
Philipp Slusallek

Computer Graphics

- Texturing -

Texture
• Textures modify the input

for shading computations
– Either via (painted) images

textures or procedural functions
• Example texture maps for

– Reflectance, normals, shadows,
reflections, essentially anything,
…

2

Definition: Textures
• Textures map texture coordinates to shading values

– Input: 1D/2D/3D/4D texture coordinates
• Explicitly given or derived via other data (e.g., position, direction, …)

– Output: Scalar or vector value
• Modified values in shading computations

– Reflectance
• Changes the diffuse or specular reflection coefficient (𝑘! , 𝑘")

– Geometry and Normal (important for lighting)
• Displacement mapping 𝑃# = 𝑃 + Δ𝑃 (derive normal from that)
• Normal mapping 𝑁# = 𝑁 + Δ𝑁
• Bump mapping 𝑁# = 𝑁(𝑃 + 𝑡𝑁)

– Opacity
• Modulating transparency (e.g., for fences in games)

– Illumination
• Light maps, environment mapping, reflection mapping

– Anything else …

IMAGE TEXTURES

4

Image Textures
• Image textures

– Return the color of the image at a given point
– Point defined by mapping the texture coordinates 0,1 ! to the

entire image of the texture
– To avoid confusion, we call pixel in a texture “texels”
– Images may be 1D (line of pixels), 2D, and 3D (stacks of images)
– Coordinates outside of 0,1 ! can be mapped in different modes

Wrap Mode
• Texture Coordinates

– (u, v) in [0, 1] x [0, 1]

• What if?
– (u, v) not in unit square?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

0, 0

4, 4

4, 0

0, 4 v

u

0, 1

1, 0

Wrap Mode
• Repeat

• Fractional Coordinates
– 𝑡" = 𝑢 − 𝑢
– 𝑡# = 𝑣 − 𝑣

0, 0

4, 4

4, 0

0, 4 v

u

Wrap Mode
• Mirror

• Fractional Coordinates
– 𝑡" = 𝑢 − 𝑢
– 𝑡# = 𝑣 − 𝑣

• Lattice Coordinates
– 𝑙" = 𝑢
– 𝑙# = 𝑣

• Mirror if Odd
– if (l_u % 2 == 1)

t_u = 1 - t_u
– if (l_v % 2 == 1)

t_v = 1 - t_v 0, 0

4, 4

4, 0

0, 4 v

u

Wrap Mode
• Clamp

• Clamp u to [0, 1]
if (u < 0) tu = 0;
else if (u > 1) tu = 1;
else tu = u;

• Clamp v to [0, 1]
if (v < 0) tv = 0;
else if (v > 1) tv = 1;
else tv = v;

0, 0

4, 4

4, 0

0, 4 v

u

Wrap Mode
• Border

– Border color can
be explicitly defined

• Check Bounds
if (u < 0 || u > 1

|| v < 0 || v > 1)
return backgroundColor;

else
tu = u;
tv = v;

0, 0

4, 4

4, 0

0, 4 v

u

Wrap Mode
• Comparison

– With OpenGL texture modes

Reconstruction Filter
• Image texture

– Discrete set of sample values (given at texel centers only!)
• In general

– Hit point does not exactly hit a texture sample
• Still want to reconstruct a continuous function

– Use a reconstruction filter to find color for hit point

12

Texture Space

Nearest Neighbor
• Local Coordinates

– Assuming cell-centered samples
– u = tu * resU;
– v = tv * resV;

• Lattice Coordinates
– lu = min(ë u û , resU – 1);
– lv = min(ë v û , resV – 1);

• Texture Value
– return image[lu, lv];

lu, lv lu+1, lv

lu, lv+1 lu+1, lv+1

u

v

Bilinear Interpolation
• Local Coordinates

– Assuming node-centered samples
– u = tu * (resU – 1);
– v = tv * (resV – 1);

• Fractional Coordinates
– fu = u - ë u û ;
– fv = v - ë v û ;

• Texture Value
– return (1-fu) (1-fv) image[ëuû , ëvû]

+ (1-fu) (fv) image[ëuû , ëvû+1]
+ (fu) (1-fv) image[ëuû+1, ëvû]
+ (fu) (fv) image[ëuû+1, ëvû+1]

Bilinear Interpolation
• Successive Linear Interpolations

– u0 = (1-fv) image[ëuû , ëvû]
+ (fv) image[ëuû , ëvû+1];

– u1= (1-fv) image[ëuû+1, ëvû]
+ (fv) image[ëuû+1, ëvû+1];

– return (1-fu) u0
+ (fu) u1;

u

v

t

lu, lv+1 lu+1, lv+1

lu, lv lu+1, lvfu 1-fu

1-fv

fv

Nearest vs. Bilinear Interpolation

Bicubic Interpolation
• Properties

– Assuming node-centered samples
– Essentially based on cubic splines (see later)

• Pros
– Even smoother

• Cons
– More complex & expensive (4x4 kernel)
– Overshoot

Discussion: Image Textures
• Pros

– Simple generation
• Painted, simulation, ...

