Computer Graphics

- Texturing -

Philipp Slusallek
Texture

• Textures modify the input for shading computations
 – Either via (painted) images textures or procedural functions

• Example texture maps for
 – Reflectance, normals, shadows, reflections, essentially anything, …
Definition: Textures

- Textures map texture coordinates to shading values
 - Input: 1D/2D/3D/4D texture coordinates
 - Explicitly given or derived via other data (e.g., position, direction, …)
 - Output: Scalar or vector value

- Modified values in shading computations
 - Reflectance
 - Changes the diffuse or specular reflection coefficient \((k_d, k_s)\)
 - Geometry and Normal (important for lighting)
 - Displacement mapping \(P' = P + \Delta P\) (derive normal from that)
 - Normal mapping \(N' = N + \Delta N\)
 - Bump mapping \(N' = N(P + tN)\)
 - Opacity
 - Modulating transparency (e.g., for fences in games)
 - Illumination
 - Light maps, environment mapping, reflection mapping
 - Anything else …
IMAGE TEXTURES
Image Textures

- **Image textures**
 - Return the color of the image at a given point
 - Point defined by mapping the texture coordinates \([0,1]^2\) to the entire image of the texture
 - To avoid confusion, we call pixel in a texture “texels”
 - Images may be 1D (line of pixels), 2D, and 3D (stacks of images)
 - Coordinates outside of \([0,1]^2\) can be mapped in different modes
Wrap Mode

- **Texture Coordinates**
 - \((u, v)\) in \([0, 1] \times [0, 1]\)

- **What if?**
 - \((u, v)\) not in unit square?
Wrap Mode

- **Repeat**

- **Fractional Coordinates**
 - \(t_u = u - [u] \)
 - \(t_v = v - [v] \)
Wrap Mode

- **Mirror**

- **Fractional Coordinates**
 - $t_u = u - \lfloor u \rfloor$
 - $t_v = v - \lfloor v \rfloor$

- **Lattice Coordinates**
 - $l_u = \lfloor u \rfloor$
 - $l_v = \lfloor v \rfloor$

- **Mirror if Odd**
 - if $(l_u \% 2 == 1)$
 - $t_u = 1 - t_u$
 - if $(l_v \% 2 == 1)$
 - $t_v = 1 - t_v$
Wrap Mode

- Clamp

 - Clamp u to $[0, 1]$

    ```
    if (u < 0) tu = 0;
    else if (u > 1) tu = 1;
    else tu = u;
    ```

 - Clamp v to $[0, 1]$

    ```
    if (v < 0) tv = 0;
    else if (v > 1) tv = 1;
    else tv = v;
    ```
Wrap Mode

- **Border**
 - Border color can be explicitly defined

- **Check Bounds**

  ```
  if (u < 0 || u > 1 || v < 0 || v > 1)
    return backgroundColor;
  else
    tu = u;
    tv = v;
  ```
Wrap Mode

- **Comparison**
 - With OpenGL texture modes

![Comparison of texture modes](image_url)
Reconstruction Filter

• **Image texture**
 – Discrete set of sample values (given at texel centers only!)

• **In general**
 – Hit point does not exactly hit a texture sample

• **Still want to reconstruct a continuous function**
 – Use a *reconstruction filter* to find color for hit point
Nearest Neighbor

- **Local Coordinates**
 - Assuming cell-centered samples
 - \(u = tu * \text{resU} \);
 - \(v = tv * \text{resV} \);

- **Lattice Coordinates**
 - \(lu = \min(\lceil u \rceil, \text{resU} - 1) \);
 - \(lv = \min(\lceil v \rceil, \text{resV} - 1) \);

- **Texture Value**
 - return \(\text{image}[lu, lv] \);
Bilinear Interpolation

- **Local Coordinates**
 - Assuming node-centered samples
 - \(u = tu \times (\text{resU} - 1) \);
 - \(v = tv \times (\text{resV} - 1) \);

- **Fractional Coordinates**
 - \(fu = u - \lfloor u \rfloor \);
 - \(fv = v - \lfloor v \rfloor \);

