Computer Graphics

Camera & Projective Transformations

Philipp Slusallek

Motivation

* Rasterization works on 2D primitives (+ depth)
* Need to project 3D world onto 2D screen

 Based on
— Positioning of objects in 3D space
— Positioning of the virtual camera

Coordinate Systems

Local (object) coordinate system (3D)
— Object vertex positions
— Can be hierarchically nested in each other (scene graph, transf. stack)

World (global) coordinate system (3D)
— Scene composition and object placement
» Mostly rigid objects: translation, rotation per object, (scaling)
« Animated objects: time-varying transformation in world or local space
— Illumination can be computed in this space

Cameral/view/eye coordinate system (3D)
— Coordinates relative to camera pose (position & orientation)

« Camera itself specified relative to world space
— lllumination can also be done in this space

Normalized device coordinate system (2.5D)

— After perspective transformation, rectilinear, in [0, 1]°

— Normalization to view frustum (for rasterization and depth buffer)

— Rasterization & shading done here (e.g., interpolation across triangle)

Window/screen (raster) coordinate system (2D)
— 2D transformation to place image in window on the screen

Hierarchical Coordinate Systems

« Used in Scene Graphs
— Group objects hierarchically
— Local coordinate system is relative to parent coordinate system

— Apply transformation to the parent to change the whole sub-tree
(or sub-graph)

Hierarchical Coordinate Systems

Hierarchy of transformations

T _root
T ShoulderR
T _ShoulderRJoint
T _UpperArmR
T ElbowRJoint
T LowerArmR
T WristRJoint
T ShoulderL
T ShoulderLJoint
T _UpperArmL
T ElbowLJoint
T LowerArmL

Positions the character in the world
Moves to the right shoulder

Rotates in the shoulder (3 DOF) <€ User
Moves to the Elbow

Rotates in the Elbow (1 DOF) € User
Moves to the wrist

Rotates in the wrist (1 DOF) € User
Further for the right hand and the fingers
Moves to the left shoulder

Rotates in the shoulder (3 DOF) <€ User
Moves to the Elbow

Rotates in the Elbow (1 DOF) € User
Moves to the wrist

.. Further for the left hand and the fingers
— Each transformation is relative to its parent
» Concatenated by multiplying (from right) and pushing onto a stack
» Going back by poping from the stack
— This transformation stack was so common, it was built into OpenGL

Coordinate Transformations

 Model transformation
— Object space to world space
— Can be hierarchically nested
— Typically an affine transformation

 View transformation

— World space to eye space
— Typically an affine transformation

e Combination of both: Modelview transformation

— Used by traditional OpenGL (although world space is
conceptually intuitive, it was not explicitly exposed in OpenGL)

Coordinate Transformations

* Projective transformation
— Eye space to normalized device space
— Parallel or perspective projection (defined by view frustum)
— 3D to 2D: With preservation of depth

* Viewport transformation
— Normalized device space to window (raster) coordinates

Camera & Perspective Transforms

 Goal

— Compute the transformation between points in 3D and
pixels on the screen

— Required for rasterization algorithms (OpenGL)
« They project all primitives from 3D to 2D
« Rasterization happensin 2D (actually 2.5D, XY plus Z attribute)

« Given
— Camera pose (pos. & orient.)
« EXtrinsic parameters
— Camera configuration
* Intrinsic parameters

— Pixel raster description -
« Resolution and placement on screen IZ;
* In the following: Stepwise Approach

— EXxpress each transformation step in homogeneous coordinates
— Multiply all 4x4 matrices to combine all transformations

Viewing Transformation

 Need camera position and orientation in world space
— External (extrinsic) camera parameters
« Center of projection: projection reference point (PRP)
* Optical axis: view-plane normal (VPN)
* View up vector (VUP)

— Not necessarily orthogonal to VPN, but not co-linear
 Needed Transformations

1) Translation of PRP to the origin (-PRP)
2) Rotation such that viewing direction is along negative Z axis
2a) Rotate such that VUP is pointing up on screen

VUP

PRP
VPN

Perspective Transformation

* Define projection (perspective or orthographic)
— Needs internal (intrinsic) camera parameters
— Screen window (Center Window (CW), width, height)
« Window size/position on image plane (relative to VPN intersection)
« Window center relative to PRP determines viewing direction (= VPN)
— Focal length (f)
« Distance of projection plane from camera along VPN
« Smaller focal length means larger field of view
— Field of view (fov) (defines width of view frustum)
« Often used instead of screen window and focal length
— Only valid when screen window is centered around VPN (often the case)
« Vertical (or horizontal) angle plus aspect ratio (width/height)
— Or two angles (both angles may be half or full angles, beware!)
— Near and far clipping planes
« Given as distances from the PRP along VPN
« Near clipping plane avoids singularity at origin (division by zero)
« Far clipping plane restricts the depth for fixed-point representation in HW

Simple Camera Parameters

« Camera definition (typically used in ray tracers)
— o0 € R3 : center of projection, point of view (PRP)
— CW € R3 : vector to center of window

