Computer Graphics

- Splines -

Philipp Slusallek

Curves

Curve descriptions

- Explicit functions
 - $y(x) = \pm \operatorname{sqrt}(r^2 x^2)$, restricted domain $(x \in [-1, 1])$
- Implicit functions
 - $x^2 + y^2 = r^2$ unknown solution set
- Parametric functions
 - $x(t) = r \cos(t), y(t) = r \sin(t), t \in [0, 2\pi]$
 - · Flexibility and ease of use

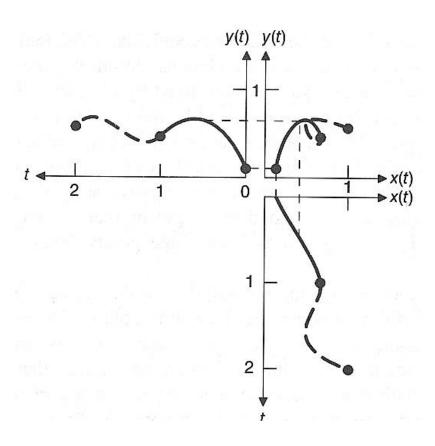
Typically, use of polynomials

- Avoids complicated functions (z.B. pow, exp, sin, sqrt)
- Use simple polynomials, typically of low degree

Parametric curves

Separate function in each coordinate

$$- 3D: f(t) = (x(t), y(t), z(t))$$



Monomials

- Monomial basis
 - Simple basis: 1, t, t², ... (t usually in [0 .. 1])
- Polynomial representation

Degree (= Order – 1)
$$\underline{P}(t) = (\underline{x}(t) \quad \underline{y}(t) \quad \underline{z}(t)) = \sum_{i=0}^{n} t^{i}\underline{A}_{i} \longrightarrow \text{Coefficients } \in \mathbb{R}^{3}$$
Monomials

- Coefficients can be determined from a sufficient number of constraints (e.g. interpolation of given points)
 - Given (n+1) parameter values t_i and points P_i
 - Solution of a linear system in the A_i possible, but inconvenient
- Matrix representation

$$P(t) = (x(t) \quad y(t) \quad z(t)) = T(t) A$$

$$= \begin{bmatrix} t^{n} & t^{n-1} & \cdots & 1 \end{bmatrix} \begin{bmatrix} A_{x,n} & A_{y,n} & A_{z,n} \\ A_{x,n-1} & A_{y,n-1} & A_{z,n-1} \\ \vdots & \vdots & \vdots \\ A_{x,0} & A_{y,0} & A_{z,0} \end{bmatrix}$$

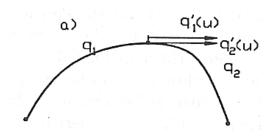
Derivatives

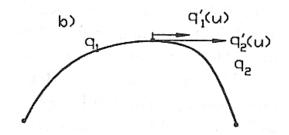
- Derivative = tangent vector
 - Polynomial of degree (n-1)

$$P'(t) = (x'(t) \quad y'(t) \quad z'(t)) = T'(t) A$$

$$= [nt^{n-1} \quad (n-1)t^{n-2} \quad \cdots \quad 1 \quad 0] \begin{bmatrix} A_{x,n} & A_{y,n} & A_{z,n} \\ A_{x,n-1} & A_{y,n-1} & A_{z,n-1} \\ \vdots & \vdots & \vdots \\ A_{x,0} & A_{y,0} & A_{z,0} \end{bmatrix}$$

- Continuity and smoothness between parametric curves
 - $-C^0 = G^0 =$ same point
 - Parametric continuity C¹
 - Tangent vectors are identical
 - Geometric continuity G¹
 - Same direction of tangent vectors
 - Similar for higher order derivatives





More on Continuity

At one point:

Geometric Continuity:

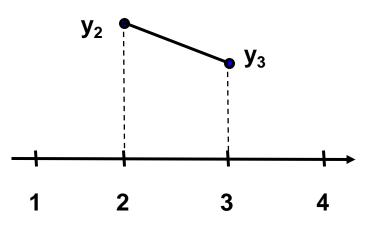
- G0: curves are joined together at that point
- G1: first derivatives are proportional at joint point
 - Same direction but not necessarily same length
- G2: first and second derivatives are proportional

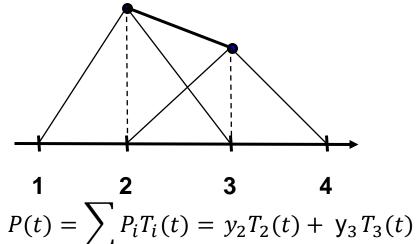
Parametric Continuity:

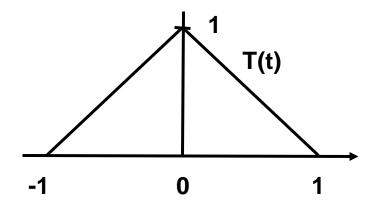
- C0: curves are joined
- C1: first derivative equal
- C2: first and second derivatives are equal.
 - If t is the time, this implies the acceleration is continuous.
- Cn: all derivatives up to and including the nth are equal.

