Computer Graphics

- Texturing -

Philipp Slusallek
Ömercan Yazici
Overview

• **Last time**
 – Shading
 – BRDFs (will continue Monday)

• **Today**
 – Texture definition
 – Image textures
 – Procedural textures
 – Texture mapping

• **Next lecture**
 – Alias & signal processing
Texture

- Textures modify the input for shading computations
 - Either via (painted) images textures or procedural functions

- Example texture maps for
 - Reflectance, normals, shadow reflections, …
Definition: Textures

- **Texture maps texture coordinates to shading values**
 - Input: 1D/2D/3D texture coordinates
 - Explicitly given or derived via other data (e.g. position, direction, …)
 - Output: Scalar or vector value

- **Modified values in shading computations**
 - Reflectance
 - Changes the diffuse or specular reflection coefficient \((k_d, k_s)\)
 - Geometry and Normal (important for lighting)
 - Displacement mapping \(P' = P + \Delta P\)
 - Normal mapping \(N' = N + \Delta N\)
 - Bump mapping \(N' = N(P + tN)\)
 - Opacity
 - Modulating transparency (e.g. for fences in games)
 - Illumination
 - Light maps, environment mapping, reflection mapping
IMAGE TEXTURES
Reconstruction Filter

- **Image texture**
 - Discrete set of sample values (given at texel centers!)

- **In general**
 - Hit point does not exactly hit a texture sample

- **Still want to reconstruct a continuous function**
 - Use reconstruction filter to find color for hit point
Nearest Neighbor

- **Local Coordinates**
 - Assuming cell-centered samples
 - \(u = tu \times resU; \)
 - \(v = tv \times resV; \)

- **Lattice Coordinates**
 - \(lu = \min(\lfloor u \rfloor, resU - 1); \)
 - \(lv = \min(\lfloor v \rfloor, resV - 1); \)

- **Texture Value**
 - return image\([lu, lv]\);
Bilinear Interpolation

- **Local Coordinates**
 - Assuming node-centered samples
 - \(u = tu \times (\text{resU} - 1) \);
 - \(v = tv \times (\text{resV} - 1) \);

- **Fractional Coordinates**
 - \(fu = u - \lfloor u \rfloor \);
 - \(fv = v - \lfloor v \rfloor \);

- **Texture Value**
 - return \((1-fu) \times (1-fv) \times \text{image}[\lfloor u \rfloor, \lfloor v \rfloor] + (1-fu) \times fv \times \text{image}[\lfloor u \rfloor, \lfloor v \rfloor + 1] + (fu) \times (1-fv) \times \text{image}[\lfloor u \rfloor + 1, \lfloor v \rfloor] + (fu) \times fv \times \text{image}[\lfloor u \rfloor + 1, \lfloor v \rfloor + 1]\)
Bilinear Interpolation

- **Successive Linear Interpolations**
 - \(u_0 = (1-fv) \) image\([u], [v]\)
 + (fv) image\([u], [v]+1\);

 - \(u_1 = (1-fv) \) image\([u]+1, [v]\)
 + (fv) image\([u]+1, [v]+1\);

 - return (1-fu) \(u_0 \)
 + (fu) \(u_1 \);
Nearest vs. Bilinear Interpolation

GL_NEAREST

GL_LINEAR
Bicubic Interpolation

- **Properties**
 - Assuming node-centered samples
 - Essentially based on cubic splines (see later)

- **Pros**
 - Even smoother

- **Cons**
 - More complex & expensive (4x4 kernel)
 - Overshoot
Wrap Mode

- **Texture Coordinates**
 - \((u, v)\) in \([0, 1] \times [0, 1]\)

- **What if?**
 - \((u, v)\) not in unit square?
Wrap Mode

- **Repeat**

- **Fractional Coordinates**
 - $t_u = u - \lfloor u \rfloor$
 - $t_v = v - \lfloor v \rfloor$
Wrap Mode

- **Mirror**

- **Fractional Coordinates**
 - \(t_u = u - \lfloor u \rfloor \)
 - \(t_v = v - \lfloor v \rfloor \)

- **Lattice Coordinates**
 - \(l_u = \lfloor u \rfloor \)
 - \(l_v = \lfloor v \rfloor \)