- **Texture Value**
 - return \((1-fu) (1-fv) \text{image}[\lfloor u \rfloor, \lfloor v \rfloor]
n\+
(1-fu) (fv) \text{image}[\lfloor u \rfloor, \lfloor v \rfloor+1]n\+
(fu) (1-fv) \text{image}[\lfloor u \rfloor+1, \lfloor v \rfloor]n\+
(fu) (fv) \text{image}[\lfloor u \rfloor+1, \lfloor v \rfloor+1]n\)
Bilinear Interpolation

- **Successive Linear Interpolations**
 - \[u_0 = (1-fv) \text{ image} [u, v, u, v+1] + (fv) \text{ image} [u, v, u+1, v+1] \]

 - \[u_1 = (1-fv) \text{ image} [u+1, v, u+1, v+1] + (fv) \text{ image} [u+1, v, u+1, v+1] \]

 - return \((1-fu) u_0 + (fu) u_1\);
Nearest vs. Bilinear Interpolation
Bicubic Interpolation

- **Properties**
 - Assuming node-centered samples
 - Essentially based on cubic splines (see later)

- **Pros**
 - Even smoother

- **Cons**
 - More complex & expensive (4x4 kernel)
 - Overshoot
Discussion: Image Textures

• **Pros**
 – Simple generation
 • Painted, simulation, ...
 – Simple acquisition
 • Photos, videos

• **Cons**
 – Illumination “frozen” during acquisition (e.g., photo)
 – Limited resolution
 – Susceptible to aliasing (see later)
 – High memory requirements (often HUGE for films, 100s of GB)
 – Issues when mapping 2D image onto 3D object
PROCEDURAL TEXTURES
Discussion: Procedural Textures

• **Cons**
 – Sometimes hard to achieve specific effect
 – Possibly non-trivial programming

• **Pros**
 – Flexibility & parametric control
 – Unlimited resolution
 – Anti-aliasing possible
 – Low memory requirements
 – May be directly defined as 3D “image” mapped to 3D geometry
 – High visual complexity with low-cost
2D Checkerboard Function

- **Lattice Coordinates**
 - $lu = \lfloor u \rfloor$
 - $lv = \lfloor v \rfloor$

- **Compute Parity**
 - $\text{parity} = (lu + lv) \mod 2$

- **Return Color**
 - if $\text{parity} == 1$
 - return color1;
 - else
 - return color0;
3D Checkerboard - Solid Texture

- **Lattice Coordinates**
 - \(lu = \left[u \right] \)
 - \(lv = \left[v \right] \)
 - \(lw = \left[w \right] \)

- **Compute Parity**
 - \(\text{parity} = (lu + lv + lw) \mod 2; \)

- **Return Color**
 - if (parity == 1)
 - return color1;
 - else
 - return color0;

- **Freedom to modify**
 - Scale/rotate/… texture cords.
Tile

- Fractional Coordinates
 - \(fu = u - \lfloor u \rfloor \)
 - \(fv = v - \lfloor v \rfloor \)

- Compute Booleans
 - \(bu = fu < \text{mortarWidth} \)
 - \(bv = fv < \text{mortarWidth} \)

- Return Color
 - if (bu || bv)
 - return \text{mortarColor};
 - else
 - return \text{tileColor};
Brick

- **Shift Column for Odd Rows**
 - parity = \(v \% 2 \);
 - \(u = \) parity * 0.5;

- **Fractional Coordinates**
 - \(fu = u - \lfloor u \rfloor \)
 - \(fv = v - \lfloor v \rfloor \)

- **Compute Booleans**
 - \(bu = fu < \text{mortarWidth} \);
 - \(bv = fv < \text{mortarWidth} \);

- **Return Color**
 - if (\(bu || bv \))
 - return mortarColor;
 - else
 - return brickColor;
More Variation

For color variations use noise function (see below)!
Other Patterns

- Circular Tiles
- Octagonal Tiles
- Use your imagination!
Perlin Noise

• Natural Patterns
 – Similarity between patches at different locations
 • Repetitiveness, coherence (e.g., skin of a tiger or zebra)
 – Similarity on different resolution scales
 • Self-similarity
 – But never completely identical
 • Additional disturbances, turbulence, noise, …

