
Philipp Slusallek

Computer Graphics

- Spatial Index Structures -

Motivation
• Tracing rays in O(n) is too expensive

– Need hundreds of millions rays per second
– Scenes consist of millions of triangles

• Reduce complexity through pre-sorting data
– Spatial index structures

• Dictionaries of objects in 3D space
– Eliminate intersection candidates as early as possible

• Can reduce complexity to O(log n) on average
– Worst case complexity is still O(n)

• Private exercise: Come up with a worst case example

Acceleration Strategies
• Faster ray-primitive intersection algorithms

– Does not reduce complexity, “only” a constant factor (but relevant!)

• Less intersection candidates
– Spatial indexing structures
– (Hierarchically) partition space or partition the set of objects, e.g.:

• Grids, hierarchies of grids
• Octrees
• Binary space partitions (BSP) or kd-trees
• Bounding volume hierarchies (BVH)

– Directional partitioning (not very useful)
– 5D partitioning (partition space and direction, once a big hype)

• Close to pre-computing visibility for all points and all directions

• Tracing of continuous bundles of rays
– Exploits coherence of neighboring rays, amortize cost among them

• Frustum tracing, cone tracing, beam tracing, ...

Aggregate Objects
• Object that holds groups of objects
• Conceptually stores bounding volume (e.g. box) &

a list of children
• Useful for instancing (placing collection of objects

repeatedly) & for Bounding Volume Hierarchies (BVHs)

pointers

Bounding Volumes
• Observation

– BVs (tightly) bound geometry, ray must intersect BV first
– Only compute intersection if ray hits BV

• Sphere
– Very fast intersection computation
– Often inefficient because it is too large

• Axis-aligned bounding box (AABB)
– Very simple intersection computation (min-max)
– Sometimes too large

• Non-axis-aligned box
– A.k.a. „oriented bounding box (OBB)“
– Often better fit
– Fairly complex computation

• Slabs
– Pairs of half spaces (in addition to 3 for AABB)
– Fixed number of orientations/axes: e.g. x+y, x-y, etc.

• Pretty fast computation, but more expensive then AABB

Bounding Volume Hierarchies (BVHs)
• Definition

– Hierarchical partitioning of a set of objects

• BVHs form a tree structure
– Each inner node stores a volume enclosing all sub-trees
– Each leaf stores a volume and pointers to objects
– All nodes are aggregate objects
– Usually every object appears once in the tree

• Except in case of instancing

Bounding Volume Hierarchies (BVHs)
• Hierarchy of groups of objects

BVH traversal (1)
• Accelerate ray tracing

– By eliminating intersection candidates

• Traverse the tree
– Consider only objects in leaves intersected by the ray

BVH traversal (2)
• Accelerate ray tracing

– By eliminating intersection candidates

• Traverse the tree
– Consider only objects in leaves intersected by the ray

BVH traversal (3)
• Accelerate ray tracing

– By eliminating intersection candidates

• Traverse the tree
– Consider only objects in leaves intersected by the ray
– Cheap traversal instead of costly intersection

Bounding Volume Hierarchies (BVHs)
• BV can also overlap

– Cannot terminate on first intersection found
– There could be an earlier object in an overlapping BV
– Can only terminate, once all remaining BVs are completely

behind the intersection

Object vs. Space Partitioning
• Object partitioning

– BVHs hierarchical partition objects into groups
– Create spatial index by spatially bounding each subgroup
– Subgroups may be overlapping !

• Space partitioning
– (Hierarchically) partitions space in subspaces
– Subspaces are non-overlapping and completely fill parent space
– Organize them in a structure (tree or table)

• Next: Space partitioning

Uniform Grids
• Definition

– Regular partitioning of space into equal-size cells
– Non-hierarchical structure

• Resolution
– Want: number of cells is
– Resolution in each dimension proportional to
– Usually

• d: diagonal of box (a vector)
• n: #objects
• V: volume of Bbox
• : density (user-defined)

Uniform Grid Traversal
• Grids are cheap to traverse

– E.g. 3D-DDA or modified Bresenham algorithm (see later)
– Step through the structure cell by cell
– Intersect with primitives inside non-empty cells

• Mailboxing
– Single primitive can be referenced

in many cells
– Avoid multiple intersection computations
– Keep track of intersection tests

• Per-object cache of ray IDs
– Problem with concurrent access

• Per-ray cache of object IDs
– Data local to a ray (better!)

