Computer Graphics

- Distribution Ray Tracing -

Philipp Slusallek

Overview

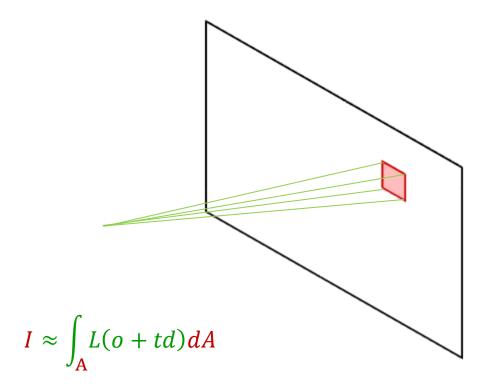
- Other Optical Effects
 - Not yet included in Whitted-style ray tracing
- Stochastic Sampling
- Distribution Ray-Tracing

Problems

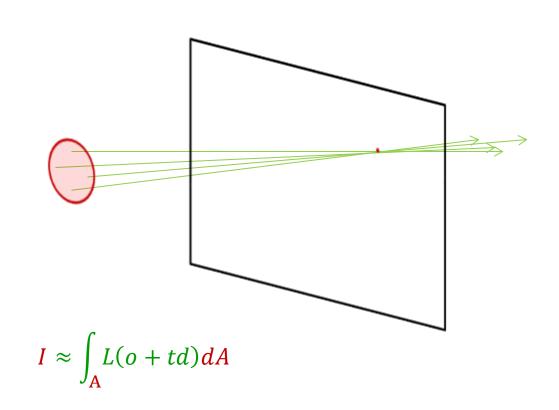
- Anti-aliasing
- Depth of field
- Motion blur
- BRDF
- Area Lights

Anti-aliasing

- Anti-aliasing
- Depth of field
- Motion blur
- BRDF
- Area Lights

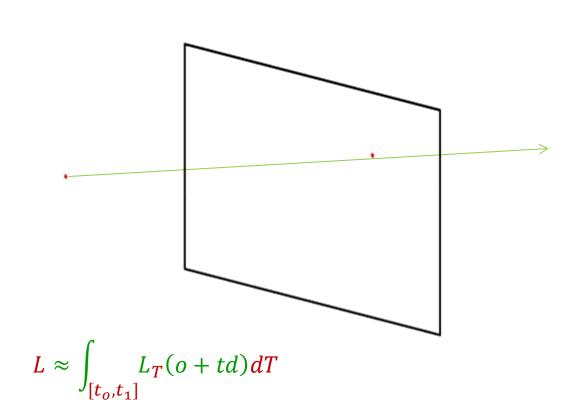


- Anti-aliasing
- Depth of field
- Motion blur
- BRDF
- Area Lights



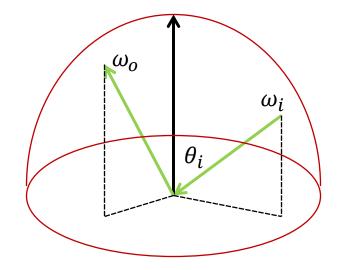
Motion blur

- Anti-aliasing
- Depth of field
- Motion blur
- BRDF
- Area Lights



BRDF

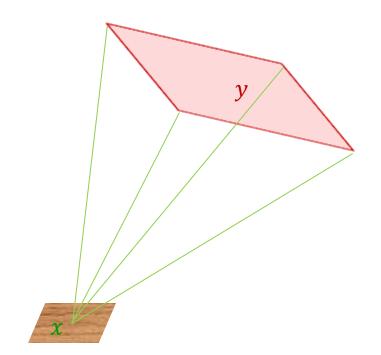
- Anti-aliasing
- Depth of field
- Motion blur
- BRDF
- Area Lights



$$L_o = L_e + \int_{\Omega_+} f_r L_i \cos \theta_i \, d\omega_i$$

Area Lights

- Anti-aliasing
- Depth of field
- Motion blur
- BRDF
- Area Lights

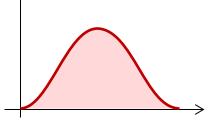


$$E_i = \int_A V(x, y) \frac{\cos \theta_A}{\|x - y\|^2} dA$$

Integration by MC-Sampling

- Features
 - Anti-aliasing
 - Depth of field
 - Motion blur
 - BRDF
 - Area Lights

$$I = \int_{D} f(x) dx$$



• Monte-Carlo (MC) Integration

- Stochastic sampling of domain
- Averaging of results, weighted by probability
- Careful choice of samples essential for good results

$$I \approx \frac{D}{n} \sum_{i=1}^{n} \frac{f(x_i)}{p(x_i)}$$
$$x_i \text{ sampled } \propto p(x)$$

STOCHASTIC SAMPLING (VERY SHORT INTRO)

Random Number

Random Number

- Uniformly distributed
- ξ in [0, 1)