• Mimic Statistical Properties
 – Purely empirical approach
 – Looks convincing, but has nothing to do with material’s physics

• Perlin Noise is essential for adding “natural” details
 – Used in many texture functions
Perlin Noise

- Natural Fractals
Noise Function

- **Noise(x, y, z) Function**
 - Statistical invariance under rotation
 - Statistical invariance under translation
 - Roughly fixed frequency of ~1 Hz

- **Integer Lattice (i, j, k)**
 - **Value noise**
 - Random value at lattice points
 - **Gradient noise (most common)**
 - Random gradient vector at lattice point
 - **Interpolation**
 - Bi-/tri-linear or cubic (Hermite spline, \(\rightarrow \) later)
 - **Hash function to map vertices to values**
 - Essentially randomized look up
 - Virtually infinite extent and variation with finite array of values
Noise vs. Noise

• **Value Noise vs. Gradient Noise**
 – Gradient noise has lower regularity artifacts
 – More high frequencies in noise spectrum

• **Random Values vs. Perlin Noise**

Random values at each pixel

Gradient noise
Turbulence Function

- **Noise Function**
 - Single spike in frequency spectrum (single frequency, see later)

- **Natural Textures**
 - Mix of different frequencies
 - Often decreasing amplitude for higher frequencies

- **Turbulence from Noise**
 - \[\text{Turbulence}(x) = \sum_{i=0}^{k} |a_i \ast \text{noise}(f_i x)| \]
 - Frequency: \(f_i = 2^i \)
 - Amplitude: \(a_i = 1 / p^i \)
 - Persistence: \(p \) typically \(p=2 \)
 - Power spectrum: \(a_i = 1 / f_i \)
 - Brownian motion: \(a_i = 1 / f_i^2 \)
 - Summation truncation
 - 1st term: \(\text{noise}(x) \)
 - 2nd term: \(\text{noise}(2x)/2 \)
 - ...
 - Until period \((1/f_k) < \) twice the pixel-size (band limit, see later)
Synthesis of Turbulence (1-D)

<table>
<thead>
<tr>
<th>Amplitude</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>4</td>
</tr>
<tr>
<td>64</td>
<td>8</td>
</tr>
<tr>
<td>32</td>
<td>16</td>
</tr>
<tr>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>8</td>
<td>64</td>
</tr>
<tr>
<td>Sum of Noise Functions = (Perlin Noise)</td>
<td></td>
</tr>
</tbody>
</table>
Synthesis of Turbulence (2-D)
Example: Marble

- **Overall Structure**
 - Smoothly alternating layers of different marble colors
 - \(f_{\text{marble}}(x,y,z) := \text{marble_color}(\sin(x)) \)
 - \(\text{marble_color} \): transfer function (see lower left)

- **Realistic Appearance**
 - Simulated turbulence
 - \(f_{\text{marble}}(x,y,z) := \text{marble_color}(\sin(x + \text{turbulence}(x, y, z))) \)
Solid Noise

• 3D Noise Texture
 – Wood
 – Erosion
 – Marble
 – Granite
 – ...
Others Applications

• **Bark**
 – Turbulated saw-tooth function

• **Clouds**
 – White blobs
 – Turbulated transparency along edge

• **Animation**
 – Vary procedural texture function’s parameters over time
Shading Languages

- **Small program fragments (plugins)**
 - Compute certain aspects of the rendering process
 - Executing at innermost loop, must be extremely efficient
 - Executed at each intersection

- **Typical shaders**
 - Material/surface shaders: Compute reflected color
 - Light shaders: Compute illumination from light source at some point
 - Volume shader: Compute interaction in participating medium
 - Displacement shader: Compute changes to the geometry
 - Camera shader: Compute rays for each pixel

- **Shading languages**
 - RenderMan (the mother of all shading languages),
 Open Shading Language (OSL, OSS by Larry Gritz),
 Shader-Graphs in UIs (e.g., in Blender)
 - HLSL (DX only), GLSL (OpenGL only), SPIR-V (assembly level)
 - Currently no portable shading format usable for exchange
 - But Material Definition Language (MDL, Nvidia) and MaterialX (OSS)
 - More details later
TEXTURE MAPPING
2D Texture Mapping