Nested Grids
• Problem: „Teapot in a stadium”

– Uniform grids cannot adapt to local density of objects

• Nested Grids
– Hierarchy of uniform grids: Each cell is itself a grid
– Fast algorithms for building & traversal (Kalojanov et al. ´09,´11)

Cells of uniform grid
(colored by # of intersection tests)

Same for two-level grid

Irregular Grids
• Irregular grids can accel traversal [Perard-Gayot´17]

– Build (hierarchical) base grid (power of 2, adapts to scene)
• Base grid defines minimum resolution for computation

– Neighboring cells can be merged (eagerly)
• As long as no change in set of primitives

– Can also expand cells (for exit operations)
• As long as neighbors contain

only subset of cells primitives
• Allows for making larger steps

– Approach needs more memory

16

Construction (merge & expand)

8 steps 5 steps 4 steps

Traversal (simplified, finest level: 12 steps)

Octrees and Quadtrees
• Octree

– Hierarchical space partitioning (“simplest hierarchical grid”)
– Each inner node contains 8 equally sized voxels (2 x 2 x 2 grid)

• Quadtree
– 2D “octree”

• Adaptive subdivision
– Adjust depth to local scene complexity

BSP Trees
• Definition

– Binary Space Partition Tree (BSP)
– Recursively split space with planes

• Arbitrary split positions
• Arbitrary orientations

• Used for visibility computation
– E.g. in games (Doom!)
– Enumerating objects

in back to front order

kD-Trees
• Definition

– Axis-Aligned Binary Space Partition Tree
– Recursively split space with axis-aligned planes

• Arbitrary split positions
• Greatly simplifies/accelerates computations

kD-Tree Example (1)

kD-Tree Example (2)

A

A

kD-Tree Example (3)

A

A

B

B

kD-Tree Example (4)

A

A

B

B

L2L1

kD-Tree Example (5)

A

A

B

B

L2L1

C

C

kD-Tree Example (6)

A

A

B

B

L2L1

C

C

D

D

L3

kD-Tree Example (7)

A

A

B

B

L2L1

C

C

D

D

L3

L4 L5

kD-Tree Traversal
• “Front-to-back” traversal

– Traverse child nodes in order along rays

• Termination criterion
– Traversal can be terminated as soon as surface intersection is

found in the current node

• Maintain stack of sub-trees still to traverse
– More efficient than recursive function calls
– Algorithms with no or limited stacks are also available (for GPUs)

kD-Tree Traversal (1)

A

A

B

B

L2L1

C

C

D

D

L3

L4 L5

Current:

Stack:

A

kD-Tree Traversal (2)

A

A

B

B

L2L1

C

C

D

D

L3

L4 L5

Current:

Stack:

B

C

kD-Tree Traversal (3)

A

A

B

B

L2L1

C

C

D

D

L3

L4 L5

Current:

Stack:

L2

C

kD-Tree Traversal (4)

A

A

B

B

L2L1

C

C

D

D

L3

L4 L5

Current:

Stack: C

kD-Tree Traversal (5)

A

A

B

B

L2L1

C

C

D

D

L3

L4 L5

Current:

Stack:

C

kD-Tree Traversal (6)

A

A

B

B

L2L1

C

C

D

D

L3

L4 L5

Current:

Stack:

D

L3

kD-Tree Traversal (7)

A

A

B

B

L2L1

C

C

D

D

L3

L4 L5

Current:

Stack:

L4

L3L5

kD-Tree Traversal (8)

A

A

B

B

L2L1

C

C

D

D

L3

L4 L5

Current:

Stack: L3L5

kD-Tree Traversal (9)

A

A

B

B

L2L1

C

C

D

D

L3

L4 L5

Current: Result:

Stack: L3L5

kD-Tree Traversal (10)

A

A

B

B

L2L1

C

C

D

D

L3

L4 L5

Current: Result:

Stack: CANNOT terminate !!!L3L5

kD-Tree Traversal (11)

A

A

B

B

L2L1

C

C

D

D

L3

L4 L5

Current: Result:

Stack: CANNOT terminate !!!L3L5

kD-Tree Properties
• kD-Trees

– Split space instead of sets of objects
– Split into disjoint, fully covering regions

• Adaptive
– Can handle the “Teapot in a Stadium” well

• Compact representation
– Relatively little memory overhead per node
– Node stores:

• Split location (1D), child pointer (to array with both children),
axis-flag (often merged into pointer)

• Can be compactly stored in 8 bytes
– But replication of objects in (possibly) many nodes

• Can greatly increase memory usage

• Cheap Traversal
– One subtraction, multiplication, decision, and fetch
– But many more cycles due to data dependencies

• Latency can harm you!

