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Motivation
• Tracing rays in O(n) is too expensive

– Need hundreds of millions rays per second
– Scenes consist of millions of triangles

• Reduce complexity through pre-sorting data
– Spatial index structures

• Dictionaries of objects in 3D space
– Eliminate intersection candidates as early as possible

• Can reduce complexity to O(log n) on average
– Worst case complexity is still O(n)

• Private exercise: Come up with a worst case example



Acceleration Strategies
• Faster ray-primitive intersection algorithms

– Does not reduce complexity, “only” a constant factor (but relevant!)

• Less intersection candidates
– Spatial indexing structures
– (Hierarchically) partition space or partition the set of objects, e.g.:

• Grids, hierarchies of grids
• Octrees
• Binary space partitions (BSP) or kd-trees
• Bounding volume hierarchies (BVH)

– Directional partitioning (not very useful)
– 5D partitioning (partition space and direction, once a big hype)

• Close to pre-computing visibility for all points and all directions

• Tracing of continuous bundles of rays
– Exploits coherence of neighboring rays, amortize cost among them

• Frustum tracing, cone tracing, beam tracing, ...



Aggregate Objects
• Object that holds groups of objects
• Conceptually stores bounding volume (e.g. box) &

a list of children
• Useful for instancing (placing collection of objects 

repeatedly) & for Bounding Volume Hierarchies (BVHs)

pointers



Bounding Volumes
• Observation

– BVs (tightly) bound geometry, ray must intersect BV first
– Only compute intersection if ray hits BV

• Sphere
– Very fast intersection computation
– Often inefficient because it is too large

• Axis-aligned bounding box (AABB)
– Very simple intersection computation (min-max)
– Sometimes too large

• Non-axis-aligned box
– A.k.a. „oriented bounding box (OBB)“
– Often better fit
– Fairly complex computation

• Slabs
– Pairs of half spaces (in addition to 3 for AABB)
– Fixed number of orientations/axes: e.g. x+y, x-y, etc.

• Pretty fast computation, but more expensive then AABB



Bounding Volume Hierarchies (BVHs)
• Definition

– Hierarchical partitioning of a set of objects

• BVHs form a tree structure
– Each inner node stores a volume enclosing all sub-trees
– Each leaf stores a volume and pointers to objects
– All nodes are aggregate objects
– Usually every object appears once in the tree

• Except in case of instancing



Bounding Volume Hierarchies (BVHs)
• Hierarchy of groups of objects



BVH traversal (1)
• Accelerate ray tracing

– By eliminating intersection candidates

• Traverse the tree
– Consider only objects in leaves intersected by the ray



BVH traversal (2)
• Accelerate ray tracing

– By eliminating intersection candidates

• Traverse the tree
– Consider only objects in leaves intersected by the ray



BVH traversal (3)
• Accelerate ray tracing

– By eliminating intersection candidates

• Traverse the tree
– Consider only objects in leaves intersected by the ray
– Cheap traversal instead of costly intersection



Bounding Volume Hierarchies (BVHs)
• BV can also overlap

– Cannot terminate on first intersection found
– There could be an earlier object in an overlapping BV
– Can only terminate, once all remaining BVs are completely 

behind the intersection



Object vs. Space Partitioning
• Object partitioning

– BVHs hierarchical partition objects into groups
– Create spatial index by spatially bounding each subgroup
– Subgroups may be overlapping !

• Space partitioning
– (Hierarchically) partitions space in subspaces
– Subspaces are non-overlapping and completely fill parent space
– Organize them in a structure (tree or table)

• Next: Space partitioning



Uniform Grids
• Definition

– Regular partitioning of space into equal-size cells
– Non-hierarchical structure

• Resolution 
– Want: number of cells is 
– Resolution in each dimension proportional to 
– Usually 

• d: diagonal of box (a vector)
• n: #objects
• V: volume of Bbox
• : density (user-defined)



Uniform Grid Traversal
• Grids are cheap to traverse

– E.g. 3D-DDA or modified Bresenham algorithm (see later)
– Step through the structure cell by cell
– Intersect with primitives inside non-empty cells

• Mailboxing
– Single primitive can be referenced

in many cells
– Avoid multiple intersection computations
– Keep track of intersection tests

• Per-object cache of ray IDs
– Problem with concurrent access

• Per-ray cache of object IDs
– Data local to a ray (better!)