Pseudo-Random Number

- Linear congruential
- Mersenne-Twister
- ...
- Speed / evenness trade-off

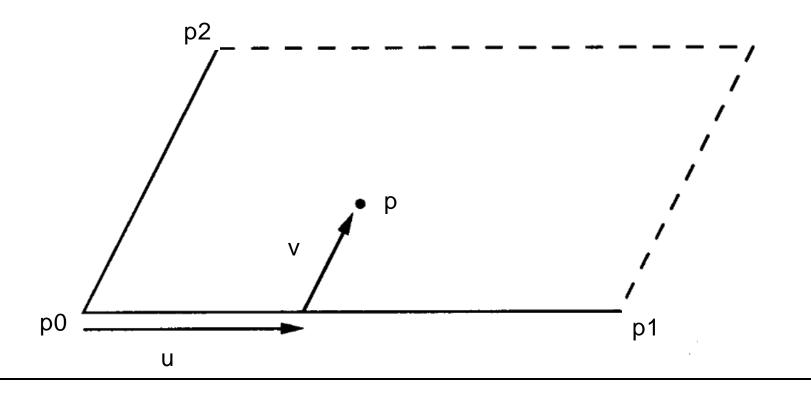
Parallelogram Sampling

Parametric Form

$$- p(u, v) = p_0 + u(p_1 - p_0) + v(p_2 - p_0) = (1 - u - v)p_0 + up_1 + v p_2$$

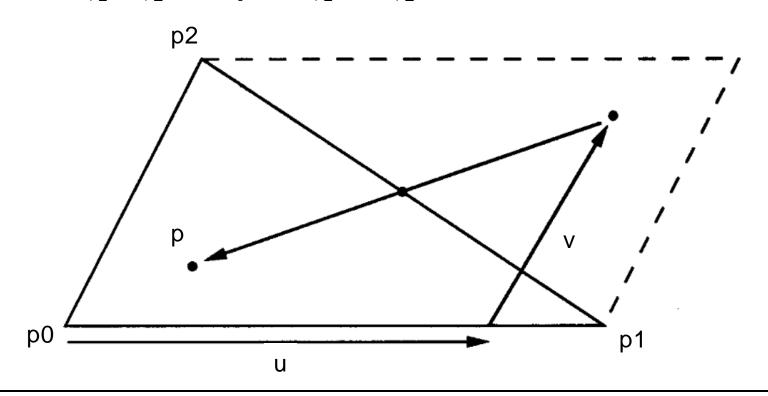
Random Sampling

 $- p(\xi_1, \xi_2)$



Triangle Sampling

- Parametric Form
 - $p(u,v) = (1 u v)p_0 + up_1 + v p_2$
- Random Sampling
 - $\text{ if } \xi_1 + \xi_2 < 1 : p(\xi_1, \xi_2) \\ \text{ if } \xi_1 + \xi_2 > 1 : p(1 \xi_1, 1 \xi_2)$

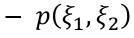


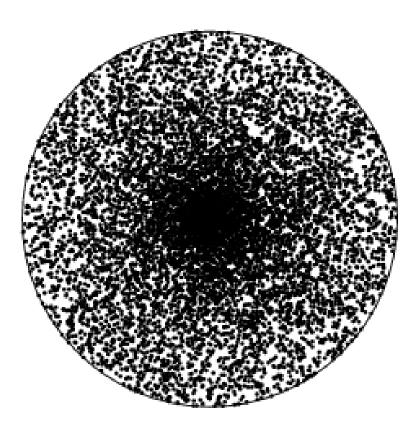
Disc Sampling

Parametric Form

 $- p(u, v) = Polar2Cartesian(R v, 2 \pi u) // disc radius R$

Naïve Sampling (wrong!)





Disc Sampling

Parametric Form

- $p(u, v) = Polar2Cartesian(R v, 2 \pi u) // disc radius R$
- Correct Sampling
 - $p(\xi_1, \sqrt{\xi_2})$
 - Results in uniform sampling over area

 For other cases, see Phil Dutre's Global Illumination Compendium at

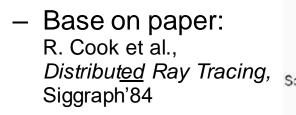
http://people.cs.kuleuven.be/~philip.dutre/GI/TotalCompendium.pdf

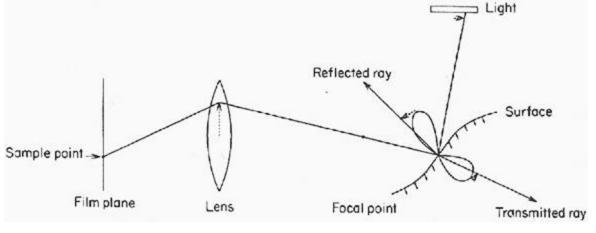
DISTRIBUTION RAY-TRACING

Distribution Ray Tracing

Apply random sampling for many aspects in RT

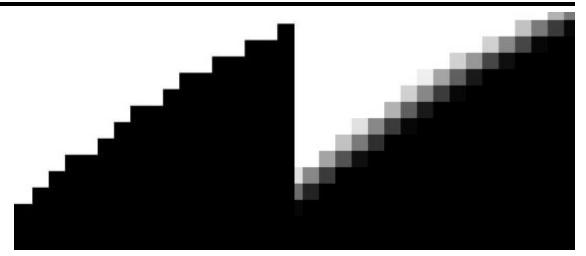
- Pixel
 - Anti-aliasing
- Lens
 - Depth of field
- Time
 - Motion blur
- BRDF
 - Glossy reflections & refractions
- Area Lights
 - Soft shadows