Overview: kD-Trees Construction
• Adaptive
• Compact
• Cheap traversal

Exploit Advantages
• Adaptive

– You have to build a good tree

• Compact
– At least use the compact node representation (8-byte)
– You can’t be fetching whole cache lines every time

• Cheap traversal
– No sloppy inner loops! (one subtract, one multiply!)

Building kD-trees
• Given:

– Axis-aligned bounding box (“cell”)
– List of geometric primitives (triangles?) touching cell

• Core operation:
– Pick an axis-aligned plane to split the cell into two parts
– Sift geometry into two batches (possible some duplication)
– Recurse

Building kD-trees
• Given:

– Axis-aligned bounding box (“cell”)
– List of geometric primitives (triangles?) touching cell

• Core operation:
– Pick an axis-aligned plane to split the cell into two parts
– Sift geometry into two batches (some redundancy)
– Recurse
– Termination criteria!

“Intuitive” kD-Tree Building
• Split Axis

– Round-robin; largest extent

• Split Location
– Middle of extent; median of geometry (balanced tree)

• Termination
– Target # of primitives, limited tree depth

“Intuitive” kD-Tree Building
• Split Axis

– Round-robin; largest extent

• Split Location
– Middle of extent; median of geometry (balanced tree)

• Termination
– Target # of primitives, limited tree depth

• All of these techniques are NOT very clever

Building good kD-trees
• What split do we really want?

– Clever Idea: The one that makes ray tracing cheap
– Write down an expression for the cost and minimize it

 Cost Optimization

• What is the cost of tracing a ray through a cell?
– Surface Area Heuristic (SAH)

• Cost of traversal of the inner node itself, plus
• Relative probability of hitting one child, times
• Cost of intersecting with that child
• Same for other child

Cost(cell) = C_trav + Prob(hit L) * Cost(L) + Prob(hit R) * Cost(R)

Splitting with Cost in Mind

Split in the middle

• Makes the L & R probabilities equal
• Pays no attention to the L & R costs

Split at the Median

• Makes the L & R costs equal
• Pays no attention to the L & R probabilities

Cost-Optimized Split

• Automatically and rapidly isolates complexity
• Produces large chunks of empty space

Building good kD-trees
• Need the probabilities

– Turns out to be proportional to surface area (SA)
• Sum of area of all sides
• True for random rays
• Proof: Left as an exercise for the reader :-)

– Not the volume

• Need the child cell costs
– Simple triangle count works great (very rough approx.)
– Many attempts to improve this did not work out

Cost(c) = C_trav + Prob(hit L) * Cost(L) + Prob(hit R) * Cost(R)

 = C_trav + SA(L)/SA(c) * TriCount(L) + SA(R)/SA(c) * TriCount(R)

Termination Criteria
• When should we stop splitting?

– Another clever idea: When splitting does not help any more.
– Use the cost estimates in your termination criteria

• Threshold of cost improvement
– But stretch decision over multiple levels, to avoid local minima

• Threshold of cell size
– Absolute (!) probability so small there is no point in going on

Building good kD-trees
• Basic build algorithm

– Pick an axis, or optimize across all three
– Build a set of candidate split locations

• Based on BBox of triangles (in/out events)
– One can show that SAH cannot have minima unless #triangles changes

• Or predefined locations (fixed number of bins across bbox axis)
– Sort the triangle events or bin them
– Walk through candidates to find minimum cost split

• Characteristics of the tree you are looking for
– Deep and thin
– Typical depth of 50-100,
– About 2 triangles per leaf,
– Big empty cells

Building kD-trees quickly
• Very important to build good trees first

– Otherwise you have no basis for comparison

• Don’t give up cost optimization!
– Use the math, Luke…

• Luckily, lots of flexibility…
– Axis picking (“hack” pick vs. full optimization)
– Candidate picking (bboxes, exact; binning, sorting)
– Termination criteria (“knob” controlling tradeoff)

Building kD-trees quickly
• Remember, profile first! Where’s the time going?