Nested Grids
• Problem: „Teapot in a stadium”

– Uniform grids cannot adapt to local density of objects

• Nested Grids
– Hierarchy of uniform grids: Each cell is itself a grid
– Fast algorithms for building & traversal (Kalojanov et al. ´09,´11)

Cells of uniform grid
(colored by # of intersection tests)

Same for two-level grid



Irregular Grids
• Irregular grids can accel traversal [Perard-Gayot´17]

– Build (hierarchical) base grid (power of 2, adapts to scene)
• Base grid defines minimum resolution for computation

– Neighboring cells can be merged (eagerly)
• As long as no change in set of primitives

– Can also expand cells (for exit operations)
• As long as neighbors contain

only subset of cells primitives
• Allows for making larger steps

– Approach needs more memory

16

Construction (merge & expand)

8 steps 5 steps 4 steps

Traversal (simplified, finest level: 12 steps)



Octrees and Quadtrees
• Octree

– Hierarchical space partitioning (“simplest hierarchical grid”)
– Each inner node contains 8 equally sized voxels (2 x 2 x 2 grid) 

• Quadtree
– 2D “octree”

• Adaptive subdivision
– Adjust depth to local scene complexity



BSP Trees
• Definition

– Binary Space Partition Tree (BSP)
– Recursively split space with planes

• Arbitrary split positions
• Arbitrary orientations

• Used for visibility computation
– E.g. in games (Doom!)
– Enumerating objects

in back to front order



kD-Trees
• Definition

– Axis-Aligned Binary Space Partition Tree
– Recursively split space with axis-aligned planes

• Arbitrary split positions
• Greatly simplifies/accelerates computations



kD-Tree Example (1)



kD-Tree Example (2)
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kD-Tree Example (3)

A

A

B

B



kD-Tree Example (4)
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kD-Tree Example (5)
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kD-Tree Example (6)

A

A

B

B

L2L1

C

C

D

D

L3



kD-Tree Example (7)
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kD-Tree Traversal
• “Front-to-back” traversal

– Traverse child nodes in order along rays

• Termination criterion
– Traversal can be terminated as soon as surface intersection is 

found in the current node

• Maintain stack of sub-trees still to traverse
– More efficient than recursive function calls
– Algorithms with no or limited stacks are also available (for GPUs)



kD-Tree Traversal (1)
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kD-Tree Traversal (2)
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kD-Tree Traversal (3)
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kD-Tree Traversal (4)
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kD-Tree Traversal (5)
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kD-Tree Traversal (6)
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kD-Tree Traversal (7)
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kD-Tree Traversal (8)
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kD-Tree Traversal (9)
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kD-Tree Traversal (10)
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kD-Tree Traversal (11)

A

A

B

B

L2L1

C

C

D

D

L3

L4 L5

Current:                      Result:
                      
Stack:       CANNOT terminate !!!L3L5



kD-Tree Properties
• kD-Trees

– Split space instead of sets of objects
– Split into disjoint, fully covering regions

• Adaptive
– Can handle the “Teapot in a Stadium” well 

• Compact representation
– Relatively little memory overhead per node
– Node stores:

• Split location (1D), child pointer (to array with both children),
axis-flag (often merged into pointer)

• Can be compactly stored in 8 bytes
– But replication of objects in (possibly) many nodes

• Can greatly increase memory usage

• Cheap Traversal
– One subtraction, multiplication, decision, and fetch
– But many more cycles due to data dependencies

• Latency can harm you!



Overview: kD-Trees Construction
• Adaptive
• Compact
• Cheap traversal



Exploit Advantages
• Adaptive

– You have to build a good tree

• Compact
– At least use the compact node representation (8-byte)
– You can’t be fetching whole cache lines every time

• Cheap traversal
– No sloppy inner loops! (one subtract, one multiply!)



Building kD-trees
• Given:

– Axis-aligned bounding box (“cell”)
– List of geometric primitives (triangles?) touching cell

• Core operation:
– Pick an axis-aligned plane to split the cell into two parts
– Sift geometry into two batches (possible some duplication)
– Recurse



Building kD-trees
• Given:

– Axis-aligned bounding box (“cell”)
– List of geometric primitives (triangles?) touching cell

• Core operation:
– Pick an axis-aligned plane to split the cell into two parts
– Sift geometry into two batches (some redundancy)
– Recurse
– Termination criteria!



“Intuitive” kD-Tree Building
• Split Axis

– Round-robin; largest extent

• Split Location
– Middle of extent; median of geometry (balanced tree)

• Termination
– Target # of primitives, limited tree depth



“Intuitive” kD-Tree Building
• Split Axis

– Round-robin; largest extent

• Split Location
– Middle of extent; median of geometry (balanced tree)

• Termination
– Target # of primitives, limited tree depth

• All of these techniques are NOT very clever



Building good kD-trees
• What split do we really want?