Linear Interpolation

Hat Functions and Linear Splines (C0/G0 continuity)







$$T(t) = \begin{cases} 0 & t < -1 \\ 1+t & -1 \le t < 0 \\ 1-t & 0 \le t < 1 \\ 0 & t \ge 1 \end{cases}$$
$$T_i(t) = T(t-i)$$

Lagrange Interpolation

Interpolating basis functions

Lagrange polynomials for a set of parameter values T={t₀, ..., t_n}

$$L_i^{\rm n}({\sf t}) = \prod_{\substack{j=0\\i\neq j}}^n \frac{t-t_j}{t_i-t_j}, \qquad \text{with} \quad L_i^n(t_j) = \delta_{ij} = \begin{cases} 1 & i=j\\ 0 & \text{otherwise} \end{cases}$$

Properties

- Good for interpolation at given parameter values
 - At each t_i: One basis function = 1, all others = 0
- Polynomial of degree n (n factors linear in t)
 - Infinitely continuous derivatives everywhere

Lagrange Curves

Use Lagrange Polynomials with point coefficients

$$\underline{P}(t) = \sum_{i=0}^{n} L_i^n(t)\underline{P}_i$$

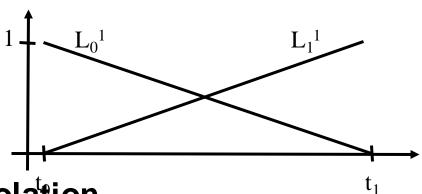
Lagrange Interpolation

Simple Linear Interpolation

$$- T=\{t_0, t_1\}$$

$$L_0^1(t) = \frac{t - t_1}{t_0 - t_1}$$

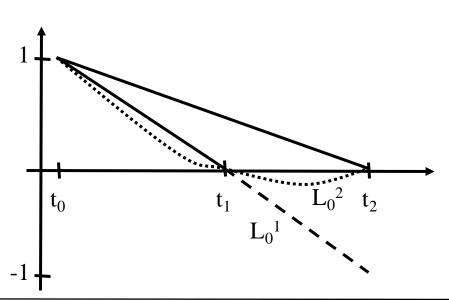
$$L_1^1(t) = \frac{t - t_0}{t_1 - t_0}$$



Simple Quadratic Interpolation

$$- T=\{t_0, t_1, t_2\}$$

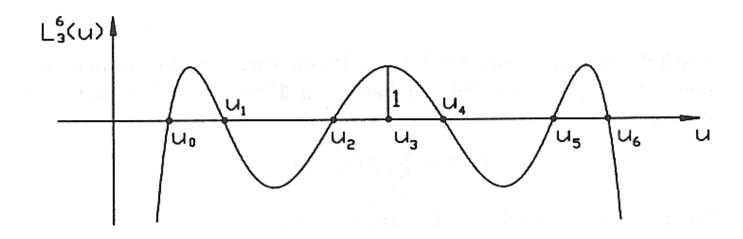
$$L_0^2(t) = \frac{t - t_1}{t_0 - t_1} \frac{t - t_2}{t_0 - t_2}$$



Problems

Problems with a single polynomial

- Degree depends on the number of interpolation constraints
- Strong overshooting for high degree (n > 7)
- Problems with smooth joints
- Numerically unstable
- No local changes



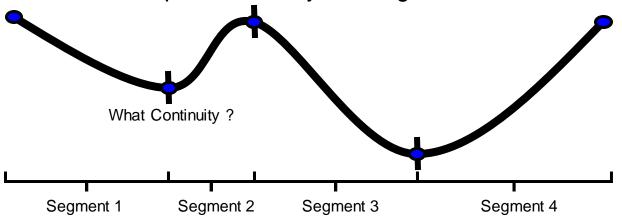
Splines

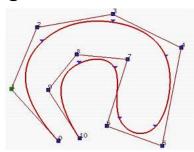
Functions for interpolation & approximation

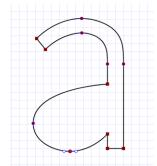
- Standard curve and surface primitives in 3D modeling & fonts
- Key frame and in-betweens in animations
- Filtering and reconstruction of images

Historically

- Name for a tool in ship building
 - Flexible metal strip that tries to stay straight
- Within computer graphics:
 - Piecewise polynomial function
 - Decouples continuity and degree of curve



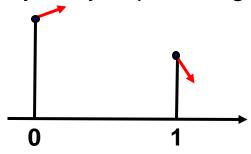




Hermite Interpolation

Hermite Basis (cubic)