– Split personality
• Memory traffic all at the top (NO cache misses at bottom)

– Sifting through bajillion triangles to pick one split (!)
– Hierarchical building?

• Computation mostly at the bottom
– Lots of leaves, need more exact candidate info
– Lazy building?

• Change criteria during the build?

Fast Ray Tracing w/ kD-Trees
• Adaptive

– Build a cost-optimized kD-tree w/ the surface area heuristic

• Compact
• Cheap traversal

What’s in a node?
• A kD-tree internal node needs:

– Am I a leaf?
– Split axis
– Split location
– Pointers to children

Compact (8-byte) Nodes
• kD-Tree node can be packed into 8 bytes

– Split location
• 32 bit float

– Always two children, put them side-by-side
• Only one 32-bit pointer

– Leaf flag + Split axis
• 2 bits

Compact (8-byte) Nodes
• kD-Tree node can be packed into 8 bytes

– Split location
• 32 bit float

– Always two children, put them side-by-side
• Only one 32-bit pointer

– Leaf flag + Split axis
• 2 bits

• So close! Sweep those 2 bits under the rug…
– Encode bits in lowest 2 bits of pointer
– Bits are not used as structure is multiple of 8, anyway

No Bounding Box!
• kD-Tree node corresponds to an AABB
• Does not mean it has to *contain* one

– Would be 24 bytes: 4X explosion (!)

Memory Layout
• Cache lines are much bigger than 8 bytes!

– Advantage of compactness lost with poor layout

• Pretty easy to do something reasonable
– Building depth first, watching memory allocator

Other Data
• Memory should be separated by rate of access

– Frames
– << Pixels
– << Samples [Ray Trees]
– << Rays [Shading (not quite)]
– << Triangle intersections
– << Tree traversal steps

• Example:
– Store pre-processed triangle data
– Store shading info of triangle separately

• Object-orientation comes to bite you!
– …

Fast Ray Tracing w/ kD-Trees
• Adaptive

– Build a cost-optimized kD-tree w/ the surface area heuristic

• Compact
– Use an 8-byte node
– Lay out your memory in a cache-friendly way

• Cheap traversal

kD-Tree Traversal Operation
• Implicitly maintain the bounds of the current node
• Store only necessary info on the stack

– Entry and exit distance to node (t_near and t_far)

• Three cases
– t_split > t_far: Go only to near node
– t_near < t_split < t_far Go to both (use stack)
– t_split < t_near Go only to far node

• Near and far depend on direction of ray!

kD-Tree Traversal: Inner Loop
Given (node, t_near, t_far)

while (! node.isLeaf())

{

t_at_split = (split_location - ray->origin[split_axis]) * ray->inv_dir[split_axis]

if (t_split <= t_min)

continue with (far child, t_split, t_far) // hit either far child or none

if (t_split >= t_max)

continue with (near child, t_min, t_split) // hit near child only

// hit both children

push (far child, t_split, t_max) onto stack

continue with (near child, t_min, t_split)

}

Optimize Your Inner Loop
• kD-Tree traversal is the most critical kernel

– It happens about a zillion times
– It’s tiny
– Sloppy coding will show up

• Optimize, Optimize, Optimize
– Remove recursion and minimize stack operations
– Other standard tuning & tweaking

Can it go faster?
• How do you make fast code go faster?
• Parallelize it!

– Trace rays on multiple cores in parallel
• Ray tracing is “embarrassingely parallel”

– Use SIMD instructions
• Traverse many rays (packets), test with one BV (for BVHs)
• Traverse one ray, but intersect with many BVs (needs wide BVH!)
• Hybrid mix of both with adaptive switch

– Not covered here

Directional Partitioning
• Applications

– Useful only for rays that start from a single point
• Camera
• Point light sources

– Preprocessing of visibility
– Requires scan conversion of geometry (see later)1

• For each object locate where it is visible
• Expensive and linear in # of objects

• Generally not used for primary rays

• Variation: Light buffer (for shadow rays)
– Lazy and conservative evaluation
– Store last found occluder in

directional structure
– Test entry first for next shadow test

Ray Classification
• Partitioning of space and direction [Arvo & Kirk´87]

– Roughly pre-computes visibility for the entire scene
• What is visible from each point in each direction?