- **Forward mapping**
 - Object surface parameterization, plus
 - Projective transformation onto the screen
- **Inverse mapping**
 - Find corresponding pre-image/footprint of each pixel in texture
 - Integrate over pre-image
Surface Parameterization

• To apply textures, we need 2D coordinates on surfaces

→ Parameterization

• Some objects have a natural parameterization
 – Sphere: spherical coordinates
 – Cylinder: cylindrical coordinates
 – Parametric surfaces (such as B-spline or Bezier surfaces → later)

• Parameterization is less obvious for
 – Polygons, implicit surfaces, teapots, …
Triangle Parameterization

- **Triangle is a planar object**
 - Has implicit parameterization (e.g., barycentric coordinates)
 - But we need more control: Placement of triangle in texture space

- **Assign texture coordinates** \((u,v)\) to each vertex \((x_o,y_o,z_o)\)

- **Apply viewing projection** \((x_o,y_o,z_o) \rightarrow (x,y)\) (details later)

- **Yields full texture transformation (warping)** \((u,v) \rightarrow (x,y)\)

\[
x = \frac{au + bv + c}{gu + hv + i} \quad y = \frac{du + ev + f}{gu + hv + i}
\]

- In homogeneous coordinates (by embedding \((u,v)\) as \((u,v,1)\))

\[
\begin{bmatrix}
x' \\
y' \\
w
\end{bmatrix} =
\begin{bmatrix}
a & b & c \\
d & e & f \\
g & h & i
\end{bmatrix}
\begin{bmatrix}
u' \\
v' \\
q
\end{bmatrix};
(x, y) = \left(\frac{x'}{w}, \frac{y'}{w}\right), (u, v) = \left(\frac{u'}{q}, \frac{v'}{q}\right)
\]

- Transformation coefficients determined by 3 pairs \((u,v) \rightarrow (x,y)\)
 - Three linear equations
 - Invertible iff neither set of points is collinear
Triangle Parameterization (2)

• Given

\[
\begin{bmatrix}
 x' \\
 y' \\
 w
\end{bmatrix} = \begin{bmatrix}
 a & b & c \\
 d & e & f \\
 g & h & i
\end{bmatrix} \begin{bmatrix}
 u' \\
 v' \\
 q
\end{bmatrix}
\]

• The inverse transform \((x, y) \rightarrow (u, v)\) is

\[
\begin{bmatrix}
 u' \\
 v' \\
 q
\end{bmatrix} = \begin{bmatrix}
 ei - fh & ch - bi & bf - ce \\
 fg - di & ai - cg & cd - af \\
 dh - eg & bg - ah & ae - bd
\end{bmatrix} \begin{bmatrix}
 x' \\
 y' \\
 w
\end{bmatrix}
\]

• Coefficients must be calculated for each triangle
 – Rasterization
 • Incremental bilinear update of \((u', v', q)\) in screen space
 • Using the partial derivatives of the linear function (i.e., constants)
 – Ray tracing
 • Evaluated at every intersection (via barycentric coordinates)

• Often (partial) derivatives are needed as well
 – Explicitly given in matrix (colored for \(\partial u/\partial x\), \(\partial v/\partial x\), \(\partial q/\partial x\)
Textures Coordinates

• **Solid Textures**
 – 3D world/object (x,y,z) coords → 3D (u,v,w) texture coordinates
 – Similar to carving object out of material block

• **2D Textures**
 – 3D Cartesian (x,y,z) coordinates → 2D (u,v) texture coordinates?