– Clever Idea:  The one that makes ray tracing cheap
– Write down an expression for the cost and minimize it

 Cost Optimization

• What is the cost of tracing a ray through a cell?
– Surface Area Heuristic (SAH)

• Cost of traversal of the inner node itself, plus
• Relative probability of hitting one child, times
• Cost of intersecting with that child
• Same for other child

Cost(cell) = C_trav + Prob(hit L) * Cost(L) + Prob(hit R) * Cost(R)



Splitting with Cost in Mind



Split in the middle

• Makes the L & R probabilities equal
• Pays no attention to the L & R costs



Split at the Median

• Makes the L & R costs equal
• Pays no attention to the L & R probabilities



Cost-Optimized Split

• Automatically and rapidly isolates complexity
• Produces large chunks of empty space



Building good kD-trees
• Need the probabilities

– Turns out to be proportional to surface area (SA)
• Sum of area of all sides
• True for random rays
• Proof: Left as an exercise for the reader :-)

– Not the volume

• Need the child cell costs
– Simple triangle count works great (very rough approx.)
– Many attempts to improve this did not work out

Cost(c) = C_trav + Prob(hit L) * Cost(L) + Prob(hit R) * Cost(R)

             = C_trav + SA(L)/SA(c) * TriCount(L) + SA(R)/SA(c) * TriCount(R)



Termination Criteria
• When should we stop splitting?

– Another clever idea:  When splitting does not help any more.
– Use the cost estimates in your termination criteria

• Threshold of cost improvement
– But stretch decision over multiple levels, to avoid local minima

• Threshold of cell size
– Absolute (!) probability so small there is no point in going on



Building good kD-trees
• Basic build algorithm

– Pick an axis, or optimize across all three
– Build a set of candidate split locations

• Based on BBox of triangles (in/out events) 
– One can show that SAH cannot have minima unless #triangles changes

• Or predefined locations (fixed number of bins across bbox axis)
– Sort the triangle events or bin them
– Walk through candidates to find minimum cost split

• Characteristics of the tree you are looking for
– Deep and thin
– Typical depth of 50-100,
– About 2 triangles per leaf,
– Big empty cells



Building kD-trees quickly
• Very important to build good trees first

– Otherwise you have no basis for comparison

• Don’t give up cost optimization!
– Use the math, Luke…

• Luckily, lots of flexibility…
– Axis picking (“hack” pick vs. full optimization)
– Candidate picking (bboxes, exact; binning, sorting)
– Termination criteria (“knob” controlling tradeoff)



Building kD-trees quickly
• Remember, profile first!  Where’s the time going?

– Split personality
• Memory traffic all at the top (NO cache misses at bottom)

– Sifting through bajillion triangles to pick one split (!)
– Hierarchical building?

• Computation mostly at the bottom
– Lots of leaves, need more exact candidate info
– Lazy building?

• Change criteria during the build?



Fast Ray Tracing w/ kD-Trees
• Adaptive

– Build a cost-optimized kD-tree w/ the surface area heuristic

• Compact
• Cheap traversal



What’s in a node?
• A kD-tree internal node needs:

– Am I a leaf?
– Split axis
– Split location
– Pointers to children



Compact (8-byte) Nodes
• kD-Tree node can be packed into 8 bytes

– Split location
• 32 bit float

– Always two children, put them side-by-side
• Only one 32-bit pointer

– Leaf flag + Split axis
• 2 bits



Compact (8-byte) Nodes
• kD-Tree node can be packed into 8 bytes

– Split location
• 32 bit float

– Always two children, put them side-by-side
• Only one 32-bit pointer

– Leaf flag + Split axis
• 2 bits

• So close!  Sweep those 2 bits under the rug…
– Encode bits in lowest 2 bits of pointer
– Bits are not used as structure is multiple of 8, anyway



No Bounding Box!
• kD-Tree node corresponds to an AABB
• Does not mean it has to *contain* one

– Would be 24 bytes: 4X explosion (!)



Memory Layout
• Cache lines are much bigger than 8 bytes!