– Very costly preprocessing, cheap traversal
• Improper trade-off between preprocessing and run-time

– Memory hungry, even with lazy evaluation
– Seldom used in practice

Packet Tracing
• Approach

– Combine many similar rays (e.g. primary or shadow rays)
– Trace them together in SIMD fashion

• All rays perform the same traversal operations
• All rays intersect the same geometry
• Can use SIMD instructions in modern processors

– Exposes coherence between rays
• All rays touch similar spatial indices
• Loaded data can be reused (in registers & cache)
• More computation per recursion step → better optimization

– Overhead
• Rays will perform unnecessary operations
• Overhead low for coherent and small set of rays (e.g. up to 4x4 rays)

• Needs an API that provides coherent sets of rays

Beam Tracing

Beam and Cone Tracing
• General idea:

– Trace continuous bundles of rays

• Cone Tracing:
– Approximate collection of ray with cone(s)
– Subdivide into smaller cones if necessary

• Beam Tracing:
– Exactly represent a ray bundle with pyramid
– Create new beams at intersections (polygons)

• Problems:
– Clipping of beams?
– Good approximations?
– How to compute intersections?

• Not really practical !!

Frustum Tracing
• Bound set of rays with frustum (NOT frustrum!!)

– Only during traversal
– API needs to provide coherent groups of rays

• Possibly hierarchically

• Traverse spatial index with frustum
– Small overhead (largely avoided by SIMD)

• Compute with 4 corner “rays”
– Avoids traversing many rays individually

• Particularly beneficial in the upper levels of spatial index
– Switch to (packets of) rays when needed (intersection)

• Might be able to only use subset (e.g. based on extend of triangle)
– Split frustum hierarchically and traverse separately in lower levels

• Avoids overhead of carrying to many rays into small nodes

• E.g. fast primary ray traversal by W. Hunt (Oculus)

73

	Computer Graphics - Spatial Index Structures -
	Motivation
	Acceleration Strategies
	Aggregate Objects
	Bounding Volumes
	Bounding Volume Hierarchies (BVHs)
	Bounding Volume Hierarchies (BVHs) (2)
	BVH traversal (1)
	BVH traversal (2)
	BVH traversal (3)
	Bounding Volume Hierarchies (BVHs) (3)
	Object vs. Space Partitioning
	Uniform Grids
	Uniform Grid Traversal
	Nested Grids
	Irregular Grids
	Octrees and Quadtrees
	BSP Trees
	kD-Trees
	kD-Tree Example (1)
	kD-Tree Example (2)
	kD-Tree Example (3)
	kD-Tree Example (4)
	kD-Tree Example (5)
	kD-Tree Example (6)
	kD-Tree Example (7)
	kD-Tree Traversal
	kD-Tree Traversal (1)
	kD-Tree Traversal (2)
	kD-Tree Traversal (3)
	kD-Tree Traversal (4)
	kD-Tree Traversal (5)
	kD-Tree Traversal (6)
	kD-Tree Traversal (7)
	kD-Tree Traversal (8)
	kD-Tree Traversal (9)
	kD-Tree Traversal (10)
	kD-Tree Traversal (11)
	kD-Tree Properties
	Overview: kD-Trees Construction
	Exploit Advantages
	Building kD-trees
	Building kD-trees (2)
	“Intuitive” kD-Tree Building
	“Intuitive” kD-Tree Building (2)
	Building good kD-trees
	Splitting with Cost in Mind
	Split in the middle
	Split at the Median
	Cost-Optimized Split
	Building good kD-trees (2)
	Termination Criteria
	Building good kD-trees (3)
	Building kD-trees quickly
	Building kD-trees quickly (2)
	Fast Ray Tracing w/ kD-Trees
	What’s in a node?
	Compact (8-byte) Nodes
	Compact (8-byte) Nodes (2)
	No Bounding Box!
	Memory Layout
	Other Data
	Fast Ray Tracing w/ kD-Trees (2)
	kD-Tree Traversal Operation
	kD-Tree Traversal: Inner Loop
	Optimize Your Inner Loop
	Can it go faster?
	Directional Partitioning
	Ray Classification
	Packet Tracing
	Beam Tracing
	Beam and Cone Tracing
	Frustum Tracing