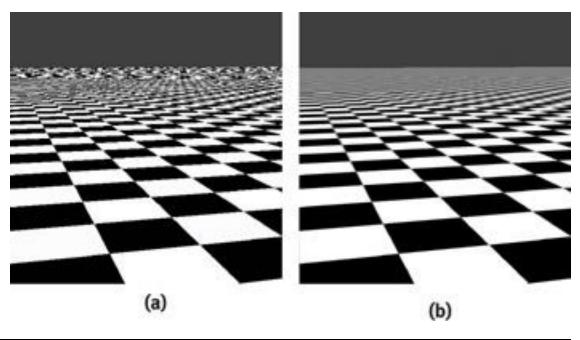


Anti-Aliasing

- Artifacts
 - Jagged edges



– Aliased patterns



Anti-Aliasing

- Approach
 - Average samples over pixel area
 - Akin to sensor cells of measuring device collecting photons
- Random offset of pixel raster coords from center
 - $prc[coord] = pid[coord] + 0.5 + (\xi 0.5)$

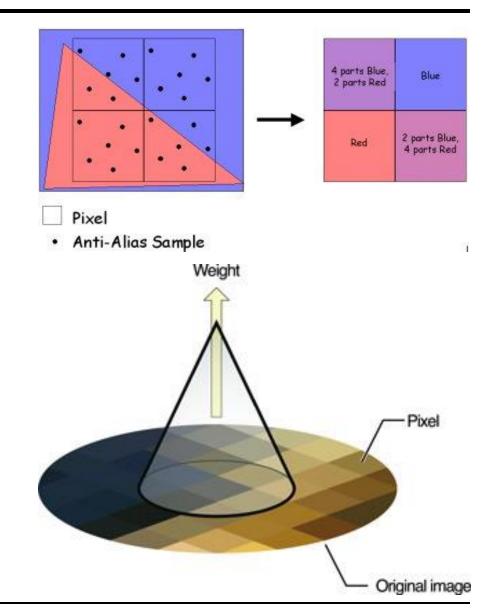


Anti-Aliasing

Basic Method

- Plain average
- Box filter f(x, y) = 1

$$-L = \frac{\sum_{i=1}^{n} L(\xi_{i1}, \xi_{i2})}{n}$$

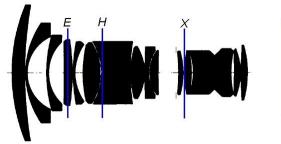


• Filtering

- Weighted average
- Filter f(x, y)

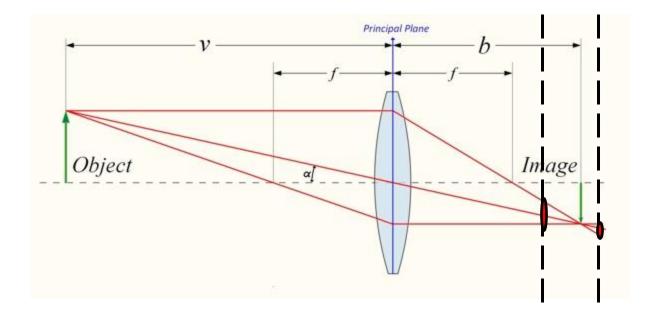
$$-L = \frac{\sum_{i=1}^{n} f(\xi_{i1}, \xi_{i2}) L(\xi_{i1}, \xi_{i2})}{\sum_{i=1}^{n} f(\xi_{i1}, \xi_{i2})}$$

- Real Camera
 - Complex lenses that focus one distance onto the image
 - Finite aperture size
 - Blurred features except for focal plane



Thin Lens

- Focus light rays from point on object onto image plane
 - Sharp features at focal plane
 - Blurred features before/beyond focal plane
- Depth of field: depth range with acceptably small *circle of confusion*
 - Smaller than one pixel



Compute ray through lens center

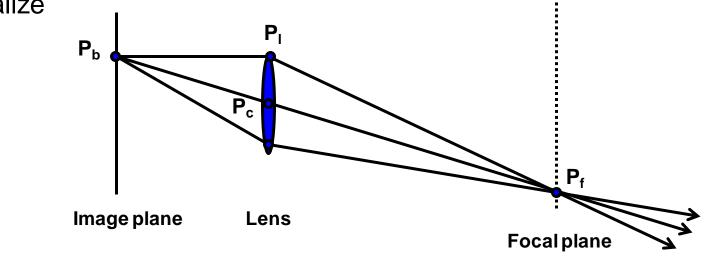
– Compute focus point P_f on focal plane, determined by P_b and P_c

