Computer Graphics

Spectral Analysis

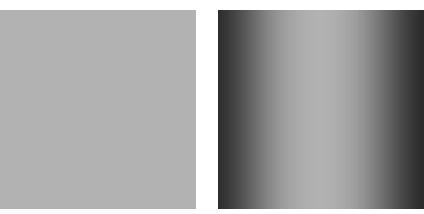
Philipp Slusallek

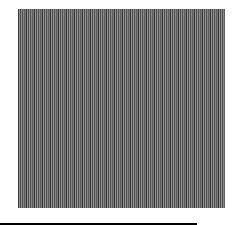
Spatial Frequency (of an image)

- Frequency
 - Inverse of period length of some structure in an image
 - Unit [1/pixel]
- Lowest frequency
 - Image average

Highest representable frequency

- Nyquist frequency (1/2 the sampling frequency)
- Defined by half the image resolution
- Phase allows shifting of the pattern





Fourier Transformation

 Any absolute integrable function f(x) can be expressed as an integral over sine and cosine waves:

Analysis:
$$F(k) = F_x[f(x)](k) = \int_{-\infty}^{\infty} f(x)e^{-i2\pi kx} dx$$

Synthesis: $f(x) = F_x^{-1}[F(k)](x) = \int_{-\infty}^{\infty} F(k)e^{i2\pi kx} dk$

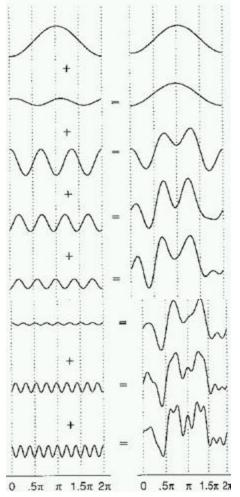
- Representation via complex exponential
 - $-e^{ix} = cos(x) + i sin(x)$ (see Taylor expansion)

Division into even and odd parts

- Even: f(x) = f(-x) (symmetry about y axis)
- Odd: f(x) = -f(-x) (symmetry about origin)

$$f(x) = \frac{1}{2}[f(x) + f(-x)] + \frac{1}{2}[f(x) - f(-x)] = E(x) + O(x)$$

- Transform of each part
 - Even: *cosine* only; odd: *sine* only



Analysis & Synthesis

Symetric integral ([-a, a]) over an odd function is zero

• Analysis

$$F(k) = \int_{-\infty}^{\infty} f(x) (\cos(-2\pi kx) + i \sin(-2\pi kx)) dx = b(k) + i a(k)$$

$$-\sum_{-\infty}^{\infty} \text{Even term}$$

$$b(k) = \int_{-\infty}^{\infty} f(x) \cos(2\pi kx) dx = \int_{-\infty}^{\infty} (E(x) + O(x)) \cos(2\pi kx) dx = \int_{-\infty}^{\infty} E(x) \cos(2\pi kx) dx$$

$$-\sum_{-\infty}^{\infty} \text{Odd term}$$

$$a(k) = \int_{-\infty}^{\pi} f(x) \sin(2\pi kx) dx = \int_{-\infty}^{\infty} (E(x) + O(x)) \sin(2\pi kx) dx = \int_{-\infty}^{\infty} O(x) \sin(2\pi kx) dx$$
• Synthesis

$$f(x) = \int_{-\infty}^{\infty} F(k) (\cos(2\pi kx) + i \sin(2\pi kx)) dk = E(x) + O(x)$$

$$- \text{Even term}$$

$$E(x) = \int_{-\infty}^{\infty} F(k) \cos(2\pi kx) dk = \int_{-\infty}^{\infty} (b(k) - i a(k)) \cos(2\pi kx) dk = \int_{-\infty}^{\infty} b(k) \cos(2\pi kx) dk$$

$$O(x) = \int_{-\infty}^{\infty} F(k) i \sin(2\pi kx) dk = \int_{-\infty}^{\infty} (b(k) - i a(k)) i \sin(2\pi kx) dk = \int_{-\infty}^{\infty} a(k) \sin(2\pi kx) dk$$

