Computer Graphics

- Introduction to Ray Tracing -

Philipp Slusallek

Rendering Algorithms

 Rendering

— Definition: Given a 3D scene description as input and a camera,
generate a 2D image as a view from the camera of the 3D scene

« Algorithms
— Ray Tracing
» Declarative scene description
* Physically-based simulation of light transport
« Throughoutthe scene from light sources to the camera
— Rasterization

« Traditional procedural/imperative drawing of scene content
— One triangle at a time (conceptually)
« See later in the course!

Scene Description in General

« Surface Geometry
— 3D geometry of objects in a scene
— Geometric primitives — triangles, polygons, spheres, ...

« Surface Appearance
— Color, texture, absorption, reflection, refraction, subsurface scattering
— Types of materials: Diffuse, glossy, mirror, glass, ...

* lllumination
— Position and emission characteristics of light sources
— Note: Light also reflects off of surfaces!
« Secondary/indirect/globalillumination
— Assumption: air/fempty space is totally transparent

« Simplification that excludes scattering effects in participating media or
volumes, e.g. smoke, solid object (CT scan), ...

« See later in course

« Camera
— View point, viewing direction, field of view, resolution, ...

OVERVIEW OF RAY-TRACING

Light Transport (1)

Light Source

Light Transport (2)

« Light Distributionin a Scene
— Dynamic equilibrium: As much light is absorbed as is emitted

 Forward Light Transport
— Shoot photons from the light sources into scene
— Scatter at surfaces and record when a detector is hit
« Photons that hit the camera produce the final image
« Most photons will not reach the camera!
— Particle or Light Tracing

 Backward Light Transport
— Start at the detector (camera)
— Trace only paths that might transport light towards camera
« May be hard to find and connect to light sources
— Ray Tracing

Ray Tracing Is...

Automatic, simple and intuitive
— Easy to understand and implement
— Delivers “correct” images by default

Powerful and efficient
— Covers many optical global effects

« Shadows, reflections, refractions, ...
— Efficient real-time implementation in SW — and now also in HW!
— Canwork in parallel and distributed environments
— Logarithmic scalability with scene size: O(log n) vs. O(n)
— Output sensitive and demand-driven approach

Concept of light rays Is not new
— Empedocles (492-432 BC), Renaissance (Durer, 1525), ...
— Used in lens design, geometric optics, neutron transport, ...

[

Perspective Machine, Albrecht Durer

Fundamental Ray Tracing Steps

« (Generation of primary rays
— Rays from viewpoint along viewing directions into 3D scene
— (At least) one ray per picture element (pixel) in image plane

* Ray casting
— Traversal of spatial index structures (acceleration structures)
« For avoiding costly but unnecessary intersection computations
— Ray-primitive intersection = hit point

« Shading the hit point
— Compute light towards camera - pixel color
 Light power (really “radiance”) travelling along primary ray
— Needed for computation
 Local reflection/scattering properties: material color, texture, ...

« Local illumination at intersection point
— Can be hard to determine correctly (light could come from anywhere)
— Simple: Test direct connection to lights (“shadow rays”)
— Compute transparency/mirror effects through recursive tracing of rays

Ray Tracing Pipeline (1)

A .){ Ray Generation — <+—
/ \ y
Ray Traversal -
(. v

Ray Tracing Pipeline (2)

Ray Generation pumms
\\ A

Ray Traversal -

!

. Intersection —_

|

[Pixel Color]

Ray Tracing Pipeline (3)

Ray Generation pumms

Ray Traversal -

1

Intersection —_

| 1 g

[Pixel Color]

Ray Tracing Pipeline (4)

v s
A~ --){ Ray Generation amms

Ray Traversal -

_

Shading —
) |

[Pixel Color]

Ray Tracing Pipeline (5)

Ray Generation <+—

\ /

!