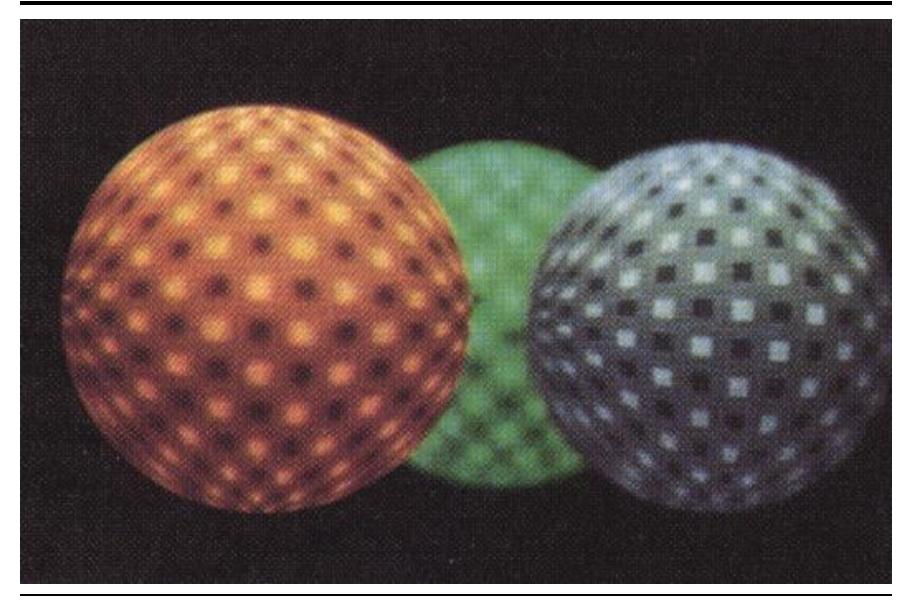
Compute new ray origin

- Sample coordinates (x, y) of aperture diameter (= f / N)
- Compute P_{I} : ray.origin += P_{c} + x * camera.right + y * camera.up
- Might include modeling the shape of the aperture

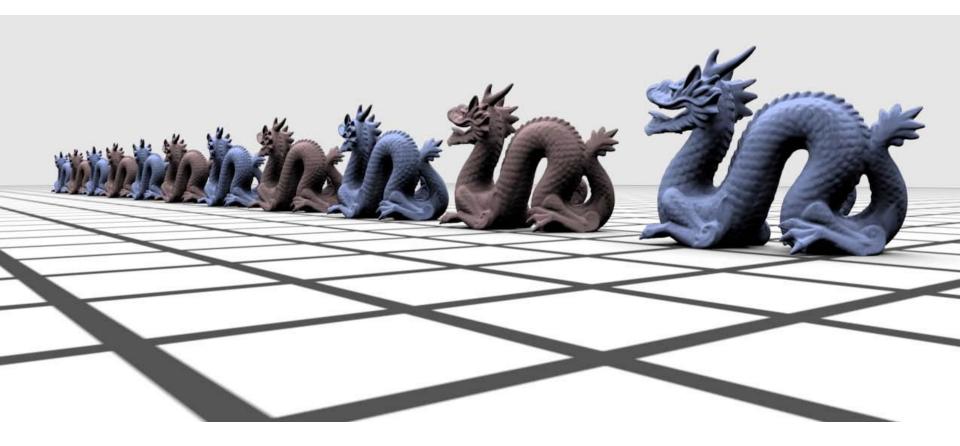
Compute new ray direction

- Compute ray.direction = $P_f P_I \rightarrow$ vector from P_I to P_f
- Normalize

