Computer Graphics
- Splines -

Philipp Slusallek

Curves

« Curve descriptions
— Explicit functions

« y(X)= xsqrt(r? - x?), restricted domain (x € [-1, 1])
— Implicit functions
°« X2+ y2=172 unknown solution set

— Parametric functions
« X(t)=r cos(t), y(t)=r sin(t), t e [0, 2n]
 Flexibility and ease of use
« Typically, use of polynomials
— Avoids complicated functions (e.g., pow, exp, sin, sqrt)
— Typically, use of polynomials with low degree

Curves

« Curve descriptions
— Explicit functions

« y(X)= xsqrt(r? - x?), restricted domain (x € [-1, 1])
— Implicit functions
°« X2+ y2=172 unknown solution set

— Parametric functions
« X(t)=r cos(t), y(t)=r sin(t), t e [0, 2n]
 Flexibility and ease of use
« Typically, use of polynomials
— Avoids complicated functions (e.g., pow, exp, sin, sqrt)
— Typically, use of polynomials with low degree

Parametric curves

« Separate function in each coordinate
— Parameterized over an additional variable t (think: time)
— Describes movement of a particle along the curve
— But we are mostly interested in the resulting curve itself

= In3D:f(t) = (x(0), y(B), z(¢))

y(t) y()
A A

Monomials

« Monomial basis
— Simple basis: 1, t,t%, ... (tusually in [0 .. 1])

 Polynomial representation
,—>Degree(Order — 1)

Pt)=(x® y®) z®)= z tig,—» Coefficients eR?
Monomials

— Coefficients can be determined from a sufficient number of
constraints (e.g., interpolation of given points)
« Given (n+1) parameter values t; and points P,
« Solution of a linear system in the A, — possible, butinconvenient

« Matrix representation
P(t) =(x(t) y(©) Z(t))—T(t)A

x,n y n Az,n

:[tn tn_l 1] Ax,n—l Ay,.n—l Az,n—l

Ax,O Ay,O AZ,O

Derivatives

« Derivative = tangent vector
— Polynomial of degree (n-1)

PO =EO YO ZO)=T0O4

Ax,0

A'y,n Az,n
=[ntn—1 (n_l)tn—z I O] Ax,n—l Ay,.n—l Az,n—l

A.

y,0 AZ,O

« Continuity and smoothness between two

parametric curves
— CO= GO = same point
— Parametric continuity C?t
» Tangent vectors are identical - (a)
— Geometric continuity Gt
« Same direction of tangent vectors only - (b)
— Similar for higher order derivatives

-

b) .

More on Continuity

« At one point:

« Geometric Continuity:
— GO: curves are joined together at that point
— G1.: first derivatives are proportional at joint point
« Same direction but not necessarily same length
— G2: first and second derivatives are proportional

« Parametric Continuity:
— CO: curves are joined
— C1.: first derivative equal
— C2: first and second derivatives are equal.
« If tis the time, this implies the acceleration is continuous.
— Cn: all derivatives up to and including the nth are equal.

Linear Interpolation

« Hat Functions and Linear Splines (C0O/GO continuity)

Yo 1
\ Vs T(t)

- - = = —— —

v
v

-1 0 1

(0 t < —1
_J14+¢t —1<t<o0

T(t)_<1—t 0<t<1

. 0 t=>1

LA =Tk—1)

\ 4

1 2 3 4 Can easily be generalized for arbitrary

vector of parameters t; to be interpolated
P(t) = P;T;(t) = y,To(t) + y3T3(t : : L
(©) Z 1) = LM+ ys B3O |y arbitrary control points y; € R"

Lagrange Interpolation

* Interpolating basis functions
— Lagrange polynomials for a set of parameter values T={t,, ..., t,.}

n

t —t; L
L?(t)=l_[-, with L?(tj)=5l.j={1 i=]J

Lt — ¢ 0 otherwise
J=0

i#]