* “Focal length”: projection of vector to CW onto VPN
— focal = |(CW —o0) - VPN|
— x,y € R3: span of half viewing window
* VPN = (¥ x x)/|(y X x)|

« VUP= —y
+ width = 2|x] y
* height = 2|y| X X)
« Aspect ratio: camera,qz;, = |x|/|yl y
! VPN
PRP: Projection reference point cw

VPN: View plane normal
VUP: View up vector
CW: Center of window

11

Viewport Transformation

 Normalized Device Coordinates (NDC)
— Intrinsic camera parameters transformto NDC
 [0,1]?for X, y across the screen window
 [0,1] for z (depth)
 Mapping NDC to raster coordinates on the screen
— xres, yres . Size of window in pixels
« Should have same aspect ratios to avoid distortion

xres pixelspacing,

— camerQrqgtio —
ratio yres pixelspacingy ’

« Horizontal and vertical pixel spacing (distance between pixel centers)
— Today, typically the same but can be different e.g. for some video formats
— Position of window on the screen
« Offset of window from origin of screen
— posx and posy given in pixels
« Depends on where the origin is on the screen (top left, bottom left)
— “Scissorbox’ or “crop window” (region of interest)
« No change in mapping but limits which pixels are rendered

Camera Parameters: Rend.Man

« RenderMan camera specification
— Almost identical to above description

» Distance of Screen Window from origin given by “field of view” (fov)
— fov: Full angle of segment (-1,0) to (1,0), when seen from origin

« CW given implicitly
* No offset on screen

— Note: Left-handed
coordinate system!

el

joa2r. .
}nggl#&‘ma'a X1 5

4
ERNE

y’reﬁduw X

13

Pinhole Camera Model

9
g

Infinitesimally small pinhole
= Theoretical (non-physical) model
= Sharp image everywhere

= Infinite depth of field

= Infinitely dark image in reality

= Diffraction effects in reality

14

Thin Lens Model

Lens focuses light from given position on object through finite-size aperture onto
some location of the film plane, i.e. create sharp image./}

TTTTTTTTI

Lens formula defines reciprocal focal length 1
(focus distance from lens of parallel light) /

Object center at distance g is in focus at b= J9_

Object front at distance g-r is in focus at b’ flg—1)

T

15

Thin Lens Model: Depth of Field

circle of confusion e = “(1 ‘§>‘ / —— s e
(CoC) b’

Sharpness criterionbased a5 > ge ! U
on pixel size and CoC

DOF: Defined radius r, such that CoC smaller than As

Depth of field (DOE ghs(g = f) 1
P () r<af+As(g—f):>roca

The smaller the aperture, the larger the depth of field

16

Viewing Transformation

* Let’s put this all together

« Goal:Camera: at origin, view along —Z, Y upwards
— Assume right-handed coordinate system!
— Translation of PRP to the origin
— Rotation of VPN to Z-axis
— Rotation of projection of VUP to Y-axis

 Rotations

— Build orthonormal basis for the camera and form inverse
« Z’=VPN, X'= normalize(VUP x VPN), Y=Z x X

* Viewing transformation V
— Translation T followed by rotation R

X, Y, Z, 0 T , -Z" =-VPN
vopro | Xy Yy Zy 0
X, Y, Z, 0
0 0 0 1

Sheared Perspective Transformation

« Step 1: VPN may not go through center of window
— Oblique viewing configuration

e Shear
— Shear space such that window center is along Z-axis
— Window center CW (in 3D view coordinates)
CW = ((right+left)/2, (top+bottom)/2, -focal)™

« Shear matrix Image plane

CW,

/1 0 ——— o\ f
CW, — > > -7
CW, — left

H=1l0 1 -—> 0

CW, CW

0 0 1 O/ X

v
00 0 1 _1_right

View from top

18

Normalizing

« Step 2: Scaling to canonical viewing frustum

— Goal: Scale in X and Y such that screen window boundaries open
at 45-degree angles (at focal plane)

— Scale in Z such that far clipping planeis at Z= -1

-
—> -Z > -Z
-near — 4
-focal -near -focal
: : -f
+ Scaling matrix o far ~far N\
/E 0 0 O\ 2f.ocal 0 0 0
1 0 0 width 2 focal
0 —
— S = Sfaery = far) 0 height 0 O
0 0 Far 0 0 0 1 O
\O 0 0 1) 0 0 0 1

Perspective Transformation

« Step 3: Perspective transformation

— From canonical perspective viewing frustum (= cone at origin
around -Z-axis) to regular box [-1 .. 1]2 x [0 .. 1]

 Mapping of Xand Y
— Lines through the origin are mapped to lines parallel to the Z-axis
« X'=x/-z and y'=y/-z (coordinate given by slope with respect to -z!)
— Do not change X and Y additively (first two rows stay the same)
— Set W to -z so we divide by it when converting back to 3D

« Determines last row A 45° 4 (1,1)
* Perspective transformation

1 0 0 O s

>
p[0 1 0 0 -7

A B C DI Stillunknown
0 0 -1 0 (-1, -1)
S

— Note: Perspective projection =
perspectivetransformation + parallel projection

20

Perspective Transformation

« Computation of the coefficients A, B, C, D
— No shear of Z with respectto X and Y
- A=B=0
— Mapping of two known points

« Computation of the two remaining parameters C and D

— n =near / far (due to previous scaling by 1/far)
 Following mapping must hold

— (0,0,—1,1)T = P(0,0,—1,1)T and (0,0,0,1)T = P(0,0,—n, 1T

* Resulting Projective transformation

S e
—P= 1 n \

00 1-n 1-n ¢

0 0 -1 0 [g !