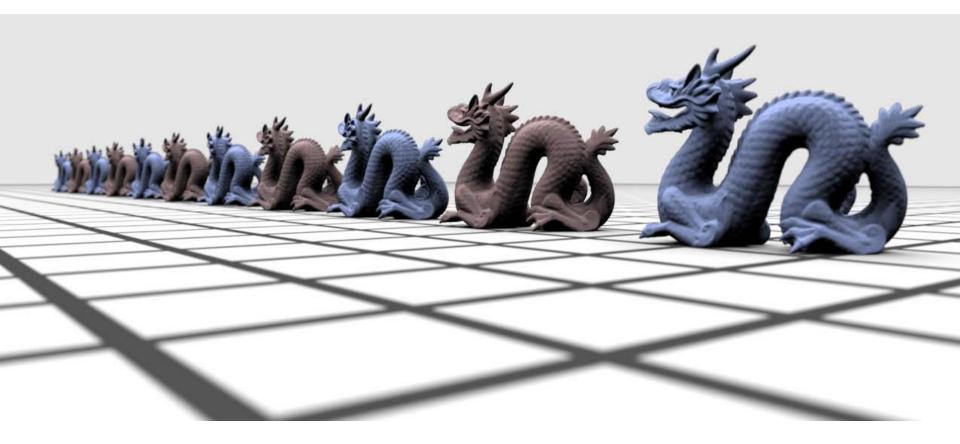




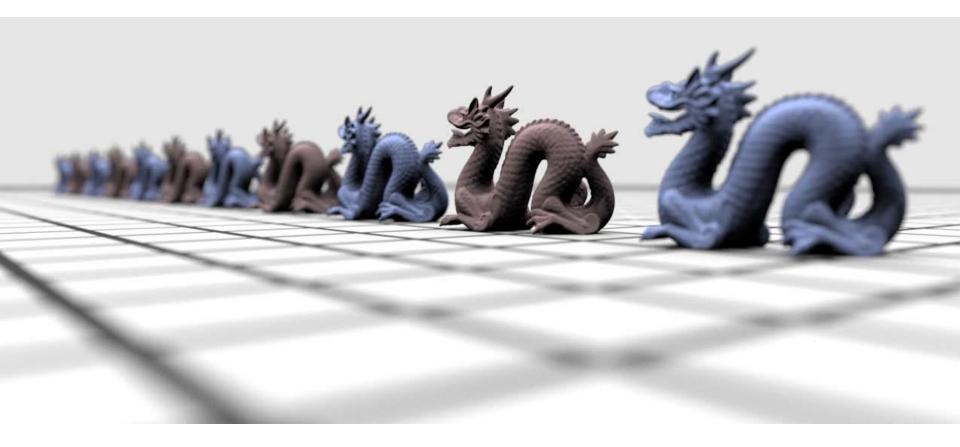
• Zero Aperture



Small Aperture



Large Aperture

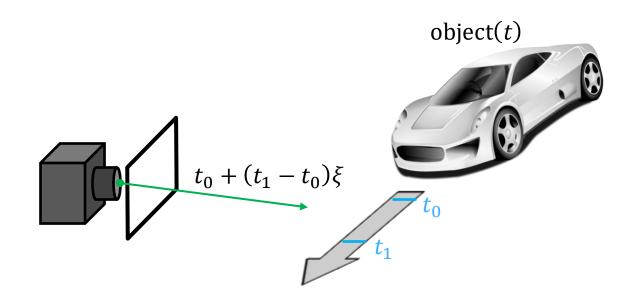


• Very Large Aperture

Motion Blur

Real Camera

- Finite exposure time
- Shutter opening at t₀
- Shutter closing at t₁



Motion Blur

Real Camera

- Finite exposure time
- Shutter opening at t₀
- Shutter closing at t₁

Approach

- Sample time t in $[t_{0}, t_{1})$: t = t₀ + ξ (t₁ t₀)
- Assign time t to new camera ray/path
- Models with moving camera and/or moving objects in the scene
 - Time-dependent transformations
 - Transform objects or inverse-transform ray to proper positions at t
- Assume instantaneous opening and closing
 - Can be generalized by modeling shape of aperture over time

Gotchas

- Acceleration structures built over dynamic objects

Motion Blur

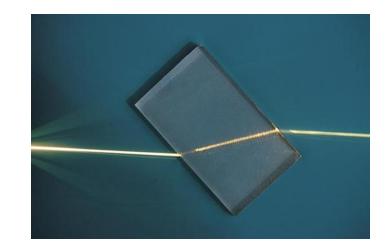
Cook et al. Siggraph'84

Reflections/Refractions

Dielectric Materials

- $-\eta_i$ refractive index $\frac{c}{n}$
- Light: fastest path
- Snell's law:

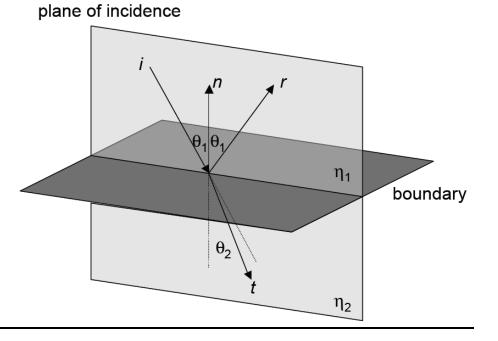
$$\frac{\sin\theta_1}{\sin\theta_2} = \frac{\eta_2}{\eta_1}$$



- if $\sin \theta_2 = \frac{\eta_1}{\sin \theta_1} > 1$

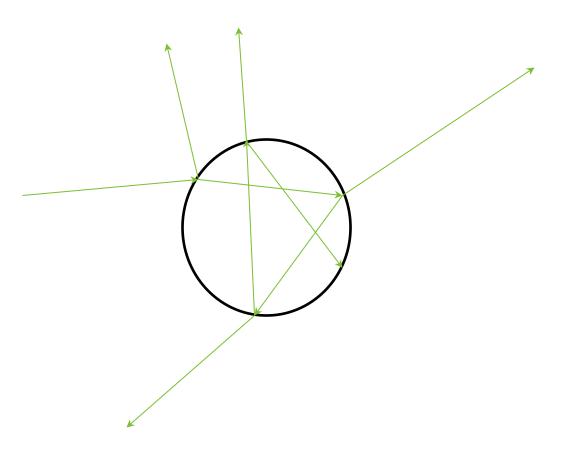
$$\sin v_2 = \frac{1}{\eta_2} \sin v_1$$

... then total inner reflection



Reflections/Refractions

- Which ray to trace?
 - Both: may be exponential



Reflections/Refractions

Which ray to trace?