* Properties
— Good for interpolation at given parameter values
* At each t;: One basis function = 1, all others =0
— Polynomial of degree n (n factors linear in t)
* Infinitely continuous derivatives everywhere

 Lagrange Curves
— Use with control points to be interpolated as coefficients

P(t) =) LHOP,
i=0

Lagrange Interpolation

« Simple Linear Interpolation

— T={ty, ty} F_t
Ly(t) = ——
0 tO_tl 1" I—Ol
t—t,
LI(t) =
0=—,

« Simple Quadratic Interpolatfion

— T={t,, ty, to} A
1-

t—t; t—t
I3(t) = —— z

o —l1 o — L2

Problems

* Problems with a single polynomial
— Degree depends on the number of interpolation constraints
— Strong overshooting for high degree (n > 7)
— Problems with smooth joints
— Numerically unstable
— No local changes

L':"_:.(u)l

Splines

* Functions for interpolation & approximation
— Standard curve and surface primitives in 3D modeling & fonts
— Key frame and in-betweens in animations
— Filtering and reconstruction of images

« Historically
— Name for a tool in ship building
» Flexible metal strip that tries to stay straight
— Within computer graphics:
» Piecewise polynomial function (e.g., cubic)
» Decouples continuity, degree, and #control points

What Continuity ?

Segment 1 Segment 2 Segment 3 Segment 4

Hermite Interpolation

 Hermite Basis (cubic)
— Interpolation of position P and tangent P~ information

for t={0, 1}
— Very easy to piece together with G1/C1 continuity
7/ f(t)
A
h 1
0 1

— Basis functions

H3 () = (1—-t)*(1 + 2t)
H3(t) = t(1—t)?
H3(t) = —t?(1—1t)

H3(t) = (3 — 2t)t? » !

Hermite Interpolation

« Properties of Hermite Basis Functions 1
— H, (H;) interpolates smoothlyfrom 1to 0 (0to 1)
— H, and H; have zero derivative att =0andt =1
* No contribution to derivative (only via H; and H,)
— Hyand H, are zeroatt =0andt =1
« No contribution to position (only via Hy and H3)
— H; (H,) hasslopelatt= 0(t=1)
 Unit factor for specified derivative vector
 Hermite polynomials
— P,, P, are positions € R3
— P,, P, are derivatives (tangent vectors) € R?

P(t) = PoHg(t) + PoHF (t) + PLH3 (t) + P H3 (8)

Examples: Hermite Interpolation

yi)
4 Tangent vector

direction R, at point
P,; magnitude varies
for each curve

Tangent vector
direction R, at point
P,; magnitude fixed

¥(t)

[N

L A

F-: for each curve
y(t)
A
/
Vo
p, /

» X(f)

.
o 7

G1 continuity

> X(1)

Matrix Representation

« Matrix representation

Pt)=1[t3 ¢2 ... 1] : =
Axo Ay,O AZ,O .
Myy My, Mg x3 Oy gZ,B_
[£3 2 . 1] Moz ™ ngz gy’Z GZ,2
. x,1 v,1 y,1
Gxo Gyo Gzo
Basis Matrix M (4x4) Geometry Matrix G (4x3)
_ T -
My, My, M3 POT
[t3 t2 1] Mo PlT
Py
L , pT]
My o

Basis Functions

Matrix Representation

* For cubic Hermite interpolation we obtain:

Pf=(0 0 0 1)MyGy Py

0
PF=(@1 1 1 1)MyGy Pl _o |1
PT=(0 0 1 0)MyGy or P, | " |0
PT=3 2 1 0)MyGy P, 3
e Solution:
— Two matrices must multiply to unit matrix

0 0 0 1\ " 2 -2 1 1

vo-|[1 11 1) _(-3 3 -2 -1

H=lo 0 1 0 O 0 1 0

3210 1 0 0 0

NN O - O

N S N

My Gy

O O =

Bézier

- Bézier Basis [deCasteljau " 59, Bézier “ 62]