4

Spatial vs. Frequency Domain

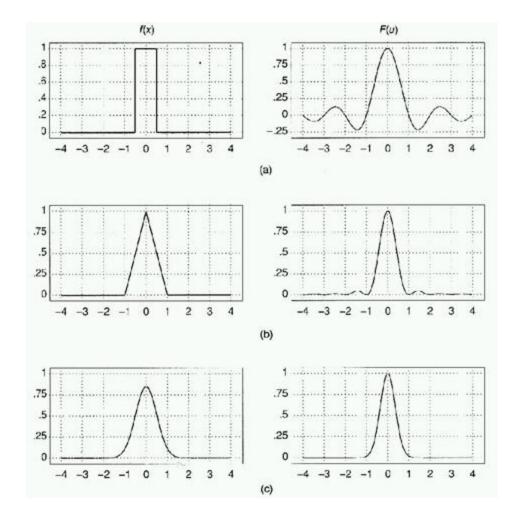
Important basis functions:

- Box \leftrightarrow (normalized) sinc

$$\operatorname{sinc}(x) = \frac{\sin(x\pi)}{x\pi}$$
$$\operatorname{sinc}(0) = 1$$

$$\int \operatorname{sinc}(x) dx = 1$$

- Negative values
- Infinite support
- Tent \leftrightarrow sinc²
 - Tent == Convolution of box function with itself
- Gaussian \leftrightarrow Gaussian
 - Inverse width



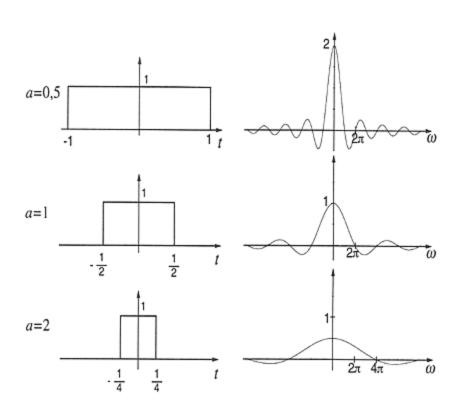
Spatial vs. Frequency Domain

- Transform behavior
- Example: Fourier transform of a box function

rect(at)
$$\circ - \bullet \frac{1}{|a|} \operatorname{si}\left(\frac{\omega}{2a}\right)$$
.

- Wide box \rightarrow narrow sinc

- Box \rightarrow sinc
- Narrow box \rightarrow wide sinc



Fourier Transformation

Periodic in space ⇔ discrete in frequency (vice ver.)

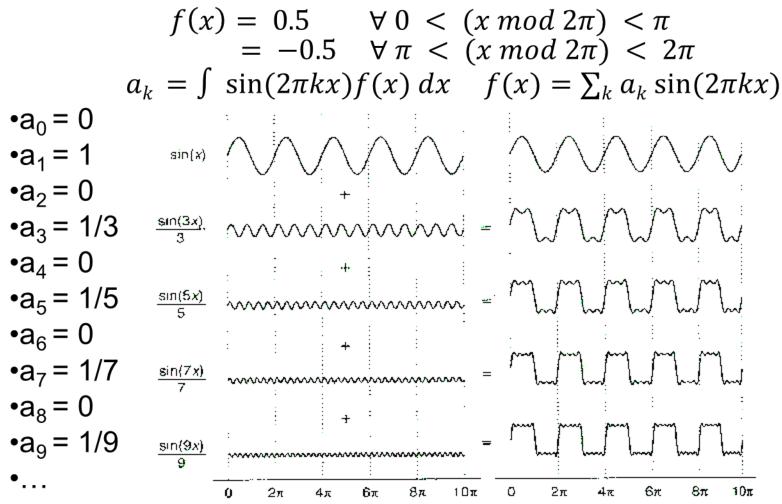
 Any periodic, continuous function can be expressed as the sum of an (infinite) number of sine or cosine waves:

 $f(\mathbf{x}) = \Sigma_k a_k \sin(2\pi^* k^* \mathbf{x}) + b_k \cos(2\pi^* k^* \mathbf{x})$

- Any finite interval can be made periodic by concatenation with itself
- Decomposition of signal into different frequency bands: Spectral Analysis
 - Frequency band: k
 - k = 0 : mean value
 - k = 1 : function period, lowest possible frequency
 - k = 1.5? : not possible, periodic function, e.g. f(x) = f(x+1)
 - k_{max} ? : band limit, no higher frequency present in signal
 - Fourier coefficients: a_k , b_k (real-valued, as before)
 - Even function f(x) = f(-x): $a_k = 0$
 - Odd function f(x) = -f(-x): $b_k = 0$

Fourier Synthesis Example

Square wave: periodic, uneven function



Discrete Fourier Transform

Equally-spaced function samples (N samples)