Ray Traversal -

. l)

Intersection —

[Pixel Color]

Recursive Ray Tracing Pipeline (6)

A .){ Ray Generation <+—
/ L y
Ray Traversal <
Intersection —_

‘\ y
m

[Pixel Color]

Recursive Ray Tracing Pipeline (7)

Ray Generation

Ray Traversal

Intersection

Shading —

’ o

[Pixel Color]

\ 4

Recursive Ray Tracing Pipeline (8)

A .){ Ray Generation <+—
/ L y
! 1
I
| Ray Traversal o
Intersection —

‘\ y
m

[Pixel Color]

Recursive Ray Tracing Pipeline (9)

Ray Generation

Ray Traversal

Intersection

Pixel Color

Recursive Ray Tracing

« Searching recursively for
paths to light sources

— Interaction of light & material
at intersections
— Trace rays to light sources

— Recursively trace new ray
paths in reflection & refraction
directions

@

light squrce

lens/pupill

primary ray

Refracted

Reflecteo
pixel

image plane

Ray Tracing Algorithm

« Trace(ray)
— Search the next intersection point (hit, material)
— Return Shade(ray, hit, material) - radiance/color

« Shade(ray, hit, material)
— If object is emissive (i.e. light source)
» Add radiance emitted towards ray to the reflected radiance
— For each light source
« if ShadowTrace(ray towards light source, distance to light)
— Compute radiance emitted from light source towards shadow ray
— Calculate radiance reflected at hit point towards incoming ray
— Adding radiance to the reflected radiance
— If mirroring material
* Recursively calculate radiance from reflected direction:
— Trace(ReflectRay(ray, hit))
» Adding mirrored radiance to the reflected radiance
— Similar for transmissive materials
— Return reflected radiance

« ShadowTrace(ray, dist)
— Return false, if intersection with distance < dist has been found
— Can be changed to handle transparent objects as well
* But not with refraction— WHY?

Ray Tracing Algorithm

« Trace(ray)
— Search the next intersection point (hit, material)
— Return Shade(ray, hit, material) - radiance/color

« Shade(ray, hit, material)
— If object is emissive (i.e. light source)
» Add radiance emitted towards ray to the reflected radiance
— For each light source
« if ShadowTrace(ray towards light source!!, distance to light)
— Compute radiance emitted from light source towards shadow ray
— Calculate radiance reflected at hit point towards incoming ray
— Adding radiance to the reflected radiance
— If mirroring material
* Recursively calculate radiance from reflected direction:
— Trace(ReflectRay(ray, hit))
» Adding mirrored radiance to the reflected radiance
— Similar for transmissive materials
— Return reflected radiance

« ShadowTrace(ray, dist)
— Return false, if intersection with distance < dist has been found
— Can be changed to handle transparent objects as well
* But not with refraction— WHY?

Shading (Material)

* Intersection point determines primary ray’s “color”

— Diffuse object: isotropic reflection of illumination at hit point

« No variation with viewing angle: diffuse (or Lambertian)
— Specular: Perfect reflection/refraction (mirror, glass)

« Only one outgoing direction each — Trace secondary ray path(s)
— More general reflectance models

« Appearance depends on illumination and viewing direction

« Local Bi-directional Reflectance Distribution Function (BRDF)

* lllumination
— Point/directional light sources
— Slight generalization: Area light sources
« Approximate with multiple samples / shadow rays
— Global illumination (computes also indirect illumination)
« See Realistic Image Synthesis (RIS) course in next semester

* More detalls later

Common Approximations

 Usually RGB color model (red, green, blue)
— Instead of full spectrum - later

* Light only from finite # of light sources
— Instead of full indirect light from all directions

« Approximate material reflectance properties
— Diffuse: light reflected uniformly in all directions
— Specular: perfect reflection, refraction
— Or mix of these two

« Reflection models are often empirical
— Often using Phong/Blinn shading model (or variation thereof)
— But physically-based models are available as well
- later

Ray Tracing Features

* Incorporates into a single framework:
— Hidden surface removal
« Front to back traversal
« Early termination once first hit pointis found
— Shadow computation
« Shadow rays are traced between a point on a surface & light sources
— Exact simulation of some light paths
» Reflection (reflected rays at a mirror surface)
« Refraction (refracted rays at a transparent surface, Snell’s law)

* Limitations
— Many reflections or refractions
« Exponential increase in number of rays
— Indirect illumination requires many rays to sample all incoming
directions
« Easily gets inefficient for full global ilumination computations
— Solved with Path Tracing (= RIS course)

Ray Tracing Can...