- **Mirror if Odd**
 - if \(l_u \% 2 == 1 \)
 \(t_u = 1 - t_u \)
 - if \(l_v \% 2 == 1 \)
 \(t_v = 1 - t_v \)
Wrap Mode

- **Clamp**

- **Clamp u to [0, 1]**

 \[
 \begin{align*}
 &\text{if } (u < 0) \quad tu = 0; \\
 &\text{else if } (u > 1) \quad tu = 1; \\
 &\text{else} \quad \quad tu = u;
 \end{align*}
 \]

- **Clamp v to [0, 1]**

 \[
 \begin{align*}
 &\text{if } (v < 0) \quad tv = 0; \\
 &\text{else if } (v > 1) \quad tv = 1; \\
 &\text{else} \quad \quad tv = v;
 \end{align*}
 \]
Wrap Mode

- **Border**

- **Check Bounds**

  ```
  if (u < 0 || u > 1
      || v < 0 || v > 1)
      return backgroundColor;
  else
    tu = u;
    tv = v;
  ```
Wrap Mode

- **Comparison**
 - With OpenGL texture modes
Discussion: Image Textures

- **Pros**
 - Simple generation
 - Painted, simulation, ...
 - Simple acquisition
 - Photos, videos

- **Cons**
 - Illumination “frozen” during acquisition
 - Limited resolution
 - Susceptible to aliasing
 - High memory requirements (often HUGE for films, 100s of GB)
 - Issues when mapping 2D image onto 3D object
PROCEDURAL TEXTURES
Discussion: Procedural Textures

- **Cons**
 - Sometimes hard to achieve specific effect
 - Possibly non-trivial programming

- **Pros**
 - Flexibility & parametric control
 - Unlimited resolution
 - Anti-aliasing possible
 - Low memory requirements
 - May be directly defined as 3D “image” mapped to 3D geometry
 - Low-cost visual complexity
2D Checkerboard Function

- **Lattice Coordinates**
 - \(l_u = \lfloor u \rfloor \)
 - \(l_v = \lfloor v \rfloor \)

- **Compute Parity**
 - \(\text{parity} = (l_u + l_v) \mod 2; \)

- **Return Color**
 - if (parity == 1)
 - return color1;
 - else
 - return color0;
3D Checkerboard - Solid Texture

- **Lattice Coordinates**
 - \(lu = \lfloor u \rfloor \)
 - \(lv = \lfloor v \rfloor \)
 - \(lw = \lfloor w \rfloor \)

- **Compute Parity**
 - \(\text{parity} = (lu + lv + lw) \mod 2; \)

- **Return Color**
 - if (parity == 1)
 - return color1;
 - else
 - return color0;
Tile

- **Fractional Coordinates**
 - \(fu = u - \lfloor u \rfloor \)
 - \(fv = v - \lfloor v \rfloor \)

- **Compute Booleans**
 - \(bu = fu < \text{mortarWidth}; \)
 - \(bv = fv < \text{mortarWidth}; \)

- **Return Color**
 - if (bu || bv)
 - return mortarColor;
 - else
 - return tileColor;
Brick

• Shift Column for Odd Rows
 - parity = ⌊v⌋ % 2;
 - u -= parity * 0.5;

• Fractional Coordinates
 - fu = u - ⌊u⌋
 - fv = v - ⌊v⌋

• Compute Booleans
 - bu = fu < mortarWidth;
 - bv = fv < mortarWidth;

• Return Color
 - if (bu || bv)
 - return mortarColor;
 - else
 - return brickColor;
More Variation

(a) Simple bond
(b) Scottish bond
(c) Flemish bond
(d) Sussex bond
(e) Monk bond
Other Patterns

• Circular Tiles

• Octagonal Tiles

• Use your imagination!
Perlin Noise

- **Natural Patterns**
 - Similarity between patches at different locations
 - Repetitiveness, coherence (e.g., skin of a tiger or zebra)
 - Similarity on different resolution scales
 - Self-similarity
 - But never completely identical
 - Additional disturbances, turbulence, noise

- **Mimic Statistical Properties**
 - Purely empirical approach
 - Looks convincing, but has nothing to do with material’s physics