- Pick one at random:
 - $\xi < 0.5 reflection$
 - $\xi \ge 0.5 \text{refraction}$
- Compensate for the energy-loss

•
$$L_o = 2 \cdot L_i \cdot f_r$$

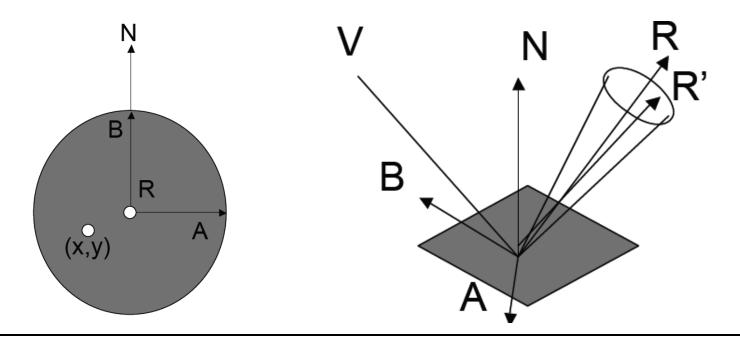
Fuzzy Reflections/Refractions

Real Materials

Never perfectly smooth surfaces

Empirical Approach

- Compute orthonormal frame around reflected/refracted direction
- Sample coordinates (x, y) on disc: ray.direction += x * a + y * b
- Or better use cosⁿ sampling (→ GI Compendium)

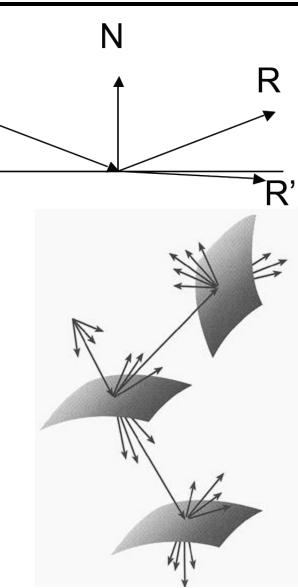


Fuzzy Reflections/Refractions

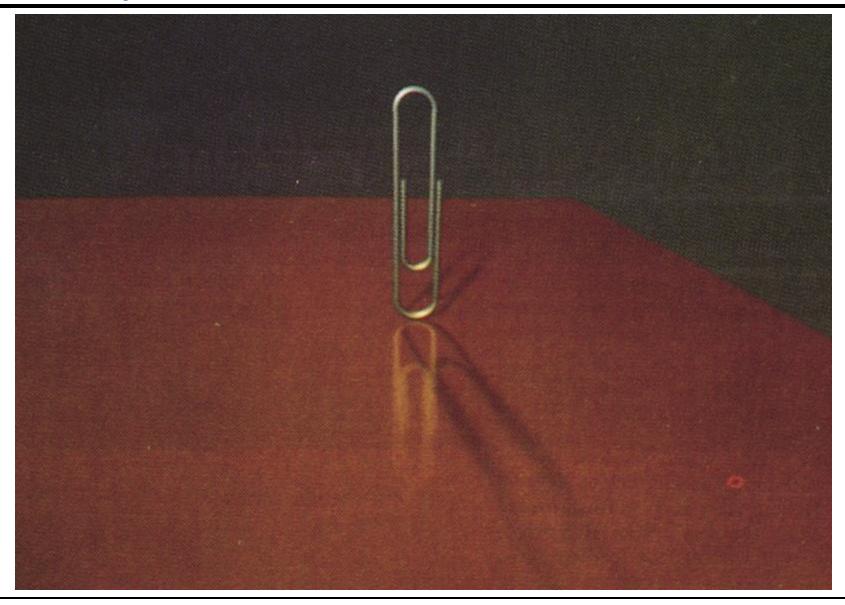
- Gotchas
 - Perturbed ray may may go inside
 - Check sign of dot product with N
 - Ignore rays on wrong side