 Produce Realistic Images
— By simulating light transport

What is Possible?

« Models Physics of Global Light Transport

— Dependable, physically-correct visualization

VW Visualization Center

CAD

m
O
-
©
N
S
>
2
>
O
-
B2
©
&
ad

Realistic Visualization: VR/AR

Lighting Simulation

What is Possible?

« Huge Models
— Logarithmic scaling in scene size

§ -1 Billion
Triangles

12.5 Million &5
Triangles s

Outdoor Environments

90 x 10712 (trillion) triangles

Boeing 777

T

it}

1
f

|

Boeing 777: ~350 million individual polygons, ~30 GB on disk

Volume Visualization

* Iso-surface rendering

A~
O
-
-
@\

Games? (In

v . —

—

Nvidia RTX (Turing)
(up to 10 Grays/s)

(\‘81 METRO , B RTX

EBEEES

s 8
Y

BATTLEFIELD V

Ray Tracing in CG

In the Past (until end of 80ies)
— Was computationally very demanding (minutes to hours per frame)
— Tried hard to speed it up, but always too slow - only off-line use

“Lost generation” (1990ies)
— Believed ray tracing would not be suitable for HW implementations
— Believed ray tracing would always be slower than rasterization

More Recently

— Interactive ray tracing on supercomputers [Parker, U. Utah'98]

— Interactive ray tracing on PCs [Wald‘01]

— Distributed real-time ray tracing on PC clusters [Wald'01]

— RPU: First full HW implementation [Siggraph 2005]

— Commercial tools: Embree (Intel/CPU), OptiX (Nvidia/GPU)

— Complete film industry has switched to ray tracing (Monte-Carlo)

Own conference
— Symposium on Interactive RT, now High-Performance Graphics (HPG)

Ray tracing systems

— Research: PBRT (offline, physically-based, based on book, OSS),
Mitsuba-2 renderer (EPFL), Rodent (SB), ...

— Products: Blender (OSS), V-Ray (Chaos Group), Arnold & VRED
(Autodesk), Corona (Render Legion), MentalRay/iRay (MI), ...

Ray Casting Outside CG

« Tracing/Casting aray
— Special type of query
 “Is there a primitive along a ray”
* “How far is the closest primitive”

« Other uses than rendering
— Visibility computation
— Volume computation
— Collision detection
— Acoustics
— Radar

RAY-PRIMITIVE
INTERSECTIONS

Basic Math - Ray

 Ray parameterization

—r(t)=o0+ td , teR; 6,d € R3: origin and direction
 Ray

— All points on the graph of r(t), witht € R,

Pinhole Camera Model

// For given image resolution {resx, resy}
// Loop over pixel raster coordinates [0, res-1]
for(prcx = 0; prcx < resx; prcx++)
for (prcy = 0; prcy < resy,; prcy++)
{
// Normalized device coordinates [0, 1]
ndcx = (prcx + 0.5) / resx;
ndcy = (prcy + 0.5) / resy;
// Screen space coordinates [-1, 1]
sscx = ndcx * 2 - 1;
sscy = ndecy * 2 - 1;
// Generate direction through pixel center
d=f + sscx -x + sscy 'y’
d=d/ |d|; // May normalize here
// Trace ray and assign color to pixel
color = trace ray(o, d);
write pixel (prcx, prcy, color);

u 3
up-vector

f

0
origin, POV

Image plane

\ 4

y spanning
vectors

focal vector

Basic Math - Sphere

« Sphere S
— ¢ € R3,r € R: center and radius
—VpeERpeSeo@-0) - -0 —-r?2=0
« The distance between points on the sphere and its center equals the
radius