– Simple acquisition
• Photos, videos

• Cons
– Illumination “frozen” during acquisition (e.g., photo)
– Limited resolution
– Susceptible to aliasing (see later)
– High memory requirements (often HUGE for films, 100s of GB)
– Issues when mapping 2D image onto 3D object

PROCEDURAL TEXTURES

19

Discussion: Procedural Textures
• Cons

– Sometimes hard to achieve specific effect
– Possibly non-trivial programming

• Pros
– Flexibility & parametric control
– Unlimited resolution
– Anti-aliasing possible
– Low memory requirements
– May be directly defined as 3D “image” mapped to 3D geometry
– High visual complexity with low-cost

2D Checkerboard Function
• Lattice Coordinates

– lu = ëuû
– lv = ëvû

• Compute Parity
– parity = (lu + lv) % 2;

• Return Color
– if (parity == 1)

• return color1;
– else

• return color0;

3D Checkerboard - Solid Texture
• Lattice Coordinates

– lu = ëuû
– lv = ëvû
– lw = ëwû

• Compute Parity
– parity = (lu + lv + lw) % 2;

• Return Color
– if (parity == 1)

• return color1;
– else

• return color0;

• Freedom to modify
– Scale/rotate/… texture cords.

Tile
• Fractional Coordinates

– fu = u - ëuû
– fv = v - ëvû

• Compute Booleans
– bu = fu < mortarWidth;
– bv = fv < mortarWidth;

• Return Color
– if (bu || bv)

• return mortarColor;
– else

• return tileColor;
mortarWidth

Brick
• Shift Column for Odd Rows

– parity = ëvû % 2;
– u -= parity * 0.5;

• Fractional Coordinates
– fu = u - ëuû
– fv = v - ëvû

• Compute Booleans
– bu = fu < mortarWidth;
– bv = fv < mortarWidth;

• Return Color
– if (bu || bv)

• return mortarColor;
– else

• return brickColor;

More Variation

25

For color variations use noise function (see below)!

Other Patterns
• Circular Tiles

• Octagonal Tiles

• Use your imagination!

Perlin Noise
• Natural Patterns

– Similarity between patches at different locations
• Repetitiveness, coherence (e.g., skin of a tiger or zebra)

– Similarity on different resolution scales
• Self-similarity

– But never completely identical
• Additional disturbances, turbulence, noise, …

• Mimic Statistical Properties
– Purely empirical approach
– Looks convincing, but has nothing to do with material’s physics

• Perlin Noise is essential for adding “natural” details
– Used in many texture functions

Perlin Noise
• Natural Fractals

Noise Function
• Noise(x, y, z) Function

– Statistical invariance under rotation
– Statistical invariance under translation
– Roughly fixed frequency of ~1 Hz

• Integer Lattice (i, j, k)
– Value noise

• Random value at lattice points
– Gradient noise (most common)

• Random gradient vector at lattice point
– Interpolation

• Bi-/tri-linear or cubic (Hermite spline, à later)
– Hash function to map vertices to values

• Essentially randomized look up
• Virtually infinite extent and variation

with finite array of values

p

Noise vs. Noise
• Value Noise vs. Gradient Noise

– Gradient noise has lower regularity artifacts
– More high frequencies in noise spectrum

• Random Values vs. Perlin Noise

Random values
at each pixel

Gradient noise

Turbulence Function
• Noise Function

– Single spike in frequency spectrum (single frequency, see later)
• Natural Textures

– Mix of different frequencies
– Often decreasing amplitude for higher frequencies

• Turbulence from Noise
– 𝑇𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒 𝑥 = ∑$%&' |𝑎$ ∗ 𝑛𝑜𝑖𝑠𝑒 𝑓$ 𝑥 |

• Frequency: 𝑓$ = 2$

• Amplitude: 𝑎$ = 1 / 𝑝$
• Persistence: p typically p=2
• Power spectrum : 𝑎$ = 1 / 𝑓$
• Brownian motion: 𝑎$ = 1 / 𝑓$%

