Computer Graphics

Texture Filtering

Philipp Slusallek

Sensors

 Measurement of signal

— Conversion of a continuous signal to discrete samples by
Integrating over the sensor field

« Weighted with some sensor sensitivity function P
R(1,]) = fAi]. E(x,y) Pj(x y)dxdy

— Similar to physical processes
 Different sensitivity of sensor to photons

« Examples
— Photo receptors in the retina
— CCD or CMOS pixels in a digital camera

* Virtual cameras in computer graphics
— Analytic integration is expensive or even impossible
* Needs to sample and integrate numerically
— Ray tracing: mathematically ideal point samples
 Origin of aliasing artifacts !

The Digital Dilemma

Nature: continuous signal (2D/3D/4D)
— Defined at every point

<

Acquisition: sampling
— Rays, pixels/texels, spectral values, frames, ... (aliasing !)

&

* Representation: discrete data 000 o
— Discrete points, discretized values -

=

Pixels are usually point sampled

Reconstruction: filtering
— Recreate continuous signal

&

Display and perception (on some mostly unknown device!)
— Hopefully similar to the original signal, no artifacts

Alilasing Example

* Ray tracing

— Textured plane with one ray for each pixel (say, at pixel center)
« No texture filtering: equivalent to modeling with b/w tiles

— Checkerboard period eventually becomes smaller than two pixels
At the Nyquist sampling limit

— Rays sample textured plane at only one point per pixel
« Can be either black or white — essentially by “chance”
« Can have correlations at certain locations

Filtering

« Magnification (Zoom-in)
— Map few texels onto many pixels
— Reconstruction filter:

* Nearest neighbor interpolation:
— Take the nearest texel

 Bilinear interpolation:
— Interpolation between 4 nearest texels
— Need fractional accuracy of coordinates

« Possibly also higher order interpolation
« Minification (Zoom-out)
— Map many texels to one pixel

 Aliasing: Reconstructing high-frequency
signals with low-frequency sampling

— Antialising (low-pass filtering)

« Averaging over (many) texels
associated with the given pixel

« Computationally expensive

ixel

Tep<tu re

Aliasing Artifacts

« Aliasing

— Texture insufficiently sampled

— Incorrect pixel values

— "Randomly” changing pixels

when moving

 Integration of “Pre-Image”
— Integration over pixel footprint

In texture space

Wit Without
anti-ahasing ant.-ulinsing
»
~/ Pisel
(2) shade
With Without
anti-aliasing nti-aliasing
= 1
° —
\/—“ Poel
P Pre-image of shade
- pixel ceime
= With Withcut
/ \ mt-abiasing ant-alinsing
L) L o
\/ Pixel
- ‘ shade
. B g Vi ;Ju f
o
- g—o
< -
o o
Inverse Pixel
; mapging
(d Pre-pixel image 'PFng

Pixel Pre-Image In Texture Space

« Circular pixel footprints have elliptic pre-images on
planar surfaces due to projection

e Sqguare screen pixels form quadrilaterals
— On curved surface shape can be arbitrary (non-
connected, etc...)

* Possible approximation by quadrilateral or

parallelogram
— Or taking multiple samples within a pixel

— area with (a) a square, (b) a rectangle, and (c) an
oint sumpling ellipse. Too small an area causes aliasing; too large
an area causes blurring.

Ser k
- S~ g /\>
/ e s 3 \\."‘\ \/// §> @
& \\\\ Pixel a b ¢
(2] / °
’ 4 Approximating a quadrilateral texture

/ texture

/ﬂ A i

L RN ST :

Space-Variant Filtering

e Space-variant filtering
— Mapping from texture space (u,v) to screen space (X,y) not affine
« Due to projection (see later, in context of rasterization)
— Filtering changes with position

« Space-variant filtering methods
— Direct convolution
« Numerically compute the integral, e.g. with many samples
« Potentially really costly
— Pre-filtering
« Precompute the integral for predefined regions of the texture
— Lookup of integral much more efficiently at runtime
« Must approximate actual pixel footprint with precomputed regions

Direct Convolution

« Convolution in texture space
— Texels weighted according to distance from pixel center

« E.g. pyramidal filter kernel, truncated sinc, etc.
» Essentially a low-pass filter

Texture space Screen space

.

2% 2 pixel area

Inverse
pixel| ™.
map

I —]

!
Pyramidal filter kernel

« Convolution in image space

— Center the filter function on the pixel (in image space) and find its
bounding rectangle.

— Transform the rectangle to the texture space, where itis a
qguadrilateral whose sides are assumed to be straight.