- Interpolation of position P and tangent P information for t= {0, 1}
- Very easy to piece together with G1/C1 continuity



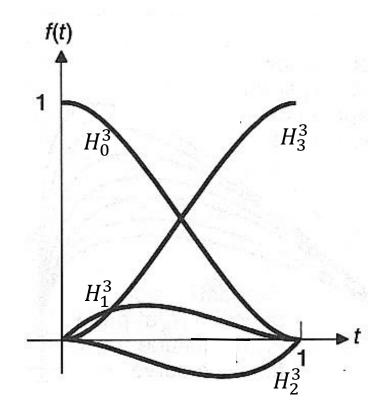
Basis functions

$$H_0^3(t) = (1-t)^2(1+2t)$$

$$H_1^3(t) = t(1-t)^2$$

$$H_2^3(t) = -t^2(1-t)$$

$$H_3^3(t) = (3-2t)t^2$$



Hermite Interpolation

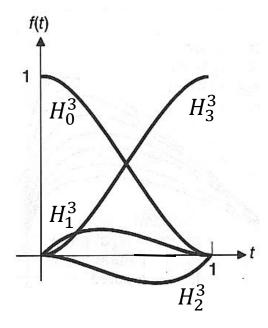
Properties of Hermite Basis Functions

- H₀ (H₃) interpolates smoothly from 1 to 0 (1 to 0)
- $-H_0$ and H_3 have zero derivative at t=0 and t=1
 - No contribution to derivative (H₁, H₂)
- H₁ and H₂ are zero at t= 0 and t= 1
 - No contribution to position (H₀, H₃)
- $H_1 (H_2)$ has slope 1 at t= 0 (t= 1)
 - Unit factor for specified derivative vector

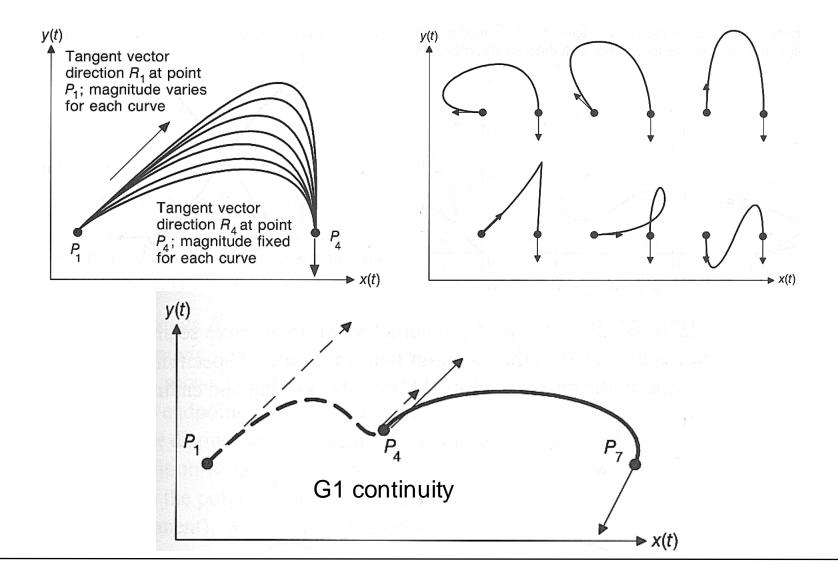
Hermite polynomials

- P₀, P₁ are positions ∈ R³
- $-P'_0$, P'_1 are derivatives (tangent vectors) $\in \mathbb{R}^3$

$$\underline{P}(t) = P_0 H_0^3(t) + P_0' H_1^3(t) + P_1' H_2^3(t) + P_1 H_3^3(t)$$



Examples: Hermite Interpolation



Matrix Representation

Matrix representation

$$P(t) = \begin{bmatrix} t^3 & t^2 & \cdots & 1 \end{bmatrix} \begin{bmatrix} A_{x,n} & A_{y,n} & A_{z,n} \\ A_{x,n-1} & A_{y,n-1} & A_{z,n-1} \\ \vdots & \vdots & \vdots \\ A_{x,0} & A_{y,0} & A_{z,0} \end{bmatrix} = \begin{bmatrix} M_{11} & M_{12} & M_{13} \\ M_{21} & \ddots & \end{bmatrix} \begin{bmatrix} G_{x,3} & G_{y,3} & G_{z,3} \\ G_{x,2} & G_{y,2} & G_{z,2} \\ G_{x,1} & G_{y,1} & G_{y,1} \\ G_{x,0} & G_{y,0} & G_{z,0} \end{bmatrix} = \begin{bmatrix} t^3 & t^2 & \cdots & 1 \end{bmatrix} \begin{bmatrix} M_{11} & M_{12} & M_{13} \\ M_{21} & \ddots & & \end{bmatrix} \begin{bmatrix} P_0^T \\ P_1^T \\ P_1^T \\ P_1^T \end{bmatrix}$$
Basis Functions