– Summation truncation
• 1st term: noise(x)
• 2nd term: noise(2x)/2
• …
• Until period (1/𝑓&) < twice the pixel-size (band limit, see later)

Synthesis of Turbulence (1-D)

Synthesis of Turbulence (2-D)

Example: Marble
• Overall Structure

– Smoothly alternating layers of different marble colors
– fmarble(x,y,z) := marble_color(sin(x))
– marble_color : transfer function (see lower left)

• Realistic Appearance
– Simulated turbulence
– fmarble(x,y,z) := marble_color(sin(x + turbulence(x, y, z)))

Solid Noise
• 3D Noise Texture

– Wood
– Erosion
– Marble
– Granite
– …

RenderMan Companion

Others Applications
• Bark

– Turbulated saw-tooth function

• Clouds
– White blobs
– Turbulated transparency along edge

• Animation
– Vary procedural texture function’s parameters over time

Shading Languages
• Small program fragments (plugins)

– Compute certain aspects of the rendering process
• Executing at innermost loop, must be extremely efficient

– Executed at each intersection
• Typical shaders

– Material/surface shaders: Compute reflected color
– Light shaders: Compute illumination from light source at some point
– Volume shader: Compute interaction in participating medium
– Displacement shader: Compute changes to the geometry
– Camera shader: Compute rays for each pixel

• Shading languages
– RenderMan (the mother of all shading languages),

Open Shading Language (OSL, OSS by Larry Gritz),
Shader-Graphs in UIs (e.g., in Blender)

– HLSL (DX only), GLSL (OpenGL only), SPIR-V (assembly level)
– Currently no portable shading format usable for exchange

• But Material Definition Language (MDL, Nvidia) and MaterialX (OSS)
– More details later

37

TEXTURE MAPPING

38

2D Texture Mapping

• Forward mapping
– Object surface parameterization, plus
– Projective transformation onto the screen

• Inverse mapping
– Find corresponding pre-image/footprint of each pixel in texture
– Integrate over pre-image

39

Surface Parameterization
• To apply textures, we need 2D coordinates on

surfaces
→ Parameterization

• Some objects have a natural parameterization
– Sphere: spherical coordinates
– Cylinder: cylindrical coordinates
– Parametric surfaces (such as B-spline or Bezier surfaces → later)

• Parameterization is less obvious for
– Polygons, implicit surfaces, teapots, …

40

Triangle Parameterization
• Triangle is a planar object

– Has implicit parameterization (e.g., barycentric coordinates)
– But we need more control: Placement of triangle in texture space

• Assign texture coordinates (u,v) to each vertex (xo,yo,zo)
• Apply viewing projection (xo,yo,zo) → (x,y) (details later)
• Yields full texture transformation (warping) (u,v) → (x,y)

– In homogeneous coordinates (by embedding (u,v) as (u,v,1))

– Transformation coefficients determined by 3 pairs (u,v)→(x,y)
• Three linear equations
• Invertible iff neither set of points is collinear

41

𝑥 =
𝑎𝑢 + 𝑏𝑣 + 𝑐
𝑔𝑢 + ℎ𝑣 + 𝑖 𝑦 =

𝑑𝑢 + 𝑒𝑣 + 𝑓
𝑔𝑢 + ℎ𝑣 + 𝑖

𝑥′
𝑦′
𝑤

=
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

𝑢′
𝑣′
𝑞
; 𝑥, 𝑦 =

𝑥#

𝑤 ,
𝑦#

𝑤 , 𝑢, 𝑣 =
𝑢#

𝑞 ,
𝑣#

𝑞

Triangle Parameterization (2)
• Given

• The inverse transform (x,y)→(u,v) is

• Coefficients must be calculated for each triangle
– Rasterization

• Incremental bilinear update of (u’,v’,q) in screen space
• Using the partial derivatives of the linear function (i.e., constants)

– Ray tracing
• Evaluated at every intersection (via barycentric coordinates)

• Often (partial) derivatives are needed as well
– Explicitly given in matrix (colored for ⁄𝜕𝑢 𝜕𝑥, ⁄𝜕𝑣 𝜕𝑥, ⁄𝜕𝑞 𝜕𝑥)