Different curve representation
Start and end point

2 point that are approximated
by the curve (cubics)

P, = 3(b; — by) and P, = 3(b3 — b,)
* Factor 3 due to derivative of t3

POT

P.r
P’yr

_P ,1T i

o W oo

o O O

w o = o

ko o,

qlu?

q’(s)

g

= MypGp

Basis Transformation

« Transformation
— P(t) = TMyGy = TMy(MypGp) = T(MyMyp)Gg = TMpGp

—1 3 =3 1] n
3 —-6 3 0
Mg = MyMpyp = 3 3 0 0 4
1 0 0 o0 (1)

P(t) =) B(t)b; =

(1-t)3bg + 3t(1-1)2 by + 3t2(1-t)b, + t3b,

e Bézier Curves & Basis Functions

P(H) =) BI(®b

Bernstein-
Polynomials

with basis functions B}*(t) = (7:) ti(1 —t)n !

Properties: Bézier Curves

« Advantages:

End point interpolation
Tangents explicitly specified
Smooth joints are simple

* P;, P, P collinear - G1continuous
Geometric meaning of control points
Affine invariance

— vt:);Bi(t) =1
Convex hull property

« For0<t<1:B;(t) =0
Symmetry: B;(t) = B,_;(1—1t) w

 Disadvantages
— Smooth joints need to be maintained explicitly

« Automatic in B-Splines (and NURBS)

DeCasteljau Algorithm

 Direct evaluation of the basis functions
— Simple but expensive

e Use recursion
— Recursive definition of the basis functions

BI'(t) =B () + (1 — t)B] ' (1)
— Inserting thls once ylelds

P(t) = z bOBI(t) = z bl (OB 1(0)

— with the new Bézier points also given by a recursion:

bf(t) = tbi7' (&) + (1 =)bfT'(t) and bY(t) = b;

DeCasteljau Algorithm

« DeCasteljau-Algorithm:

— Recursive degree reduction of the Bezier curve by using the
recursion formula for the Bernstein polynomials

n n-—1
P(t)=) bIBIMO)=) bl®OB! () = =bl'®)-1
2,41810=).
b)) = b (® + (1 —ObF ()

« Example:
- t=0.5

DeCasteljau Algorithm

« Subdivision using the deCasteljau-Algorithm

— Take boundaries of the deCasteljautriangle as new control points
for left/right portion of the curve

« Extrapolation
— Backwards subdivision

» Reconstruct full triangle from just one side

Catmull-Rom-Splines

« Goal
— Smooth (C1)-joints between (cubic) spline segments

« Algorithm
— Tangent at P; given by vector from neighboring points P;_; to P;, 4
— Can easily construct (cubic) Hermite spline between control points

 Advantage
— Arbitrary number of control points
— Interpolation without overshooting
— Local control

Matrix Representation

« Catmull-Rom-Spline
— Piecewise polynomial curve
— Four control points per segment
— For n control points we obtain (n-3) polynomial segments

_P.T —
-1 3 =3 1'-;
- 112 -5 4 1B+
l — — —
B (t) - TMCRGCR - T2 _1 O 1 _0 Bl’]-"l_z
L0 2 0 olf,r
[~ 1+3

« Application
— Smooth interpolation of a given sequence of points
— Key frame animation, camera movement, etc.
— Only G!-continuity
— Control points should be roughly equidistant in time

Choice of Parameterization

* Problem
— Often only the control points are given
— How to obtain a suitable parameterizationt; ?

« Example: Chord-Length Parameterization
to = 0

l
ti = z dlSt(Pl — Pi—l)
j=1

— Arbitrary up to a constant factor

« Warning
— Distances are not affine invariant !
— Shape of curves changes under transformations !!