– Advantage of compactness lost with poor layout

• Pretty easy to do something reasonable
– Building depth first, watching memory allocator



Other Data
• Memory should be separated by rate of access

– Frames
– << Pixels
– << Samples [ Ray Trees ]
– << Rays [ Shading (not quite) ]
– << Triangle intersections
– << Tree traversal steps

• Example: 
– Store pre-processed triangle data
– Store shading info of triangle separately

• Object-orientation comes to bite you!
– …



Fast Ray Tracing w/ kD-Trees
• Adaptive

– Build a cost-optimized kD-tree w/ the surface area heuristic

• Compact
– Use an 8-byte node
– Lay out your memory in a cache-friendly way

• Cheap traversal



kD-Tree Traversal Operation
• Implicitly maintain the bounds of the current node
• Store only necessary info on the stack

– Entry and exit distance to node (t_near and t_far)

• Three cases
– t_split > t_far: Go only to near node
– t_near < t_split < t_far Go to both (use stack)
– t_split < t_near Go only to far node

• Near and far depend on direction of ray!



kD-Tree Traversal: Inner Loop
Given (node, t_near, t_far)

while ( ! node.isLeaf() ) 

{

t_at_split = ( split_location - ray->origin[split_axis] ) * ray->inv_dir[split_axis]

if  (t_split <= t_min)

continue with (far child, t_split, t_far)     // hit either far child or none

if (t_split >= t_max)

continue with (near child, t_min, t_split)     // hit near child only

// hit both children

push (far child, t_split, t_max) onto stack

continue with (near child, t_min, t_split)

}



Optimize Your Inner Loop
• kD-Tree traversal is the most critical kernel

– It happens about a zillion times
– It’s tiny
– Sloppy coding will show up

• Optimize, Optimize, Optimize
– Remove recursion and minimize stack operations
– Other standard tuning & tweaking



Can it go faster?
• How do you make fast code go faster?
• Parallelize it!

– Trace rays on multiple cores in parallel
• Ray tracing is “embarrassingely parallel”

– Use SIMD instructions
• Traverse many rays (packets), test with one BV (for BVHs)
• Traverse one ray, but intersect with many BVs (needs wide BVH!)
• Hybrid mix of both with adaptive switch

– Not covered here



Directional Partitioning
• Applications

– Useful only for rays that start from a single point
• Camera
• Point light sources

– Preprocessing of visibility
– Requires scan conversion of geometry (see later)1

• For each object locate where it is visible
• Expensive and linear in # of objects

• Generally not used for primary rays

• Variation: Light buffer (for shadow rays)
– Lazy and conservative evaluation
– Store last found occluder in

directional structure
– Test entry first for next shadow test



Ray Classification
• Partitioning of space and direction [Arvo & Kirk´87]

– Roughly pre-computes visibility for the entire scene
• What is visible from each point in each direction?

– Very costly preprocessing, cheap traversal
• Improper trade-off between preprocessing and run-time

– Memory hungry, even with lazy evaluation
– Seldom used in practice



Packet Tracing
• Approach

– Combine many similar rays (e.g. primary or shadow rays)
– Trace them together in SIMD fashion

• All rays perform the same traversal operations
• All rays intersect the same geometry
• Can use SIMD instructions in modern processors

– Exposes coherence between rays
• All rays touch similar spatial indices
• Loaded data can be reused (in registers & cache)
• More computation per recursion step → better optimization

– Overhead
• Rays will perform unnecessary operations
• Overhead low for coherent and small set of rays (e.g. up to 4x4 rays)

• Needs an API that provides coherent sets of rays



Beam Tracing



Beam and Cone Tracing
• General idea:

– Trace continuous bundles of rays

• Cone Tracing:
– Approximate collection of ray with cone(s)
– Subdivide into smaller cones if necessary

• Beam Tracing:
– Exactly represent a ray bundle with pyramid
– Create new beams at intersections (polygons)

• Problems:
– Clipping of beams?
– Good approximations?
– How to compute intersections?

• Not really practical !!



Frustum Tracing
• Bound set of rays with frustum (NOT frustrum!!)

– Only during traversal
– API needs to provide coherent groups of rays

• Possibly hierarchically

• Traverse spatial index with frustum
– Small overhead (largely avoided by SIMD)

• Compute with 4 corner “rays”
– Avoids traversing many rays individually

• Particularly beneficial in the upper levels of spatial index
– Switch to (packets of) rays when needed (intersection)

• Might be able to only use subset (e.g. based on extend of triangle)
– Split frustum hierarchically and traverse separately in lower levels

• Avoids overhead of carrying to many rays into small nodes

• E.g. fast primary ray traversal by W. Hunt (Oculus)
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