P1

Ray-Sphere Intersection

* Glven
— Ray: r(t)=3d+td, tER;3,d € R3
— Sphere: ¢ € R3,r € R:
s VpER:pESS@B-) - P—-0)—-r2=0
* Find closest intersection point
— Algebraic approach: substitute ray equation
c B-3)-F-3)—-r2=0withg =6 +td
e t2d-d + 2td- (3-8 + 3-8 -B-O)—-r2=0
e Solve fort

Ray-Sphere Intersection (2)

« Given
— Ray: r(t)=3d+td, teR; 6,d € R3
— Sphere: ¢ € R3,7r € R:
s VpER?: peSeo@-08)- -0 —-r?2=0
 Find closest intersection point
— Geometric approach

« Ray and center span a plane
« Solve in 2D

- Compute|b —d|,|b - ¢
— Such that 20bc = 90°
- Intersection(s) if |[b — ¢| < r

— Be aware of floating

point issues if o
Is far from sphere 0

Basic Math - Plane

e Plane P

— 7,d € R3: normal and point a in P (Hesse normal form for plane)
— VpeER: pePo(p—ad)-n=0

« The difference vector between any two points on the plane is either O
or orthogonal to the plane’s normal

Ray-Plane Intersection

* Given
— Ray: r(t) =0+ td ,
— Plane: 71,d € R3: normal and pointin P
« Compute intersection point
— Plane equation:peP o (p—a)-n=0
& p-n—D =0, with
— Substitute ray parameterization: (¢ + td) - i —

— Solve fort
« How many intersections could there be?

tER:6,d € R3

D
D

Ray-Plane Intersection

« Given
— Ray: r(t) =0+ td ,
— Plane: 71,d € R3: normal and pointin P
« Compute intersection point
— Plane equation:peP o (p—a)-n=0
& p-n—D =0, with
— Substitute ray parameterization: (¢ + td) - i —
— Solve fort
o 1. General case
« O: Ray is parallel to but offset from plane
¢ oo Ray lies within plane

tER:6,d € R3

D
D

Ray-Disc Intersection

* Intersect ray with plane
* Discard intersectionif||p —al|>r

Basic Math - Triangle

 TriangleT
— d,b,¢ € R3: vertices
— Affine combinations of d, b, & — points in the plane
« Non-negative coefficients that sum up to 1 — points in the triangle

— VPER:PET & I1;,3€ Ro+) A +4; + 43 =1and
ﬁ=/116_i+/12b+/135

C

* Barycentric coordinates A ; 3
— A = Appc/Aaper ELC.

— A: signed area of triangle,
based on CLW/CCW orientation

Barycentric Coordinates (BCs)

 TriangleT
— d,b,Z € R3: vertices
— Ay, 3: Barycentric coordinates
- L+ +A3=1
— Ay = Appc/Aapc, €1C.

« Easy geometric interpretation ¢ (0,0, 1)

(0.5

Triangle Intersection: Plane-Based

« Compute intersection with triangle’s plane
— Plane equation easily computable from vertices via cross product

« Compute barycentric coordinates

— Signed areas of subtriangles

— Canbe done in 2D, after
“projection” onto major plane,
depending on largest
component of normal vector

* Maximizes area and
numerical stability

« Test for positive BCs

e |Ssues:

— Edges of neighboring triangles
might not be identical

— Due to inaccuracies of floats
— Need a better method!

Triangle Intersection: Edge-Based

« 3D linear function across triangle (3D edge functions)
—Ray:5+tc7, tE]R;ﬁ,cfEIR{3
— Triangle: 4, b,¢ € R®

Triangle Intersection: Edge-Based

« 3D linear function across triangle (3D edge functions)
—Ray:5+tc7, tER;6,d € R3
— Triangle: a, b,C € R3
— gy =(b—3) x (@ —3) c
— |ngpl is the signed area of Aoab (2X)

Triangle Intersection: Edge-Based

3D linear function across triangle (3D edge functions)
—Ray:5+tc7, tER;6,d € R3
— Triangle: d,b,¢ € R3
— gy = (b~ 3) x (@~)
— |ng, | is the signed area of Aoab (2x)
— X3(t) =gy - td
* Volume of tetrahedra obap (6X)
 Fort =ty