Inter-Reflections/Refractions

- Recursively repeat process
 - At surfaces with corresponding materials



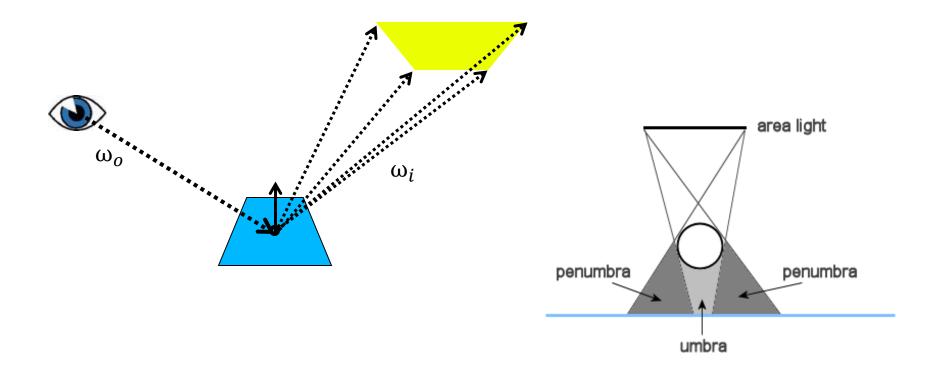
Fuzzy Reflections/Refractions



Cook et al. Siggraph'84

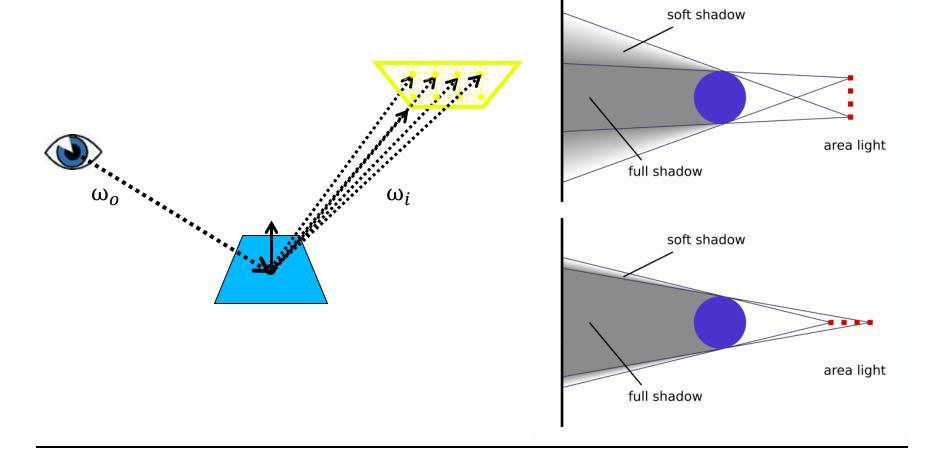
Soft Shadows

- Real Light Sources
 - Finite area



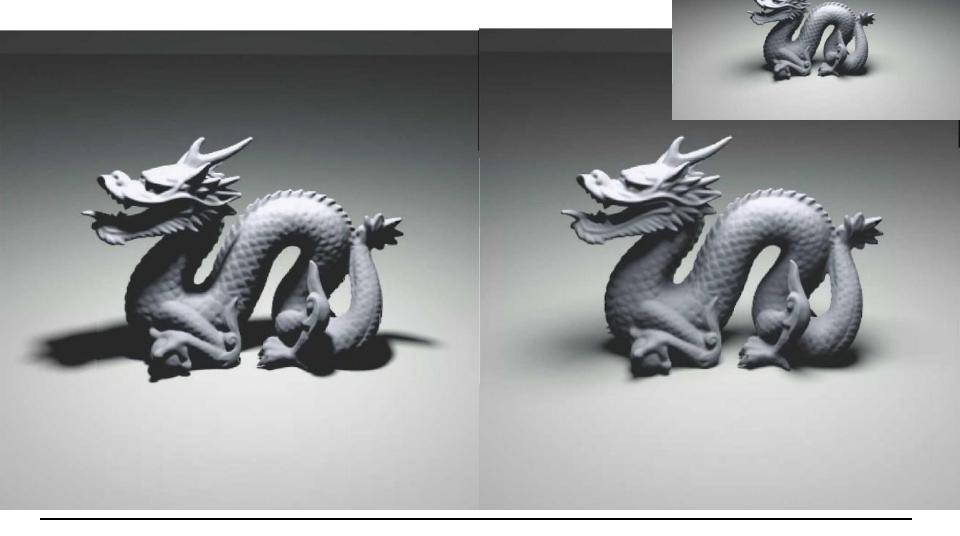
Soft Shadows

- Approach
 - Random sample point on surface of light source
 - Scale intensity by area and cosine



Soft Shadows

• Small vs. Large Area Light

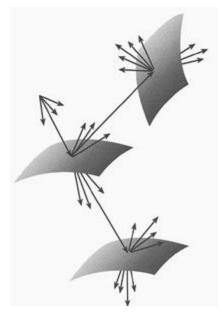


Combined Effects

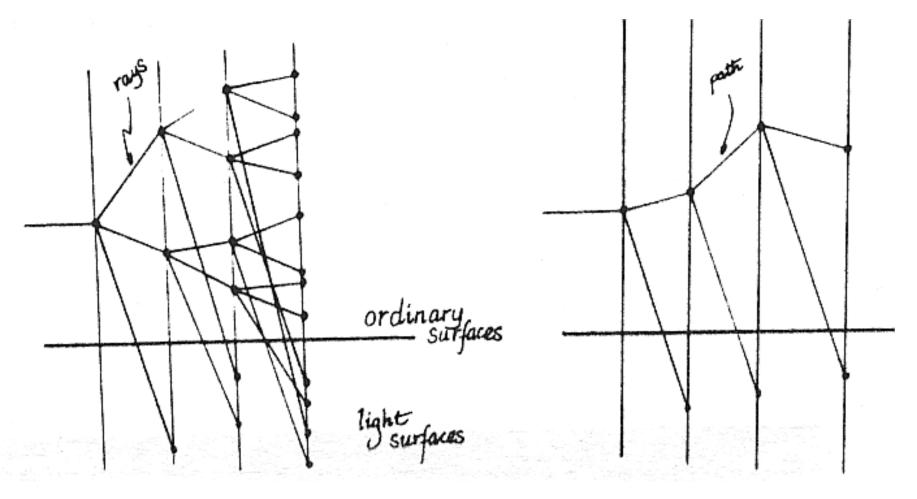
- High-Dimensional Sampling Space
 - number of anti-aliasing samples
 - x number of lens samples
 - x number of time samples
 - x number of material samples
 - x number of light samples
 - → Exponential growth:
 - Increasing number of higher-order rays with decreasing effect on final pixels → bad²

