Post-reconstruction blur

. ir 1

1x1 Sampling, 3x3 Blur 1x1 Sampling, 7x7 Blur
 There is no “free” super-sampling/lunch




Adaptive Super-Sampling

* ldea: locally adapt sampling density
— Slowly varying signal (mostly low frequencies): low sampling rate
— Strong changes (mostly high frequencies): high sampling rate
 Decide sampling density locally

 Decision criterion:
— Differences of pixel values
— Contrast (relative difference)
* |A-B| 7 (|A+|B])
— Others




Adaptive Super-Sampling

* Recursive algorithm

1
4

2

<A+E D+E 1F+G B+G H+G 1

Sampling at pixel corners and center
Decision criterion for corner-center pairs

« Differences, contrast, object/shader-IDs, ...
Subdivide quadrant by adding 3 diag. points
Filtering with weighted averaging

» Tile: V4 from each quadrant

« Leaf quadrant: 2 (center + corner)
Box filter with final weight proport. to area —»

2 42+2+2+4{2+2+2+2
1[E+M H+M N+M 1{M+Q P+Q+C+Q+R+Q}]

J+K G+K L+K E+K}]>

7 R A 2 2 2

Extension

— Jittering of sample points
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Stochastic Super-Sampling

* Problems with regular super-sampling

— Nyquist frequency for aliasing only shifted

— Expensive: e.g., 4-fold or 16-fold effort

— Non-adaptive: same effort everywhere

— Too regular: reduction of effective number of axis-aligned levels

* Introduce irregular sampling pattern

o
© 0 0 O | o © o
triangle edge (0]
@ 6 0 © © o
o
T @ ©¢ 0 ©o T T o o T
o
©
© 0 0 O [5) o o
Only 5 levels Up to 17 levels:

0 > 4/16 - 8/16 > 12/16 > 16/16: better, but noisy
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Stochastic Sampling

 Requirements

Even sample distribution: no clustering

Little correlation between positions: no alignment
Blue noise property: Shift error to higher frequencies
Incremental generation: on demand as needed

« Generation of samples
— Poisson-disk sampling

« Random generation of samples
» Rejection if closer than min distance to other samples

— Jittered sampling

« Random perturbation from regular positions

— Stratified sampling

« Subdivision into areas with one random sample in each
* Improves even distribution

— Quasi-random numbers (Quasi-Monte Carlo)

« E.g., Halton sequence
 Advanced feature: see RIS course for more details
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Poisson-Disk Sample Distribut.

 Motivation
— Distribution of the optical receptors on the retina (here: ape)

© Andrew Glassner, Intro to Raytracing
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Distribution of the photo-receptors Fourier analysis

28



Stochastic Sampling

« Slowly varying function in sample domain
— Closely reconstructs target value with few samples
* Quickly varying function in sample domain

— Transforms energy in high-frequency bands into noise
— Reconstructs average value as sample count increases

Extent of
sampling

Extent of
sampling
error

Extent of sample jitter

Sample interval
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Examples

Spatial sampling: triangle comb
— (c) 1 sample/pixel, no jittering: aliasing
— (d) 1 spp, jittering: noise

— (e) 16 spp, no jittering: less aliasing

— (f) 16 spp, jittering: less noise
(o) [SEL
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Temporal sampling: motion blur
— (a) 1 time sample, no jittering: aliasing
— (b) 1 time sample, jittering/pixel: noise
— (c) 16 samples, no jittering: less aliasing
— (d) 16 samples, jittering/pixel: less noise

(a) (b)

RERRERRRROERERE
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Comparison

Regular, 1x1

 Regular, 3x3

 Regular, 7x7

o Jittered, 3x3

o Jittered, 7x7