Matrix Representation

For cubic Hermite interpolation we obtain:

$$P_0^T = (0 \quad 0 \quad 0 \quad 1)M_HG_H$$

$$P_1^T = (1 \quad 1 \quad 1 \quad 1)M_HG_H$$

$$P_0^T = (0 \quad 0 \quad 1 \quad 0)M_HG_H$$

$$P_1^T = (3 \quad 2 \quad 1 \quad 0)M_HG_H$$
or
$$P_1^T = (3 \quad 2 \quad 1 \quad 0)M_HG_H$$

$$P_1^T = (3 \quad 2 \quad 1 \quad 0)M_HG_H$$

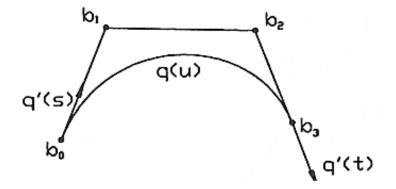
- Solution:
 - Two matrices must multiply to unit matrix

$$M_H = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{pmatrix}^{-1} = \begin{pmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

Bézier

Bézier Basis [deCasteljau 59, Bézier 62]

- Different curve representation
- Start and end point
- 2 point that are approximated by the curve (cubics)
- $-P'_0=3(b_1-b_0)$ and $P'_1=3(b_3-b_2)$
 - Factor 3 due to derivative of t³



$$G_{H} = \begin{bmatrix} P_{0^{T}} \\ P_{1^{T}} \\ P'_{0^{T}} \\ P'_{1^{T}} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ -3 & 3 & 0 & 0 \\ 0 & 0 & -3 & 3 \end{bmatrix} \begin{bmatrix} b_{0}^{T} \\ b_{1}^{T} \\ b_{2}^{T} \\ b_{2}^{T} \end{bmatrix} = M_{HB}G_{B}$$

Basis transformation

Transformation

$$-P(t)=TM_HG_H=TM_H(M_{HB}G_B)=T(M_HM_{HB})G_B=TM_BG_B$$

$$M_B = M_H M_{HB} = \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

$$(1)$$

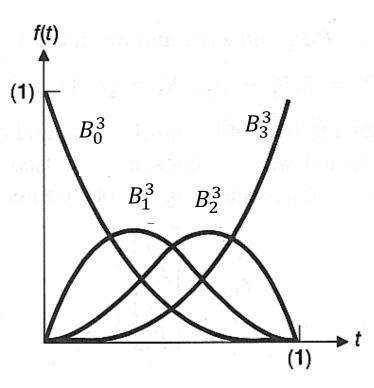
$$P(t) = \sum B_i^3(t)b_i =$$

$$(1-t)^3b_0 + 3t(1-t)^2 b_1 + 3t^2(1-t)b_2 + t^3b_3$$

Bézier Curves & Basis Functions

$$P(t) = \sum B_i^n(t)b_i$$

with basis functions $B_i^n(t) = \binom{n}{i} t^i (1-t)^{n-i}$



Bernstein-Polynomials

Properties: Bézier

Advantages:

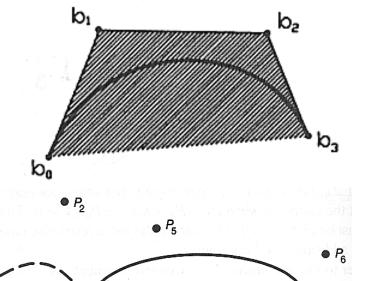
- End point interpolation
- Tangents explicitly specified
- Smooth joints are simple
 - P₃, P₄, P₅ collinear → G¹ continuous
- Geometric meaning of control points
- Affine invariance

$$\forall \sum B_i(t) = 1$$

- Convex hull property
 - For 0 < t < 1: $B_i(t) \ge 0$
- Symmetry: $B_i(t) = B_{n-i}(1-t)$

Disadvantages

- Smooth joints need to be maintained explicitly
 - Automatic in B-Splines (and NURBS)



DeCasteljau Algorithm

Direct evaluation of the basis functions

- Simple but expensive
- Use recursion
 - Recursive definition of the basis functions

$$B_i^n(t) = \mathsf{tB}_{i-1}^{n-1}(t) + (1-t)B_i^{n-1}(t)$$

– Inserting this once yields:

$$P(t) = \sum_{i=0}^{n} b_i^0 B_i^n(t) = \sum_{i=0}^{n-1} b_i^1(t) B_i^{n-1}(t)$$

with the new Bézier points given by the recursion

$$b_i^k(t) = \mathsf{tb}_{i+1}^{k-1}(t) + (1-t)b_i^{k-1}(t)$$
 and $b_i^0(t) = b_i$

DeCasteljau Algorithm

DeCasteljau-Algorithm:

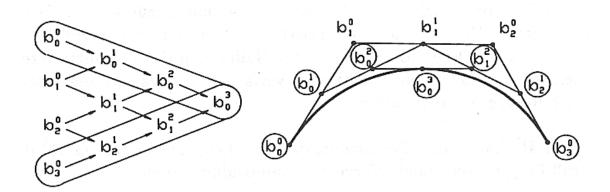
 Recursive degree reduction of the Bezier curve by using the recursion formula for the Bernstein polynomials

$$P(t) = \sum_{i=0}^{n} b_i^0 B_i^n(t) = \sum_{i=0}^{n-1} b_i^1(t) B_i^{n-1}(t) = \dots = b_i^n(t) \cdot 1$$

$$b_i^k(t) = \text{tb}_{i+1}^{k-1}(t) + (1-t)b_i^{k-1}(t)$$

Example:

$$- t = 0.5$$



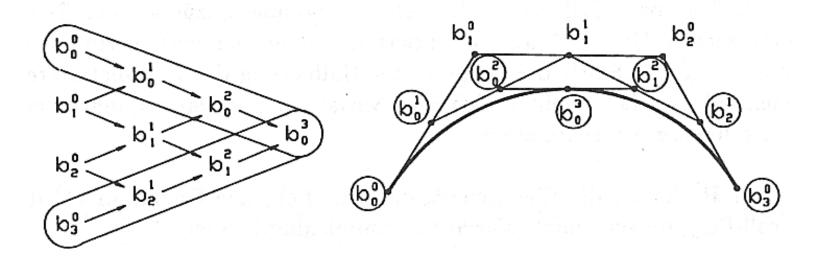
DeCasteljau Algorithm

Subdivision using the deCasteljau-Algorithm

 Take boundaries of the deCasteljau triangle as new control points for left/right portion of the curve

Extrapolation

- Backwards subdivision
 - Reconstruct triangle from one side



Catmull-Rom-Splines

Goal

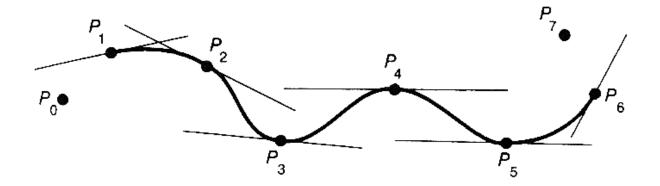
Smooth (C¹)-joints between (cubic) spline segments

Algorithm

- Tangents given by neighboring points P_{i-1} P_{i+1}
- Construct (cubic) Hermite segments

Advantage

- Arbitrary number of control points
- Interpolation without overshooting
- Local control



Matrix Representation

Catmull-Rom-Spline

- Piecewise polynomial curve
- Four control points per segment
- For n control points we obtain (n-3) polynomial segments

$$\underline{P}^{i}(t) = TM_{CR}G_{CR} = T \frac{1}{2} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 2 & -5 & 4 & 1 \\ -1 & 0 & 1 & 0 \\ 0 & 2 & 0 & 0 \end{bmatrix} \begin{bmatrix} \underline{P}_{i}^{T} \\ \underline{P}_{i+1}^{T} \\ \underline{P}_{i+2}^{T} \\ \underline{P}_{i+3}^{T} \end{bmatrix}$$

Application

- Smooth interpolation of a given sequence of points
- Key frame animation, camera movement, etc.
- Only G¹-continuity
- Control points should be equidistant in time

Choice of Parameterization

Problem

- Often only the control points are given
- How to obtain a suitable parameterization t_i?
- Example: Chord-Length Parameterization