David Ebert
Parametric Surfaces

- **Definition (more detail later)**
 - Surface defined by parametric function
 - \((x, y, z) = p(u, v)\)
 - Input
 - Parametric coordinates: \((u, v)\)
 - Output
 - Cartesian coordinates: \((x, y, z)\)

- **Texture Coordinates**
 - Directly derived from surface parameterization
 - Invert parametric function
 - From world coordinates to parametric coordinates
 - Usually computed implicitly anyway (e.g. in ray tracing)
Parametric Surfaces

- **Polar Coordinates**
 - \((x, y, 0) = \text{Polar2Cartesian}(r, \phi)\)

- **Disc**
 - \(p(u, v) = \text{Polar2Cartesian}(R v, 2 \pi u) \quad // \text{disc radius } R\)
Parametric Surfaces

- **Cylindrical Coordinates**
 - \((x, y, z) = \text{Cylindrical2Cartesian}(r, \varphi, z)\)

- **Cylinder**
 - \(p(u, v) = \text{Cylindrical2Cartesian}(r, 2\pi u, H v)\) // cylinder height \(H\)
Parametric Surfaces

- **Spherical Coordinates**
 - \((x, y, z) = \text{Spherical2Cartesian}(r, \theta, \phi)\)

- **Sphere**
 - \(p(u, v) = \text{Spherical2Cartesian}(r, \pi v, 2 \pi u)\)
Parametric Surfaces

- **Triangle**
 - Use barycentric coordinates directly
 - \(p(u, v) = (1 - u - v)p_0 + up_1 + vp_2 \)
Parametric Surfaces

- **Triangle Mesh**
 - Associate a predefined texture coordinate to each triangle vertex
 - Interpolate texture coordinates using barycentric coordinates
 - \(u = \lambda_0 p_{0u} + \lambda_1 p_{1u} + \lambda_2 p_{2u} \)
 - \(v = \lambda_0 p_{0v} + \lambda_1 p_{1v} + \lambda_2 p_{2v} \)
 - Texture mapped onto manifold
 - Single texture shared by many triangles
Surface Parameterization

• Other Surfaces
 – No intrinsic parameterization??
Intermediate Mapping

- **Coordinate System Transform**
 - Express Cartesian coordinates into a given coordinate system

- **3D to 2D Projection**
 - Drop one coordinate
 - Compute u and v from remaining 2 coordinates
Intermediate Mapping

• **Planar Mapping**
 - Map to different Cartesian coordinate system
 - \((x', y', z') = \text{AffineTransformation}(x, y, z)\)
 - Orthogonal basis: translation + row-vector rotation matrix
 - Non-orthogonal basis: translation + inverse column-vector matrix
 - Drop \(z'\), map \(u = x'\), map \(v = y'\)
 - E.g.: Issues when surface normal orthogonal to projection axis
Intermediate Mapping

• **Cylindrical Mapping**
 - Map to cylindrical coordinates (possibly after translation/rotation)
 - \((r, \varphi, z) = \text{Cartesian2Cylindrical}(x, y, z)\)
 - Drop \(r\), map \(u = \varphi / 2 \pi\), map \(v = z / H\)
 - Extension: add scaling factors: \(u = \alpha \varphi / 2 \pi\)
 - E.g.: Similar topology gives reasonable mapping
Intermediate Mapping

• **Spherical Mapping**
 – Map to spherical coordinates (possibly after translation/rotation)
 – \((r, \theta, \varphi) = \text{Cartesian2Spherical}(x, y, z)\)
 – Drop \(r\), map \(u = \varphi / 2\pi\), map \(v = \theta / \pi\)
 – Extension: add scaling factors to both \(u\) and \(v\)
 – E.g.: Issues in concave regions
Two-Stage Mapping: Problems

• Problems
 – May introduce undesired texture distortions if the intermediate surface differs too much from the destination surface
 – Still often used in practice because of its simplicity

• Example: Mapping point to plane along normal at the point:

 ![Diagram showing two-stage mapping with texture distortions due to surface concavities]

 Surface concavities can cause the texture pattern to reverse if the object normal mapping is used.
Projective Textures

- **Project texture onto object surfaces**
 - Slide projector

- **Parallel or perspective projection**

- **Use photographs (or drawings) as textures**
 - Used a lot in film industry!

