Computer Graphics

- Distribution Ray Tracing -

Philipp Slusallek
Overview

• **Other Optical Effects**
 – Not yet included in Whitted-style ray tracing

• **Stochastic Sampling**

• **Distribution Ray-Tracing**
Problems

- Anti-aliasing
- Depth of field
- Motion blur
- BRDF
- Area Lights
Anti-aliasing

- Anti-aliasing
- Depth of field
- Motion blur
- BRDF
- Area Lights

\[I \approx \int_A L(o + td) dA \]
Depth of field

- Anti-aliasing
- Depth of field
- Motion blur
- BRDF
- Area Lights

\[I \approx \int_A L(o + td) dA \]
Motion blur

- Anti-aliasing
- Depth of field
- Motion blur
- BRDF
- Area Lights

\[L \approx \int_{[t_o,t_1]} L_T(o + td) dT \]
BRDF

• Anti-aliasing
• Depth of field
• Motion blur
• BRDF
• Area Lights

\[L_o = L_e + \int_{\Omega_+} f_r L_i \cos \theta_i \, d\omega_i \]
Area Lights

- Anti-aliasing
- Depth of field
- Motion blur
- BRDF
- Area Lights

\[E_i = \int_A V(x, y) \frac{\cos \theta_A}{\|x - y\|^2} dA \]
Integration by MC-Sampling

- **Features**
 - Anti-aliasing
 - Depth of field
 - Motion blur
 - BRDF
 - Area Lights

- **Monte-Carlo (MC) Integration**
 - Stochastic sampling of domain
 - Averaging of results, weighted by probability
 - Careful choice of samples essential for good results

\[
I = \int_D f(x) \, dx
\]

\[
I \approx \frac{D}{n} \sum_{i=1}^{n} \frac{f(x_i)}{p(x_i)}
\]

\[x_i \text{ sampled } \propto p(x)\]
STOCHASTIC SAMPLING
(VERY SHORT INTRO)
Random Number

• **Random Number**
 – Uniformly distributed
 – ξ in $[0, 1)$

• **Pseudo-Random Number**
 – Linear congruential
 – Mersenne-Twister
 – ...
 – Speed / evenness trade-off
Parallelogram Sampling

- **Parametric Form**
 \[p(u, v) = p_0 + u(p_1 - p_0) + v(p_2 - p_0) = (1 - u - v)p_0 + up_1 + vp_2 \]

- **Random Sampling**
 \[p(\xi_1, \xi_2) \]
Triangle Sampling

- **Parametric Form**
 - \(p(u, v) = (1 - u - v)p_0 + up_1 + vp_2 \)

- **Random Sampling**
 - if \(\xi_1 + \xi_2 < 1 \) : \(p(\xi_1, \xi_2) \)
 - if \(\xi_1 + \xi_2 > 1 \) : \(p(1 - \xi_1, 1 - \xi_2) \)
Disc Sampling

- **Parametric Form**
 - $p(u, v) = \text{Polar2Cartesian}(R v, 2 \pi u) \ // \text{disc radius } R$

- **Naïve Sampling (wrong!)**
 - $p(\xi_1, \xi_2)$
Disc Sampling

- **Parametric Form**
 - \(p(u, v) = \text{Polar2Cartesian}(R v, 2 \pi u) \) \(\text{// disc radius } R \)

- **Correct Sampling**
 - \(p(\xi_1, \sqrt{\xi_2}) \)
 - Results in uniform sampling over area

DISTRIBUTION RAY-TRACING
Distribution Ray Tracing

- Apply random sampling for many aspects in RT
 - Pixel
 - Anti-aliasing
 - Lens
 - Depth of field
 - Time
 - Motion blur
 - BRDF
 - Glossy reflections & refractions
 - Area Lights
 - Soft shadows

- Base on paper:
 R. Cook et al., *Distributed Ray Tracing*, Siggraph’84
Anti-Aliasing

- **Artifacts**
 - Jagged edges
 - Aliased patterns
Anti-Aliasing

- **Approach**
 - Average samples over pixel area
 - Akin to sensor cells of measuring device collecting photons

- **Random offset of pixel raster coords from center**
 - \(prc[\text{coord}] = pid[\text{coord}] + 0.5 + (\xi - 0.5) \)
Anti-Aliasing

• **Basic Method**
 – Plain average
 – Box filter \(f(x, y) = 1 \)
 – \(L = \frac{\sum_{i=1}^{n} L(\xi_{i1}, \xi_{i2})}{n} \)

• **Filtering**
 – Weighted average
 – Filter \(f(x, y) \)
 – \(L = \frac{\sum_{i=1}^{n} f(\xi_{i1}, \xi_{i2}) L(\xi_{i1}, \xi_{i2})}{\sum_{i=1}^{n} f(\xi_{i1}, \xi_{i2})} \)
Depth of Field

• **Real Camera**
 – Complex lenses that focus one distance onto the image
 • Finite aperture size
 – Blurred features except for focal plane
Depth of Field