Solution: Path-Based Approach

- Avoid exponential growth in ray tree
- Pick a single sample at each step: \rightarrow Create a sample *path*
- Average results over several paths per pixel \rightarrow path tracing (RIS)
 - Theoretical underpinning: Monte-Carlo Integration



Comparison to Path Tracing

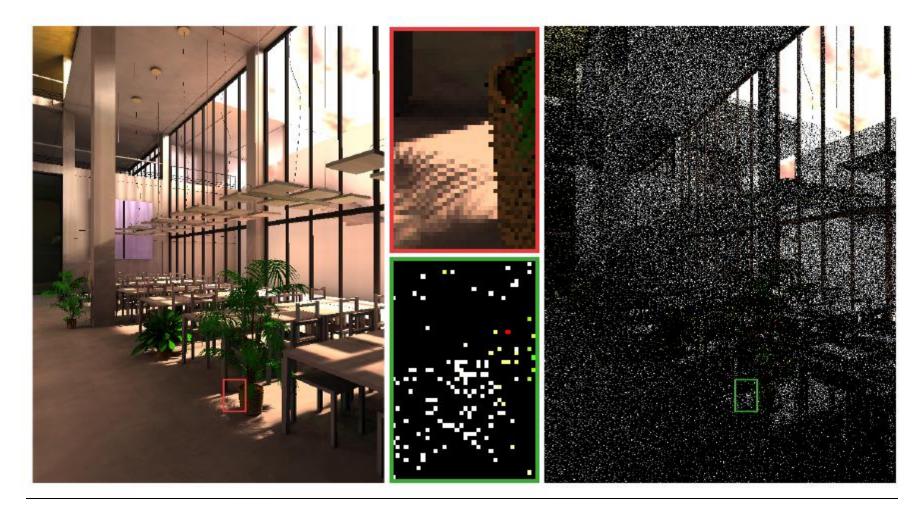


Distribution Ray Tracing

Path Tracing

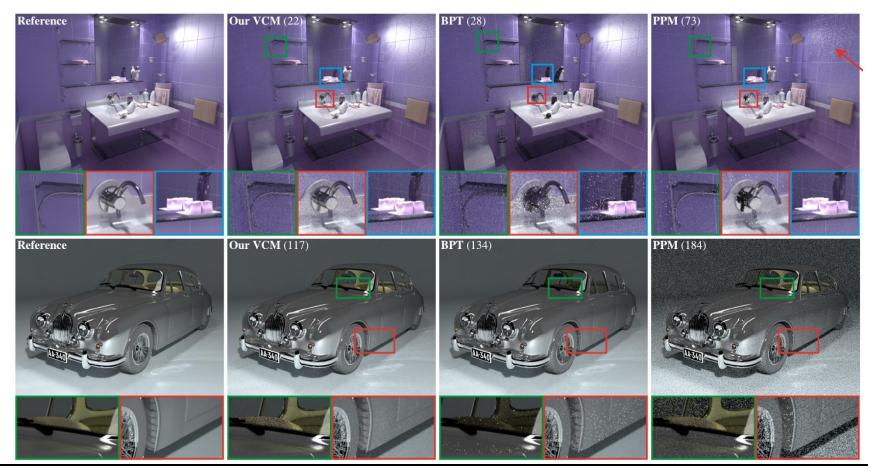
(figure by Kajiya)

Importance Caching for Complex Illumination
By Iliyan Georgiev et al., Eurographics 2012

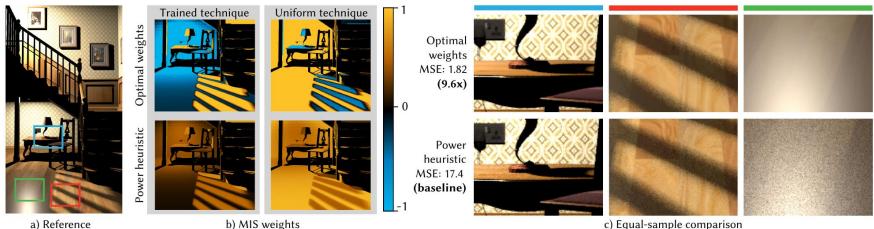


- Light Transport Simulation with Vertex Connection and Merging (VCM)
 - By Iliyan Georgiev et al., Siggraph 2012

- Light Transport Simulation with Vertex Connection and Merging (VCM)
 - By Iliyan Georgiev et al., Siggraph 2012



- **Optimal Multiple Importance Sampling**
 - By Pascal Grittmann, Jarozlav Krivanek, et al., Siggraph 2019



b) MIS weights

Variance-Aware Path Guiding

- By Alexander Rath, Pascal Grittmann, et al., Siggraph 2020