- **Multiple images**
 - View-dependent texturing (advanced topic)

- **Perspective Mapping**
 - Re-project photo on its 3D environment
Projective Texturing: Examples
Slope-Based Mapping

• **Definition**
 – Depends on surface normal and predefined vector

• **Example**
 – $\alpha = n \cdot \omega$
 – return α flatColor + (1 - α) slopeColor;
Environment Map

- **Spherical Map**
 - Photo of a reflective sphere (gazing ball)
 - Photos with a fish-eye camera
 - Only gives hemi-sphere mapping
Environment Map

- **Latitude-Longitude Map**
 - Remapping 2 images of reflective sphere
 - Photo with an environment camera

- **Algorithm**
 - If no intersection found, use ray direction to find background color
 - Cartesian coords of ray dir. → spherical coords → uv tex coords
Environment Map

- **Cube Map**
 - Remapping 2 images of reflective sphere
 - Photos with a perspective camera

- **Algorithm**
 - Find main axis \((-x, +x, -y, +y, -z, +z)\) of ray direction
 - Use other 2 coordinates to access corresponding face texture
 - Akin to a 90° projective light
Reflection Map Rendering

- Spherical parameterization
- O-mapping using reflected view ray intersection
Reflection Map Parameterization

- **Spherical mapping**
 - Single image
 - Bad utilization of the image area
 - Bad scanning on the edge
 - Artifacts, if map and image do not have the same viewpoint

- **Double parabolic mapping**
 - Yields spherical parameterization
 - Subdivide in 2 images (front-facing and back-facing sides)
 - Less bias near the periphery
 - Arbitrarily reusable
 - Supported by OpenGL extensions
Reflection Mapping Example

Terminator II motion picture
Reflection Mapping Example II

- **Reflection mapping with Phong reflection**
 - Two maps: diffuse & specular
 - Diffuse: index by surface normal
 - Specular: indexed by reflected view vector
Light Maps

- **Light maps (e.g. in Quake)**
 - Pre-calculated illumination (local irradiance)
 - Often very low resolution: smoothly varying
 - Multiplication of irradiance with base texture
 - Diffuse reflectance only
 - Provides surface radiosity
 - View-independent out-going radiance
 - Animated light maps
 - Animated shadows, moving light spots, etc…

\[B(x) = \rho(x) E(x) = \pi L_o(x) \]
Bump Mapping

- **Modulation of the normal vector**
 - Surface normals changed only
 - Influences shading only
 - No self-shadowing, contour is **not** altered
Bump Mapping

- **Original surface**: $O(u,v)$
 - Surface normals are known
- **Bump map**: $B(u,v) \in \mathbb{R}$
 - Surface is offset in normal direction according to bump map intensity
 - New normal directions $N'(u,v)$ are calculated based on virtually displaced surface $O'(u,v)$
 - Original surface is rendered with new normals $N'(u,v)$

Grey-valued texture used for bump height
Bump Mapping

\[O'(u, v) = O(u, v) + B(u, v) \frac{N}{|N|} \]

- Normal is cross-product of derivatives:

\[
O'_u = O_u + B_u \frac{N}{|N|} + B \left(\frac{N}{|N|} \right)_u \\
O'_v = O_v + B_v \frac{N}{|N|} + B \left(\frac{N}{|N|} \right)_v
\]

- If \(B \) is small (i.e., the bump map displacement function is small compared to its spatial extent) the last term in each equation can be ignored

\[
N'(u, v) = O_u \times O_v + B_u \left(\frac{N}{|N|} \times O_v \right) + B_v \left(O_u \times \frac{N}{|N|} \right) + B_u B_v \left(\frac{N \times N}{|N|^2} \right)
\]

- The first term is the normal to the surface and the last is zero, giving:

\[
D = B_u (N \times O_v) - B_v (N \times O_u) \\
N' = N + D
\]
Texture Examples

- Complex optical effects
 - Combination of multiple texture effects
Billboards / Transparency Map

- **Single textured polygons**
 - Often with opacity texture
 - Rotates, always facing viewer
 - Used for rendering distant objects
 - Best results if approximately radially or spherically symmetric

- **Multiple textured polygons**
 - Azimuthal orientation: different orientations
 - Complex distribution: trunk, branches, ...