- Function values known only at discrete points, e.g.
 - Idealized physical measurements
 - Pixel positions in an image!
 - Represented via sum of Delta distribution (Fourier integrals \rightarrow sums)
- Fourier analysis

$$a_{k} = \sum_{i} \sin\left(\frac{2\pi ki}{N}\right) f_{i}$$
$$b_{k} = \sum_{i} \cos\left(\frac{2\pi ki}{N}\right) f_{i}$$

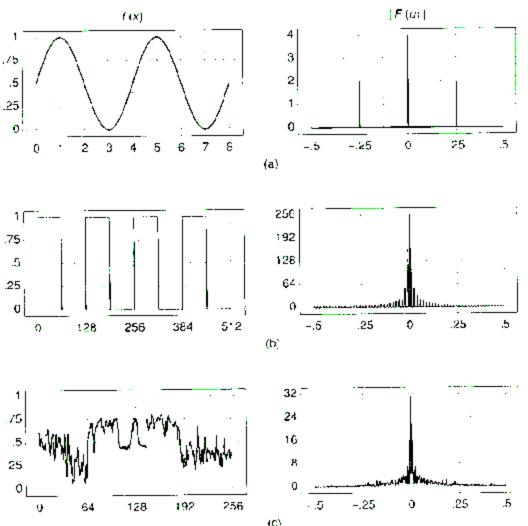
- Sum over all *N* measurement points
- k = 0, 1, 2, ...? Highest possible frequency?
 - Nyquist frequency: highest frequency that can be represented
 - Defined as 1/2 the sampling frequency
 - Sampling rate N: determined by image resolution (pixel size)
 - 2 samples / period \leftrightarrow 0.5 cycles per pixel \Rightarrow $k_{max} \le N/2$

Spatial vs. Frequency Domain

- Examples (pixels vs. cycles per pixel)
 - Sine wave with positive offset

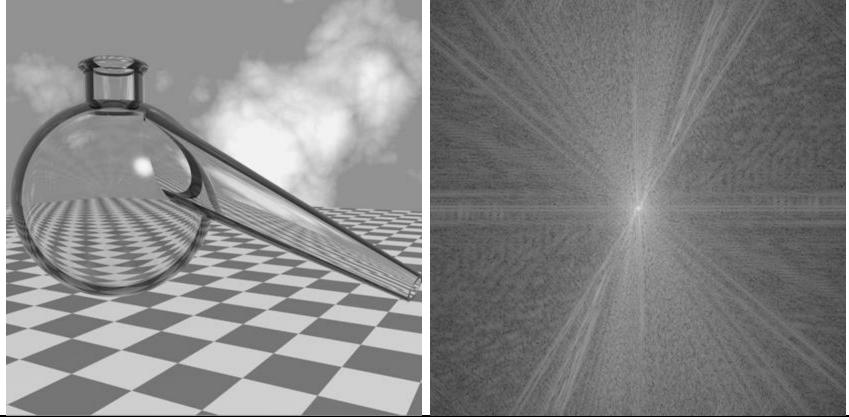
Square wave with offset

 Scanline of an image



2D Fourier Transform

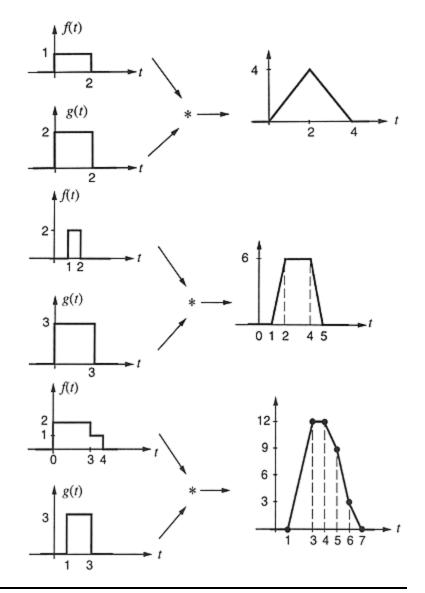
- 2 separate 1D Fourier transformations along x and y directions
- Discontinuous edge → line in orthogonal direction in Fourier domain !



Convolution

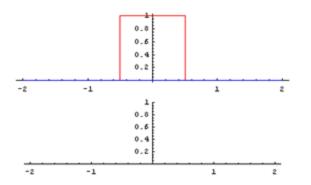
$$(f \otimes g)(x) = \int_{-\infty}^{\infty} f(\tau)g(x-\tau)d\tau$$

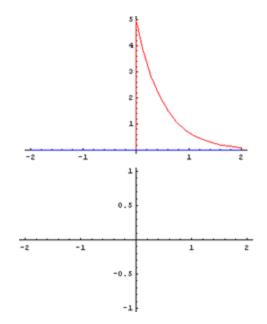
- Two functions f, g
- Shift one (reversed) function against the other by x
- Multiply function values
- Integrate across overlapping region
- Numerical convolution: expensive operation
 - For each x: integrate over non-zero domain



Convolution

• Examples





Convolution Theorem

Convolution in image domain

- → Multiplication in Fourier domain
- Convolution in Fourier domain
 - \rightarrow Multiplication in image domain

0

Multiplication in transformed Fourier domain may be cheaper than direct convolution in image domain !