Parameterization

 Chord-Length versus uniform Parameterization
— Analog: Think P(t) as a moving object with mass that may

overshoot
/
v / ,
ra ! Uniform
4 /
/ I/
/
» {
- >
-
u Chord-Length
= \
=
~
™~ \\
\Y P
- ' -

Spline Surfaces

Parametric Surfaces

e Same Idea as with Curves

- PPR25 RS

— P(u,v) = (x(u,v), y(u,v), z(u,v))"e R3 (also P(R%))
« Different Approaches

— Triangular Splines
« Single polynomial in (u,v) via barycentric
coordinates with respect to a

reference triangle (e.g., B-Patches)

— Tensor Product Surfaces
« Separation into polynomialsinu and in v

— Subdivision Surfaces
« Start with a triangular mesh in R3

« Subdivide mesh by inserting new vertices
— Depending on local neighborhood
* Only piecewise parameterization (in each triangle)

Tensor Product Surfaces

 |dea
— Create a “curve of curves"

« Simplest case: Bilinear Patch

Vv /.'7
— Two lines in space A

Pl(v) = (1 —v)Py + vPyy

P2(v) = (1 —v)Py; + vPy4
Pio

— Connected by lines
P(u,v) = (1-wP'(v) + uP*(v) =
(1-w)((1 —v)Py +vPip) + u((1 —v)Pyy + vPi1)

— Bézier representation (symmetric in u and v)

1
P@v) =) BIWB})Py

i,j=0

— Control mesh given by P;

Tensor Product Surfaces

 General Case
— Arbitrary basis functionsin u and v
« Tensor Product of the function space in u and v
— Commonly same basis functions and same degree in u and v

P(u,v) = i i B{" (w)B;' (v)P;;

i=0 j=0

« Interpretation
— Curve defined by curves

P(uv) = iBi () Z B; (v)P;

=0 J=0 '
P;(v)

— Symmetricin u and v

Matrix Representation

« Similarto Curves
— Geometry now in a ,tensor*(m xn x 3)

P(u,v) = UGmonomVT = @™ - u 1)< E
Gon

UBy GyyBLVT

— Degree
° u: m
* V. n
« Along the diagonal (u=v): m+n

— Not nice — ,Triangular Splines”

Gpr -

Tensor Product Surfaces

* Properties Derived Directly From Curves

« Bézier Surface:
— Surface interpolates corner vertices of mesh
— Vertices at edges of mesh define boundary curves
— Convex hull property holds
— Simple computation of derivatives
— Direct neighbors of corners vertices define tangent plane

« Similar for Other Basis Functions

Tensor Product Surfaces

 Modifying a Bézier Surface

Tensor Product Surfaces

 Representing the Utah Teapot as a set continuous

Bézier patches
— http://www.holmes3d.net/graphics/teapot/

Operations on Surfaces

« deCausteljau/deBoor Algorithm
— Once for u in each column
— Once for v in the resulting row
— Due to symmetry also in other order

« Similarly, we can derive the related algorithms
— Subdivision
— Extrapolation
— Display

Ray Tracing of Spline Surfaces

« Several approaches
— Tessellate into many triangles (using deCasteljau or deBoor)
« Often the fasted method
« May need enormous amounts of memory
— Recursive subdivision
« Simply subdivide patch recursively
« Delete parts that do not intersect ray (Pruning)
» Fixed depth ensures crack-free surface
« May cache intermediate results for next rays
— Bézier Clipping [Sederberg et al.]
» Find two orthogonal planes that intersect in the ray
» Project the surface control points into these planes
* Intersection must have distance zero

=>» Root finding

=» Can eliminate parts of the surface
where convex hull does not intersect ray

* Must deal with many special cases — rather slow

(d) (€) ()

Higher Dimensions

* Volumes

— Spline: R2> R
* Volume density
» Rarely used

— Spline: R > R3
« Madifications of points in 3D
» Displacement mapping
* Free Form Deformations (FFD)

FFD