— Transforms Z non-linearly (in 3D)

P
T T 2a-n) @

Parallel Projection to 2D

- Parallel projection P, 4 tO [-1 .. 1]°
— Formally scaling in Z with factor O

— Typically still maintains Z in [0,1] for depth buffering
« As a vertex attribute (see OpenGL later)

 Normalizing Transform N
— From[-1..1]2to NDC ([0 .. 1]?
— Scaling (by 1/2 in X and Y) and translation (by (1/2,1/2))

10 0 0 1/2 0 0

o1 o o0 [o 1/2 0
Pparalle!=\ 0o o oor1 o N=10 0 1
00 0 1 0 0 0

1/2
1/2
0
1

22

Viewport Transformation

« Scaling and translationin 2D
— Scaling matrix to map to entire window on screen
* Sraster(xresi yTBS)
* No distortion if aspect ratios have been handled correctly earlier
— l.e. aspect ratio of window in world space == aspect ratio of raster window

* In some cases, one needs to reverse direction of y
— Some formats have screen origin at bottom left, some at top left
— Needs additional translation/scaling

— Positioning on the screen
« Translation T, ., (xpos, ypos)
« May be different depending on raster coordinate system
— Origin at upper left or lower left

23

Orthographic Projection

« Step 2a: Translation (orthographic)
— Bring near clipping plane into the origin

« Step 2b: Scaling to regular box [-1.. 1] x [0 .. -1]

 Mapping of Xand Y

- P = Sxsznear —

/O

2

width

0
0

2
height

0
0

1
far—mear

0

OO O

O O =k O

S = O O

24

Camera Transformation

« Complete transformation (combination of matrices)
— Perspective Projection

* Tcamera — lraster Sraster N Pparallel Ppersp Sfar Sxy HRT
— Orthographic Projection

* Tcamera — Iraster Sraster N Pparallel Sxyz Tnear - HRT

* Other representations
— Other literature uses different conventions
 Different camera parameters as input
 Different canonical viewing frustum

 Different normalized coordinates
— [-1 .. 1]3 versus [0 ..1]3versus ...

— Results in different transformation matrices — so be careful !!!

25

Per-Vertex Transformations

« Traditional OpenGL
pipeline
— Hierarchical modeling
» Modelview matrix stack
* Projection matrix stack
— Each stack can be

Independently pushed/popped
— Matrices can be applied/multiplied

to top stack element

 Today

— Arbitrary matrices as
attributes to vertex
shaders that apply

object clip normalized window
device
El |Modelview| |Projection | |Perspective Fiewport
! — —¥]] e
r a . a ¥ . -
e Watrix Matrix fhivision Transform
¢

Vodelview

Prajection

Wodelview

+44

other calculations here
+ material 2 color

+ shade model (flat)
+ polyson rendering mode

+ polygon culling

+ clipping

" SGcraPs |

them as they wish (later) s

— All matrix stack
handling must now be
done by application

\

Local Waorld .
Space /’:'-1 e llimg IH\\ spac J_,.r"'" BI"'.:-:'_I'.".'.:Iim'. \
positioning - { flighting \
| - ind surkace
e 1.:"1! o L Transformation o world sputce speecilie il 1 'I\I '\i"'"llr- -\\\
I.;I—-I:t‘l by plucement | || ctil |||| wr \ Fabect /‘ \
ject_ - animation svstem if moving e
Fye f"___ Screen o
, LTRHES ¢ Back-f: | S \\
R { ullin] - - Il'[|'|lr'||';.|';:||:|\l,
View transform s, tutling Sereen translormation | view frustrum
\-H“'—' spegificd by internal attributes \H ’ /
of caniera e
camera /i{-.‘HIJ-.'.'I'I::. \.
hidden surface I
| calculation |
I:l Space \-\“ risterizat “y
- ,_H_:-| ading
o, [-
| Prog

26

OpenGL

 Modern OpenGL
— Transformation provided by app, applied by vertex shader
— Vertex or Geometry shader must output clip space vertices
« Clip space: Just before perspective divide (by w)

* Viewport transformation
— glViewport(x, y, width, height)
— Now can even have multiple viewports
« glViewportindexed(idx, X, y, width, height)
— Controlling the depth range (after Perspective transformation)
« glDepthRangelndexed(idx, near, far)

Discussion

 Pinhole camera model
— Linear in homogeneous coordinates

Aot of things that we ignored L.
— Complex lenses distortion, aberrations M "fffi: TR
— Flare o |
— Depth-of-field
— Vignetting

3.5/35 {4