 $\operatorname{rect}(t) * \operatorname{rect}(t) = x(t)$ 0

$$\mathbf{si} \left(\frac{\omega}{2}\right) \cdot \mathbf{si} \left(\frac{\omega}{2}\right) = X(j\omega) = \mathbf{si}^2 \left(\frac{\omega}{2}\right).$$

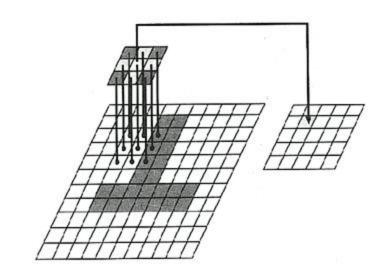
Convolution and Filtering

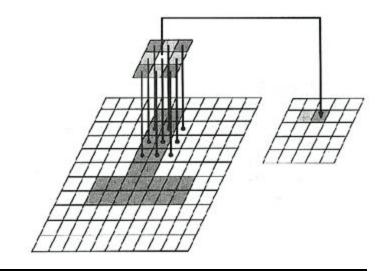
Technical realization

- In image domain
- Pixel mask with weights

• Problems (e.g. *sinc*)

- Large filter support
 - Large mask
 - A lot of computation
- Negative weights
 - Negative light?





Filtering

Ideal low-pass filter

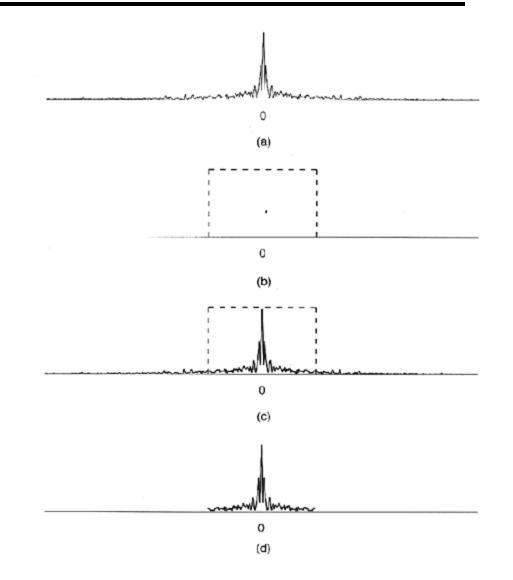
- Multiplication with box in frequency domain
- Convolution with sinc in spatial domain

Ideal high-pass filter

- Multiplication with (1 box) in frequency domain
- Only high frequencies

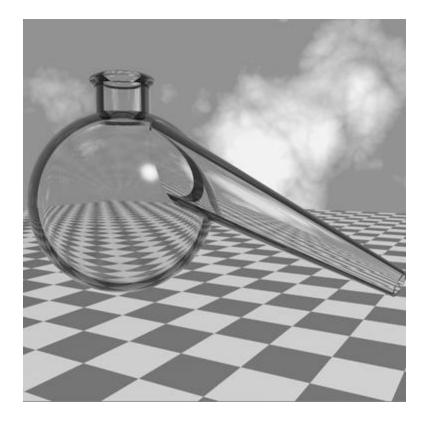
Ideal band-pass filter

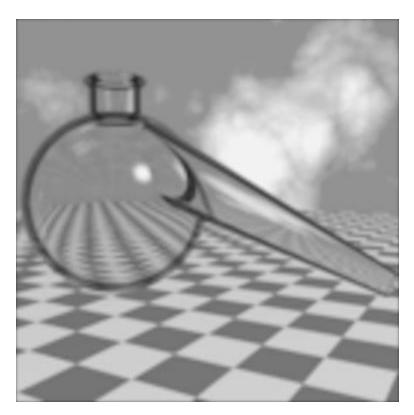
- Combination of wide low-pass and narrow high-pass filter
- Only intermediate frequencies



Low-Pass Filtering

• "Blurring"





High-Pass Filtering

Enhances discontinuities in image

- Useful for edge detection