42

𝑥′
𝑦′
𝑤

=
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

𝑢′
𝑣′
𝑞

𝑢′
𝑣′
𝑞

=
𝑒𝑖 − 𝑓ℎ 𝑐ℎ − 𝑏𝑖 𝑏𝑓 − 𝑐𝑒
𝑓𝑔 − 𝑑𝑖 𝑎𝑖 − 𝑐𝑔 𝑐𝑑 − 𝑎𝑓
𝑑ℎ − 𝑒𝑔 𝑏𝑔 − 𝑎ℎ 𝑎𝑒 − 𝑏𝑑

𝑥′
𝑦′
𝑤

Textures Coordinates
• Solid Textures

– 3D world/object (x,y,z) coords → 3D (u,v,w) texture coordinates
– Similar to carving object out of material block

• 2D Textures
– 3D Cartesian (x,y,z) coordinates → 2D (u,v) texture coordinates?

David Ebert

Parametric Surfaces
• Definition (more detail later)

– Surface defined by parametric function
• (x, y, z) = p(u, v)

– Input
• Parametric coordinates: (u, v)

– Output
• Cartsesian coordinates: (x, y, z)

• Texture Coordinates
– Directly derived from surface parameterization
– Invert parametric function

• From world coordinates to parametric coordinates
• Usually computed implicitly anyway (e.g. in ray tracing)

Parametric Surfaces
• Polar Coordinates

– (x, y, 0) = Polar2Cartesian(r, φ)
• Disc

– p(u, v) = Polar2Cartesian(R v, 2 π u) // disc radius R

Parametric Surfaces
• Cylindrical Coordinates

– (x, y, z) = Cylindrical2Cartesian(r, φ, z)
• Cylinder

– p(u, v) = Cylindrical2Cartesian(r, 2 π u, H v) // cylinder height H

Parametric Surfaces
• Spherical Coordinates

– (x, y, z) = Spherical2Cartesian(r, θ, φ)
• Sphere

– p(u, v) = Spherical2Cartesian(r, π v, 2 π u)

Parametric Surfaces
• Triangle

– Use barycentric coordinates directly
– 𝑝 𝑢, 𝑣 = 1 − 𝑢 − 𝑣 𝑝& + 𝑢𝑝(+ 𝑣 𝑝!

0,1

0,0 1,0

p2

p1

u

v

0,1

0,0 1,0u

v

Parametric Surfaces
• Triangle Mesh

– Associate a predefined texture coordinate to each triangle vertex
• Interpolate texture coordinates using barycentric coordinates
• 𝑢 = 𝜆'𝑝'(+ 𝜆)𝑝)(+ 𝜆%𝑝%(
• 𝑣 = 𝜆'𝑝'* + 𝜆)𝑝)* + 𝜆%𝑝%*

– Texture mapped onto manifold
• Single texture shared by many triangles

Surface Parameterization
• Other Surfaces

– No intrinsic parameterization??

Intermediate Mapping
• Coordinate System Transform

– Express Cartesian coordinates into a given coordinate system
• 3D to 2D Projection

– Drop one coordinate
– Compute u and v from remaining 2 coordinates

Intermediate Mapping
• Planar Mapping

– Map to different Cartesian coordinate system
– (x’, y’, z’) = AffineTransformation(x, y, z)

• Orthogonal basis: translation + row-vector rotation matrix
• Non-orthogonal basis: translation + inverse column-vector matrix

– Drop z’, map u = x’, map v = y’
– E.g.: Issues when surface normal orthogonal to projection axis

x

y

z

x’

z’

y’

Intermediate Mapping
• Cylindrical Mapping

– Map to cylindrical coordinates (possibly after translation/rotation)
– (r, φ, z) = Cartesian2Cylindrical(x, y, z)
– Drop r, map u = φ / 2 π, map v = z / H
– Extension: add scaling factors: u = α φ / 2 π
– E.g.: Similar topology gives reasonable mapping

x

y

z

x’

z’

y’

Intermediate Mapping
• Spherical Mapping

– Map to spherical coordinates (possibly after translation/rotation)
– (r, θ, φ) = Cartesian2Spherical(x, y, z)
– Drop r, map u = φ / 2 π, map v = θ / π
– Extension: add scaling factors to both u and v
– E.g.: Issues in concave regions

x

y

z

x’

z’

y’

Two-Stage Mapping: Problems
• Problems

– May introduce undesired texture distortions if the intermediate
surface differs too much from the destination surface

– Still often used in practice because of its simplicity
• Example: Mapping point to plane along normal at the

point:

55

Projective Textures
• Project texture onto

object surfaces
– Slide projector

• Parallel or perspective
projection

• Use photographs (or
drawings) as textures
– Used a lot in film industry!