$$t_0 = 0$$

$$t_i = \sum_{j=1}^{i} \operatorname{dist}(P_i - P_{i-1})$$

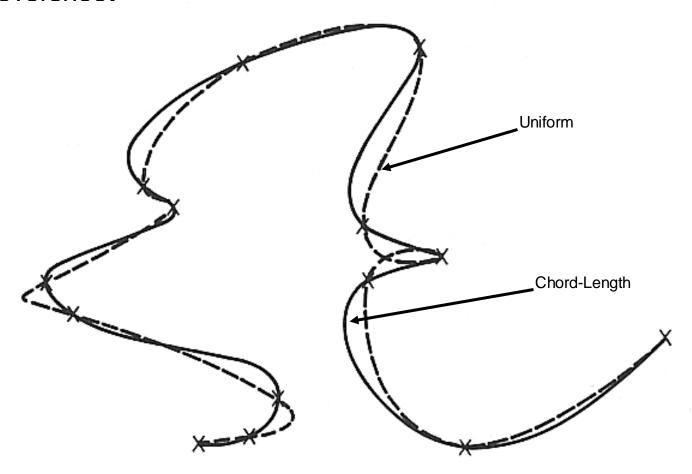
Arbitrary up to a constant factor

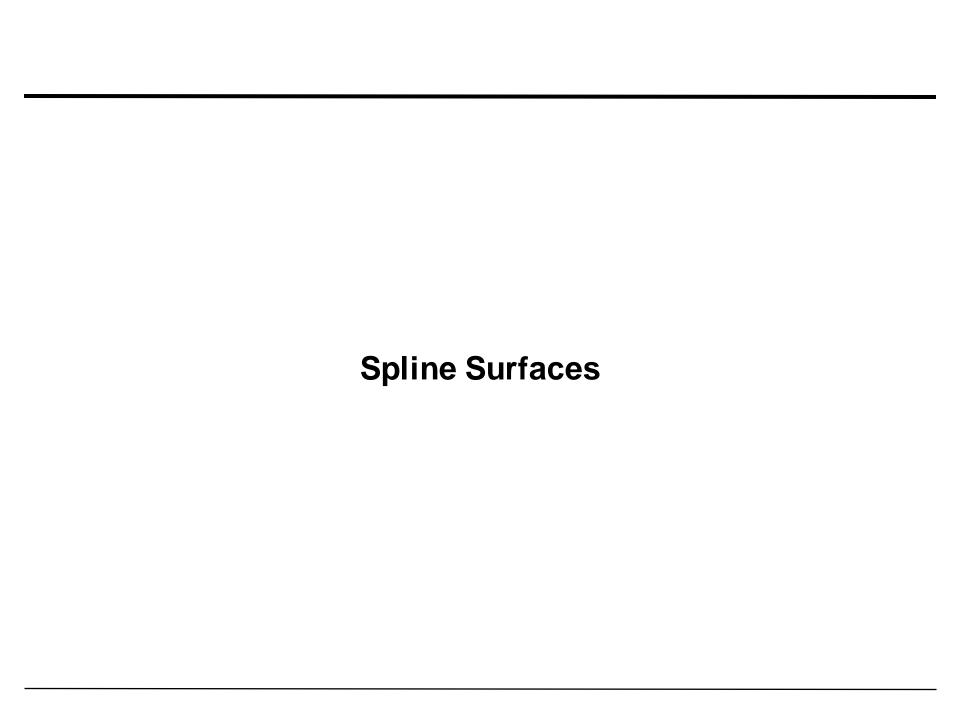
Warning

- Distances are not affine invariant!
- Shape of curves changes under transformations!!

Parameterization

- Chord-Length versus uniform Parameterization
 - Analog: Think P(t) as a moving object with mass that may overshoot





Parametric Surfaces

Same Idea as with Curves

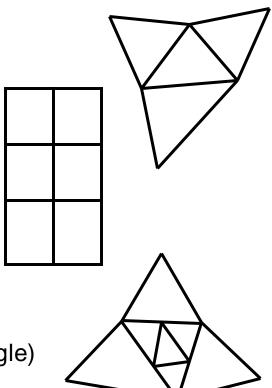
- $P: R^2 \rightarrow R^3$
- $\underline{P}(u,v) = (x(u,v), y(u,v), z(u,v))^T \in R^3 \text{ (also } P(R^4))$

Different Approaches

- Triangular Splines
 - Single polynomial in (u,v) via barycentric coordinates with respect to a reference triangle (e.g. B-Patches)

Tensor Product Surfaces

- Separation into polynomials in u and in v
- Subdivision Surfaces
 - Start with a triangular mesh in R³
 - Subdivide mesh by inserting new vertices
 - Depending on local neighborhood
 - Only piecewise parameterization (in each triangle)



- Idea
 - Create a "curve of curves"
- Simplest case: Bilinear Patch
 - Two lines in space

$$\underline{P^1}(v) = (1 - v)\underline{P_{00}} + v\underline{P_{10}}$$
$$\underline{P^2}(v) = (1 - v)\underline{P_{01}} + v\underline{P_{11}}$$

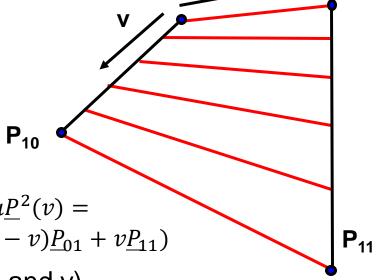
Connected by lines

$$\underline{P}(u,v) = (1-u)\underline{P}^{1}(v) + u\underline{P}^{2}(v) = (1-u)((1-v)\underline{P}_{00} + v\underline{P}_{10}) + u((1-v)\underline{P}_{01} + v\underline{P}_{11})$$

Bézier representation (symmetric in u and v)

$$\underline{P}(u,v) = \sum_{i,j=0}^{1} B_i^1(u) B_j^1(v) \underline{P}_{ij}$$

Control mesh P_{ij}



 P_{01}

General Case

- Arbitrary basis functions in u and v
 - Tensor Product of the function space in u and v
- Commonly same basis functions and same degree in u and v

$$\underline{P}(u,v) = \sum_{i=0}^{m} \sum_{j=0}^{n} B_i^m(u) B_j^n(v) \underline{P}_{ij}$$