 Likely more efficient: find a bounding box/rectangle for this quadrilateral.
— Map all pixels inside this texture space region to screen space.
— Form a weighted average of the mapped texels

« E.g. using a two-dimensional lookup table indexed by each sample’s
location within the pixel

EWA Filtering

« EWA: Elliptical Weighted Average
— Compensate aliasing artifacts caused by perspective projection
— EWAFIlter = low-pass filter ® warped reconstruction filter
— Gaussian filtered with Gaussian s still a Gaussian

 Can use rasterization HW for fast rendering
— Draw rectangle with suitable texture coord. that projects to pixel

Projection
- . (i)
Pixel
Rasterization s Convolution ® : : ()
' Uy, V, U,, U
of distorted ‘ 5 4V, 2V2
rectangle {/ .

projecting to ‘ >
circle on pixel —>

with Low-Pass (ug,v3)

supersampling Projection Filter
Texture Space

EWA texture resampling filter

10

EWA Filtering

s :gfgg;t ESs - Without EWA filtering
=i %‘i& ————
f §§§: .=

s

With EWA filtering

Footprint Assembly

* Footprint assembly: Approximation of pixel integral
— Good for space variant filtering

« E.g.inclined view of terrain
— Approximation of the pixel area
by rectangular texel-regions

— More footprints - better accuracy

* In practice)
— Often fixed number of area samples // /’
— Done by sampling multiple locations < S/
within a pixel (e.g. 2x2), each with N
smaller footprint

=>» Anisotropic (Texture) Filtering (AF)
« GPUs allow selection of #samples (e.g. 4x, 8x, etc.)
« Each sample has its own footprint area/extent
« Each gets independently projected and filtered

Pre-Filtering

* Direct convolution methods are slow
— A pixel pre-image can be arbitrarily large
« Along silhouettes
« At the horizon of a textured plane
— Can require averaging over thousands of texels
— Texture filtering cost grows in proportion to projected texture area
« Speed-up
— The texture can be prefiltered before rendering
* Only a few samples are accessed for each screen sample
— Two data structures are commonly used for prefiltering:

 Integrated arrays (summed area tables - SAT)
« Image pyramids (MIP-maps)

Summed Area Tables (SAT)

 Per texel, store sum from (0O, 0) to (u, v)

A

B

C

D

 Evaluation of 2D integrals over AA-boxes in constant time!

Ax Ay

j jI@yMn@zA—B—C+D

Bx Cy

B A
H ¥
D

« Needs many bits per texel (sum over million of pixels!)

14

MIP-Mapping

« Texture available in multiple resolutions
— Pre-processing step that filters textures in each step
— Discrete number of texture sizes (powers of 2)

 Rendering
— Select appropriate texture resolution level n (per pixel 1)

« S.t.:texel size(n) <
extent of pixel footprint
< texel size(n+1)

— Needs derivative of texture coordinates.. ; 26 _

— Can be computed from differences
between pixels (divided differences)

« = Quad rendering (2x2 pixels)

MIP-Mapping (2)

« Multum In Parvo (MIP): “much in little > e T
« Hierarchical resolution pyramid | i i
— Repeated filtering over texture by 2x 5
 Rectangular arrangement (RGB) F’"//'“
* Reconstruction & '/" -
— Tri-linear interpolation of 8 nearest texels 2 [o 5
« Bilinear interpolation in levels n and n+1 £33 Y L
* Linear interpolation between the two levels S -
A U creasine D

d
: / / _
v
u , _
— “Brilinear”; Trilinear only near transitions
. . . Reducing the domain for linear
* Avoid reading 8 texels, most of the time interpolation improves performance

16

MIP-Map Example

17

Hardware Texture Filtering

« Bilinear filtering (in std. textured tunnel benchmark)

— Clearly visible transition between MIP-map levels
/ \ \\"*"*’»\._ S : \\‘} —J |\ A

www.extremetech.com

18

Hardware Texture Filtering

e Trilinear filtering

— Hides the transitions between MIP-map levels
7 \\\' ===

www.extremetech.com

19

Hardware Texture Filtering

* Anisotropic filtering (8x)
— Makes the textures much sharper along azimuthal coordinate

27\ | [\ RN

www.extremetech.com

20

Hardware Texture Filtering

« Bilinear vs. trilinear vs. anisotropic filtering
— Using colored MIP-map levels

! I Bilinear

Trilinear

\l
www.extremetech.com

Texture Caching in Hardware

* All GPUs have small texture caches e
— Designed for local effects (streaming cache) ,Pxe““ _
* No effects between frames, or so! wo OOP'Xel
« Mipmapping ensures ~1:1 ratio °6°d°
— From pixel to texels -
— Both horizontally & vertically
* Pixelsrendered in small 2D groups Tekture
— Basic block is 2x2 ,,quad” T
- Used to compute ,derivatives* -1 g0
« Using divided differences (left/right, up/down) -

— Lots of local coherence |

« Bi-/tri-linear filtering needs adjacent

texels (up to 8 for trilinear) &

— Most often just 1-2 new texel per pixel

not in (local) cache

22