- **Perlin Noise is essential for adding “natural” details**
 - Used in many texture functions
Perlin Noise

• Natural Fractals
Noise Function

- **Noise(x, y, z)**
 - Statistical invariance under rotation
 - Statistical invariance under translation
 - Roughly fixed frequency of ~1 Hz

- **Integer Lattice (i, j, k)**
 - **Value noise**
 - Random value at lattice points
 - **Gradient noise**
 - Random gradient vector at lattice point
 - **Interpolation**
 - Bi-/tri-linear or cubic (Hermite spline, \(\rightarrow \) later)
 - **Hash function to map vertices to values**
 - Randomized look up
 - Virtually infinite extent and variation with finite array of values
Noise vs. Noise

- **Value Noise vs. Gradient Noise**
 - Gradient noise has lower regularity artifacts
 - More high frequencies in noise spectrum

- **Random Values vs. Perlin Noise**
 - Stochastic vs. deterministic

Random values at each pixel Gradient noise
Turbulence Function

• **Noise Function**
 – Single spike in frequency spectrum (single frequency, see later)

• **Natural Textures**
 – Mix of different frequencies
 – Decreasing amplitude for high frequencies

• **Turbulence from Noise**
 – \(\text{Turbulence}(x) = \sum_{i=0}^{k} |a_i \ast \text{noise}(f_i \cdot x)| \)
 • Frequency: \(f_i = 2^i \)
 • Amplitude: \(a_i = 1 / p^i \)
 • Persistence: \(p \) typically \(p=2 \)
 • Power spectrum: \(a_i = 1 / f_i \)
 • Brownian motion: \(a_i = 1 / f_i^2 \)

• Summation truncation
 • 1st term: \(\text{noise}(x) \)
 • 2nd term: \(\text{noise}(2x)/2 \)
 • ...
 • Until period \((1/f_k) < 2 \) pixel-size (band limit, see later)
Synthesis of Turbulence (1-D)

Amplitude: 128, frequency: 4

Amplitude: 64, frequency: 8

Amplitude: 32, frequency: 16

Amplitude: 16, frequency: 32

Amplitude: 8, frequency: 64

Sum of Noise Functions = (Perlin Noise)
Synthesis of Turbulence (2-D)
Example: Marble

- **Overall Structure**
 - Smoothly alternating layers of different marble colors
 - \(f_{\text{marble}}(x,y,z) := \text{marble_color}(\sin(x)) \)
 - \text{marble_color} : transfer function (see lower left)

- **Realistic Appearance**
 - Simulated turbulence
 - \(f_{\text{marble}}(x,y,z) := \text{marble_color}(\sin(x + \text{turbulence}(x, y, z))) \)
Solid Noise

- 3D Noise Texture
 - Wood
 - Erosion
 - Marble
 - Granite
 - ...
Other Applications

- **Bark**
 - Turbulated saw-tooth function

- **Clouds**
 - White blobs
 - Turbulated transparency along edge

- **Animation**
 - Vary procedural texture function’s parameters over time
Shading Languages

• **Small program fragments (plugins)**
 – Compute certain aspects of the rendering process
 • Executing at innermost loop, must be extremely efficient
 – Executed at each intersection

• **Typical shaders**
 – Material/surface shaders: Compute reflected color
 – Light shaders: Compute illumination from light source at some point
 – Volume shader: Compute interaction in participating medium
 – Displacement shader: Compute changes to the geometry
 – Camera shader: Compute rays for each pixel

• **Shading languages**
 – RenderMan (the mother of all shading languages)
 – HLSL (DX only), GLSL (OpenGL only), CG (Nvidia only)
 – OSL (Modern approach)
 – Currently no portable shading format usable for exchange
 • But Material Definition Language (MDL, Nvidia), shade.js (UdS)

• **More details later**
TEXTURE MAPPING
2D Texture Mapping

- **Forward mapping**
 - Object surface parameterization
 - Projective transformation

- **Inverse mapping**
 - Find corresponding pre-image/footprint of each pixel in texture
 - Integrate over pre-image
Surface Parameterization