Thin Lens
- Focus light rays from point on object onto image plane
 - Sharp features at focal plane
 - Blurred features before/beyond focal plane
- Depth of field: depth range with acceptably small *circle of confusion*
 - Smaller than one pixel
Depth of Field

- **Compute ray through lens center**
 - Compute focus point P_f on focal plane, determined by P_b and P_c

- **Compute new ray origin**
 - Sample coordinates (x, y) of aperture diameter ($= f / N$)
 - Compute P_i: $\text{ray.origin} += P_c + x \times \text{camera.right} + y \times \text{camera.up}$
 - Might include modeling the shape of the aperture

- **Compute new ray direction**
 - Compute $\text{ray.direction} = P_f - P_i \rightarrow$ vector from P_i to P_f
 - Normalize
Depth of Field

Cook et al. Siggraph'84
Depth of Field

- Zero Aperture
Depth of Field

- Small Aperture
Depth of Field

- Large Aperture
Depth of Field

- Very Large Aperture
Motion Blur

- **Real Camera**
 - Finite exposure time
 - Shutter opening at t_0
 - Shutter closing at t_1

$$t_0 + (t_1 - t_0) \xi$$
Motion Blur

- **Real Camera**
 - Finite exposure time
 - Shutter opening at t_0
 - Shutter closing at t_1

- **Approach**
 - Sample time t in $[t_0, t_1)$: $t = t_0 + \xi (t_1 - t_0)$
 - Assign time t to new camera ray/path
 - Models with moving camera and/or moving objects in the scene
 - Time-dependent transformations
 - Transform objects or inverse-transform ray to proper positions at t
 - Assume instantaneous opening and closing
 - Can be generalized by modeling shape of aperture over time

- **Gotchas**
 - Acceleration structures built over dynamic objects
Motion Blur
Reflections/Refractions

- **Dielectric Materials**
 - η_i – refractive index $\frac{c}{v}$
 - Light: fastest path
 - Snell’s law:
 \[
 \frac{\sin \theta_1}{\sin \theta_2} = \frac{\eta_2}{\eta_1}
 \]
 - if
 \[
 \sin \theta_2 = \frac{\eta_1}{\eta_2} \sin \theta_1 > 1
 \]
 ... then total inner reflection
Reflections/Refractions

• Which ray to trace?
 – Both: may be exponential
Reflections/Refractions

• Which ray to trace?
 – Pick one at random:
 • $\xi < 0.5$ – reflection
 • $\xi \geq 0.5$ – refraction
 – Compensate for the energy-loss
 • $L_o = 2 \cdot L_i \cdot f_r$
Fuzzy Reflections/Refractions

- **Real Materials**
 - Never perfectly smooth surfaces

- **Empirical Approach**
 - Compute orthonormal frame around reflected/refracted direction
 - Sample coordinates \((x, y)\) on disc: \(\text{ray.direction} += x \times a + y \times b\)

- **Or better use \(\cos^n\) sampling** (→ GI Compendium)
Fuzzy Reflections/Refractions

• **Gotchas**
 – Perturbed ray may go inside
 – Check sign of dot product with N
 – Ignore rays on wrong side

• **Inter-Reflections/Refractions**
 – Recursively repeat process
 • At surfaces with corresponding materials
Fuzzy Reflections/Refractions
Soft Shadows

- **Real Light Sources**
 - Finite area
Soft Shadows

- **Approach**
 - Random sample point on surface of light source
 - Scale intensity by area and cosine
Soft Shadows

- Small vs. Large Area Light
Combined Effects

• **High-Dimensional Sampling Space**
 – number of anti-aliasing samples
 – \(x\) number of lens samples
 – \(x\) number of time samples
 – \(x\) number of material samples
 – \(x\) number of light samples

 ➔ Exponential growth:
 • Increasing number of higher-order rays with decreasing effect on final pixels ➔ bad

• **Solution: Path-Based Approach**
 – Avoid exponential growth in ray tree
 – Pick a single sample at each step: ➔ Create a sample *path*
 – Average results over several paths per pixel ➔ *path tracing* (RIS)
 • Theoretical underpinning: Monte-Carlo Integration
Comparison to Path Tracing

Distribution Ray Tracing

Path Tracing

(figure by Kajiya)
Recent Advances in Lighting Sim.

• **Importance Caching for Complex Illumination**
 – By Iliyan Georgiev et al., Eurographics 2012
Recent Advances in Lighting Sim.

- **Light Transport Simulation with Vertex Connection and Merging (VCM)**
 - By Iliyan Georgiev et al., Siggraph 2012
Recent Advances in Lighting Sim.

- Light Transport Simulation with Vertex Connection and Merging (VCM)
 - By Iliyan Georgiev et al., Siggraph 2012
Recent Advances in Lighting Sim.

- **Optimal Multiple Importance Sampling**
 - By Pascal Grittmann, Jarozlav Krivanek, et al., Siggraph 2019

![Diagram showing recent advances in lighting simulation](image.png)
Recent Advances in Lighting Sim.

- **Variance-Aware Path Guiding**
 - By Alexander Rath, Pascal Grittmann, et al., Siggraph 2020