• Multiple images
– View-dependent texturing

(advanced topic)
• Perspective Mapping

– Re-project photo on its
3D environment

56

Projective Texturing: Examples

57

Slope-Based Mapping
• Definition

– Depends on surface normal and predefined vector
• Example

– α = n · ω
– return α flatColor + (1 - α) slopeColor;

Environment Map
• Spherical Map

– Photo of a reflective sphere (gazing ball)
– Photos with a fish-eye camera

• Only gives hemi-sphere mapping

Environment Map
• Latitude-Longitude Map

– Remapping 2 images of reflective sphere
– Photo with an environment camera

• Algorithm
– If no intersection found, use ray direction to find background color
– Cartesian coords of ray dir. → spherical coords → uv tex coords

Environment Map
• Cube Map

– Remapping 2 images of reflective sphere
– Photos with a perspective camera

• Algorithm
– Find main axis (-x, +x, -y, +y, -z, +z) of ray direction
– Use other 2 coordinates to access corresponding face texture

• Akin to a 90° projective light

Reflection Map Rendering
• Spherical parameterization
• O-mapping using reflected view ray intersection

62

Reflection Map Parameterization
• Spherical mapping

– Single image
– Bad utilization of the image area
– Bad scanning on the edge
– Artifacts, if map and image do not

have the same view point
• Double parabolic mapping

– Yields spherical parameterization
– Subdivide in 2 images (front-facing and back-facing sides)
– Less bias near the periphery
– Arbitrarily reusable
– Supported by OpenGL extensions

63

Reflection Mapping Example

64

Terminator II motion picture

Reflection Mapping Example II
• Reflection mapping with Phong reflection

– Two maps: diffuse & specular
– Diffuse: index by surface normal
– Specular: indexed by reflected view vector

65

RenderMan
Companion

Light Maps
• Light maps (e.g. in Quake)

– Pre-calculated illumination (local irradiance)
• Often very low resolution: smoothly varying

– Multiplication of irradiance with base texture
• Diffuse reflectance only

– Provides surface radiosity
• View-independent out-going radiance

– Animated light maps
• Animated shadows, moving light spots, etc…

66

Reflectance Irradiance Radiosity
Representing radiosity

in a mesh or texture

mesh

texture

𝐵 𝑥 = 𝜌 𝑥 𝐸(𝑥) = 𝜋𝐿> 𝑥

• Modulation of the normal vector
– Surface normals changed only

• Influences shading only
• No self-shadowing, contour is not altered

Bump Mapping

67

Bump Mapping
• Original surface: O(u,v)

– Surface normals are known
• Bump map: B(u,v) ϵ R

– Surface is offset in normal direction
according to bump map intensity

– New normal directions N’(u,v) are
calculated based on virtually displaced
surface O’(u,v)

– Original surface is rendered with new
normals N’(u,v)

68
Grey-valued texture used for bump height

Bump Mapping

– Normal is cross-product of derivatives:

– If B is small (i.e., the bump map
displacement function is small
compared to its spatial extent) the last
term in each equation can be ignored

– The first term is the normal to the
surface and the last is zero, giving:

69

𝑂# 𝑢, 𝑣 = 𝑂 𝑢, 𝑣 + 𝐵 𝑢, 𝑣
𝑁
|𝑁|

𝑂!" = 𝑂! + 𝐵!
𝑁
|𝑁|

+ 𝐵
𝑁
𝑁 !

𝑂*# = 𝑂* + 𝐵*
𝑁
|𝑁|

+ 𝐵
𝑁
𝑁 *

𝑁! 𝑢, 𝑣

= 𝑂"×𝑂# + 𝐵"
𝑁
|𝑁|

×𝑂# + 𝐵# 𝑂"×
𝑁
𝑁

+ 𝐵"𝐵#
𝑁×𝑁
𝑁 $

𝐷 = 𝐵(𝑁×𝑂* − 𝐵* 𝑁×𝑂(
𝑁# = 𝑁 + 𝐷

Texture Examples
• Complex optical effects

– Combination of multiple texture effects

70

RenderMan Companion

Billboards / Transparency Map
• Single textured polygons

– Often with opacity texture
– Rotates, always facing viewer
– Used for rendering distant objects
– Best results if approximately

radially or spherically symmetric
• Multiple textured polygons

– Azimuthal orientation: different orientations
– Complex distribution: trunk, branches, …

71

Opacity texture