— Q- ——— - ___,

Triangle Intersection: Edge-Based

3D linear function across triangle (3D edge functions)
—Ray:5+tc7, tER;6,d € R3
— Triangle: 4, b,¢ € R3
— gy = (b~ 3) x (@~)
— |ng, | is the signed area of Aoab (2x)
— X3(t) =gy - td
* Volume of tetrahedra obap (6X)
 Fort =ty
— A12(8) = Npcgc - td
— Normalize

Ai ()

Triangle Intersection: Edge-Based

« 3D linear function across triangle (3D edge functions)

—Ray:5+tc7, tER;6,d € R3
— Triangle: 4, b,¢ € R®
— gy = (b~ 3) x (@~)
— |ng, | is the signed area of Aoab (2x)
— X3(t) =gy - td

* Volume of tetrahedra obap (6X)

* Fort =ty ?nab
— A12(8) = Npcgc - td
— Normalize

« A=

Ai ()

O HOITHOLG

o

« Hit, if all BCs positive:
— Computeﬁ=11&+125+/136

Non-degenerate real quadric surfaces Degenerate quadric surfaces

n
2y 22 A B 22 2 22 v
Ellipsoid F + = + (—.’ =] &»») Cone 77_2 + - ;3 =0 (\\
. . 2 2
I m I Spheroid (special case of ellipsoid) L + <, =1 J
p I C I a? ? 4 b 2 2 2 < /
1 Y z e
Circular Cone (special case of cone) 4+ -3 = 0 -
f a? a® B w
(X, y,2) =V
1‘2 II?
Sphere (special case of spheroid) N L Pl |
a2 a2 a?

Ray equation

2 P
Elliptic cylinder — + ‘—) =1
— X=X, + X4 @
\
.)
— y — yo + t yd Elliptic paraboloid -2=0 7
— — ‘14‘2 y-z 5
0 d Circular cylinder (special case of elliptic cylinder) — + == 1
a® a?
Solve for t ;
Circular paraholoid(special case of elliptic paraboloid) _ + ‘I_) agi=r(]) \
a? a? §
\
2 2 \
e y* \
Hyperholic cylinder = - =1
a?) o
\
. _ ¢
Hyperbolic paraboloid ‘I— -2z=0 ¢ r
L \ \
Parabalic cylinder 2° +2ay =0
>
/
2 2 2
x’ Y- F
Hyperboloid of one sheet +m-5=1 |
a? A 2 y
22 NP
Hyperholoid of two sheets — =
C

"
o

Axis Aligned Bounding Box

« Given
—Ray:5+tc7, tE]R;c?,cfE]R@’
— Axis aligned bounding box (AABB): 1,,in) Pmax € R3

pmax

Bounded

Volume

pmin

Ray-Box Intersection

« Given
—Ray:5+tc7, tER;6,d € R3
— Axis aligned bounding box (AABB): 1,,in) Pmax € R3
« “Slabs test” for ray-box intersection
— Ray enters the box in all dimensions before exiting in any
— max({t7°¥|i = x,y,2z}) < min({t!“"|i = x,y,2})

ta (smaller)

Bounded e (larger)

Volume

Bounded

Volume

History of Intersection Algorithms

 Ray-geometry intersection algorithms

— Polygons: Appel '68]

— Quadrics, CSG: (Goldstein & Nagel '71]
— Recursive Ray Tracing: [Whitted '79]

— Tori: 'Roth '82]

— Bicubic patches: 'Whitted '80, Kajiya '82]
— Algebraic surfaces: 'Hanrahan '82]

— Swept surfaces: Kajiya’'83, van Wijk '84]
— Fractals: Kajiya '83]

— Deformations: Barr '86]

— NURBS: [Stdrzlinger '98]

— Subdivision surfaces: 'Kobbelt et al "98]

Precision Problems

 E.g., cause of ,,surface acne”

\ |/
£\

LA
/T\

T

Due to precision problems V. ‘ \
the calculated intersection

is beneath the surface 2.When a shadow ray
starts from this point,
it hits the sphere
surface,and is in
shadow

Problem in surface intersection.