Interpretation

Curve defined by curves

$$\underline{P}(u,v) = \sum_{i=0}^{m} B_{i}(u) \underbrace{\sum_{j=0}^{n} B_{j}(v) \underline{P}_{ij}}_{P_{i}(v)}$$

Symmetric in u and v

Matrix Representation

Similar to Curves

Geometry now in a "tensor" (m x n x 3)

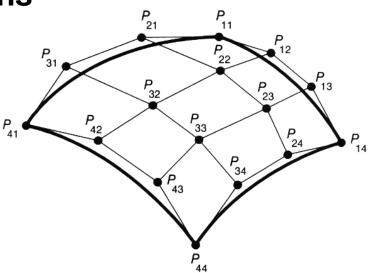
$$\underline{P}(u,v) = UG_{monom}V^{T} = \begin{pmatrix} u^{m} & \cdots & u & 1 \end{pmatrix} \begin{pmatrix} G_{nn} & \cdots & G_{n0} \\ \vdots & \ddots & \vdots \\ G_{0n} & \cdots & G_{00} \end{pmatrix} \begin{pmatrix} v^{n} \\ \vdots \\ v \\ 1 \end{pmatrix} = UB_{U}^{T}G_{UV}B_{V}^{T}V^{T}$$

Degree

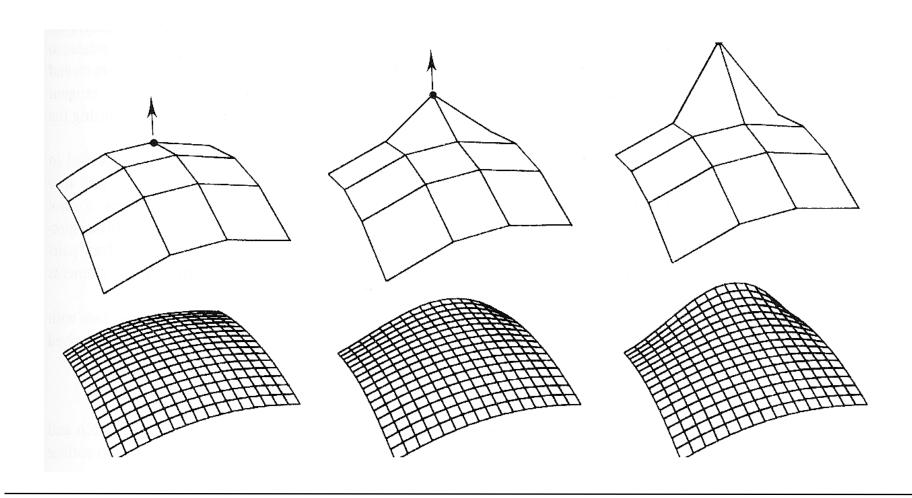
- u: m
- v: n
- Along the diagonal (u=v): m+n
 - Not nice → "Triangular Splines"

Properties Derived Directly From Curves

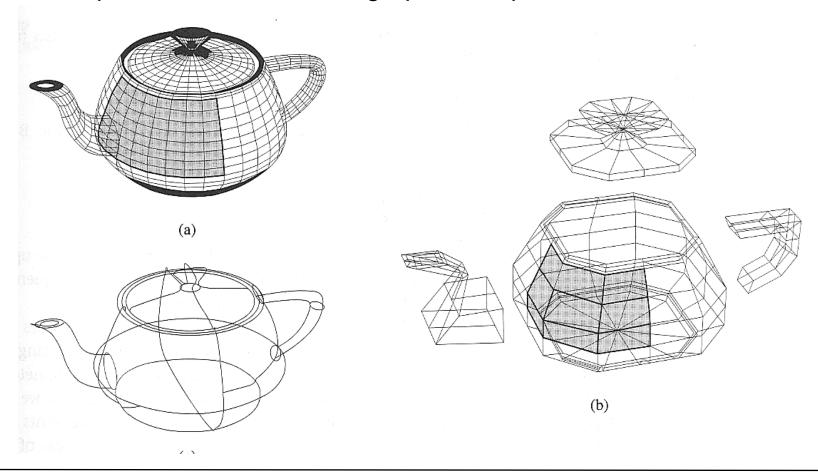
- Bézier Surface:
 - Surface interpolates corner vertices of mesh
 - Vertices at edges of mesh define boundary curves
 - Convex hull property holds
 - Simple computation of derivatives
 - Direct neighbors of corners vertices define tangent plane
- Similar for Other Basis Functions



Modifying a Bézier Surface



- Representing the Utah Teapot as a set continuous Bézier patches
 - http://www.holmes3d.net/graphics/teapot/



Operations on Surfaces

deCausteljau/deBoor Algorithm

- Once for u in each column
- Once for v in the resulting row
- Due to symmetry also in other order

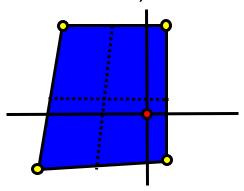
Similarly we can derive the related algorithms

- Subdivision
- Extrapolation
- Display
- **—** ...

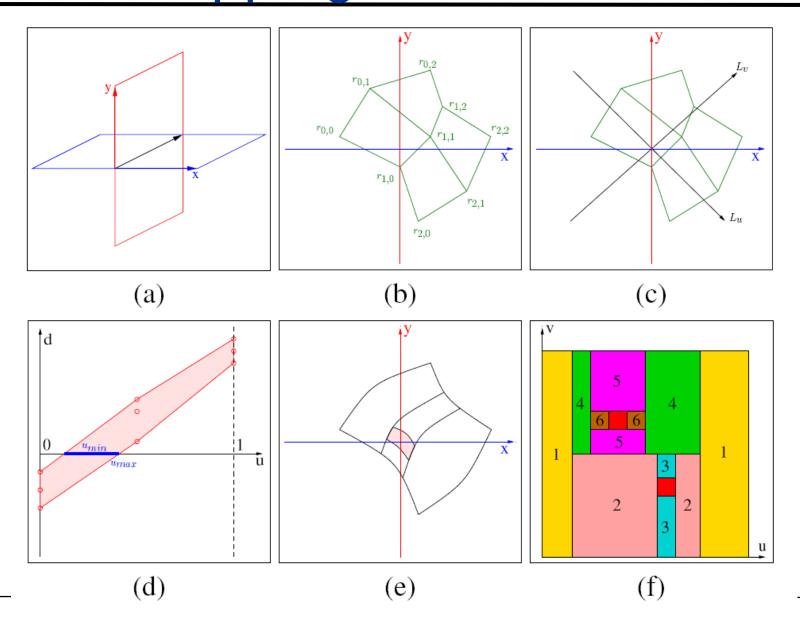
Ray Tracing of Spline Surfaces

Several approaches

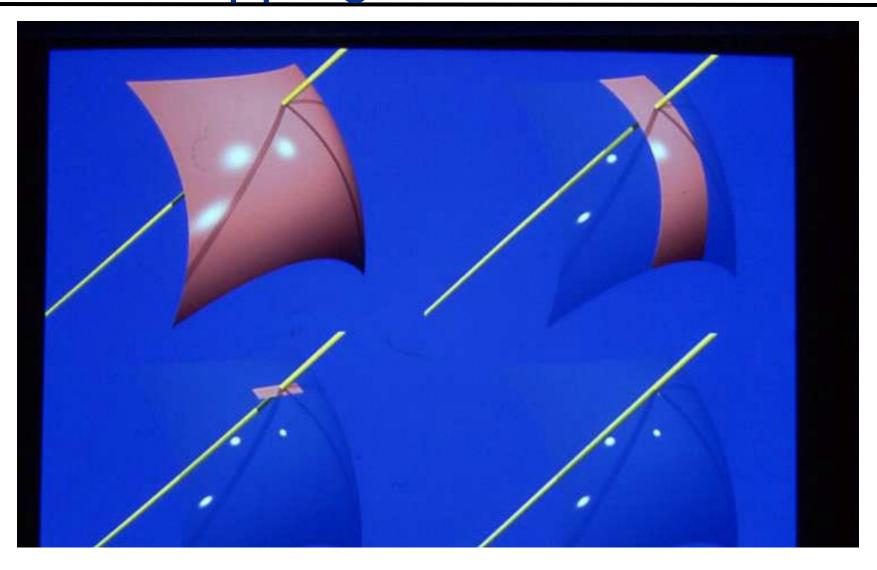
- Tessellate into many triangles (using deCasteljau or deBoor)
 - Often the fasted method
 - May need enormous amounts of memory
- Recursive subdivision
 - Simply subdivide patch recursively
 - Delete parts that do not intersect ray (Pruning)
 - Fixed depth ensures crack-free surface
 - May cache intermediate results for next rays
- Bézier Clipping [Sederberg et al.]
 - Find two orthogonal planes that intersect in the ray
 - Project the surface control points into these planes
 - Intersection must have distance zero
 - → Root finding
 - → Can eliminate parts of the surface where convex hull does not intersect ray
 - Must deal with many special cases rather slow



Bézier Clipping



Bézier Clipping



Higher Dimensions

Volumes

- Spline: R^3 → R
 - Volume density
 - Rarely used
- Spline: $R^3 \rightarrow R^3$
 - Modifications of points in 3D
 - · Displacement mapping
 - Free Form Deformations (FFD)