- To apply textures we need 2D coordinates on surfaces
 → Parameterization
- Some objects have a natural parameterization
 - Sphere: spherical coordinates \((\varphi, \theta) = (2\pi u, \pi v)\)
 - Cylinder: cylindrical coordinates \((\varphi, h) = (2\pi u, H v)\)
 - Parametric surfaces (such as B-spline or Bezier surfaces → later)
- Parameterization is less obvious for
 - Polygons, implicit surfaces, teapots, …
Triangle Parameterization

- **Triangle is a planar object**
 - Has implicit parameterization (e.g., barycentric coordinates)
 - But we need more control: Placement of triangle in texture space

- **Assign texture coordinates** \((u,v)\) to each vertex \((x_o,y_o,z_o)\)

- **Apply viewing projection** \((x_o,y_o,z_o) \rightarrow (x,y)\) (details later)

- **Yields full texture transformation** (warping) \((u,v) \rightarrow (x,y)\)

 \[
x = \frac{au + bv + c}{gu + hv + i} \quad y = \frac{du + ev + f}{gu + hv + i}
 \]

 - In homogeneous coordinates (by embedding \((u,v)\) as \((u,v,1)\))

 \[
 \begin{bmatrix}
 x' \\
 y' \\
 w
 \end{bmatrix} =
 \begin{bmatrix}
 a & b & c \\
 d & e & f \\
 g & h & i
 \end{bmatrix}
 \begin{bmatrix}
 u' \\
 v' \\
 w
 \end{bmatrix};
 (x,y) = \left(\frac{x'}{w}, \frac{y'}{w}\right),
 (u,v) = \left(\frac{u'}{q}, \frac{v'}{q}\right)
 \]

 - Transformation coefficients determined by 3 pairs \((u,v) \rightarrow (x,y)\)
 - Three linear equations
 - Invertible if neither set of points is collinear
Triangle Parameterization (2)

- **Given**
 \[
 \begin{bmatrix}
 x' \\
 y' \\
 w \\
 \end{bmatrix}
 =
 \begin{bmatrix}
 a & b & c \\
 d & e & f \\
 g & h & i \\
 \end{bmatrix}
 \begin{bmatrix}
 u' \\
 v' \\
 w \\
 \end{bmatrix}
 \]

- **The inverse transform** \((x, y) \rightarrow (u, v)\) is
 \[
 \begin{bmatrix}
 u' \\
 v' \\
 q \\
 \end{bmatrix}
 =
 \begin{bmatrix}
 ei - fh & ch - bi & bf - ce \\
 fg - di & ai - cg & cd - af \\
 dh - eg & bg - ah & ae - bd \\
 \end{bmatrix}
 \begin{bmatrix}
 x' \\
 y' \\
 w \\
 \end{bmatrix}
 \]

- **Coefficients must be calculated for each triangle**
 - Rasterization
 - Incremental bilinear update of \((u', v', q)\) in screen space
 - Using the partial derivatives of the linear function (i.e. constants)
 - Ray tracing
 - Evaluated at every intersection (via barycentric coordinates)

- **Often (partial) derivatives are needed as well**
 - Explicitly given in matrix (colored for \(\partial u/\partial x, \partial v/\partial x, \partial q/\partial x\)
Textures Coordinates

- **Solid Textures**
 - 3D world/object \((x,y,z)\) coords → 3D \((u,v,w)\) texture coordinates
 - Similar to carving object out of material block

- **2D Textures**
 - 3D Cartesian \((x,y,z)\) coordinates → 2D \((u,v)\) texture coordinates?
Parametric Surfaces

- **Definition (more detail later)**
 - Surface defined by parametric function
 - \((x, y, z) = p(u, v)\)
 - Input
 - Parametric coordinates: \((u, v)\)
 - Output
 - Cartesian coordinates: \((x, y, z)\)

- **Texture Coordinates**
 - Directly derived from surface parameterization
 - Invert parametric function
 - From world coordinates to parametric coordinates
 - Usually computed implicitly anyway (e.g., in ray tracing)
Parametric Surfaces

- **Polar Coordinates**
 - \((x, y, 0) = \text{Polar2Cartesian}(r, \phi)\)

- **Disc**
 - \(p(u, v) = \text{Polar2Cartesian}(R v, 2 \pi u) \quad // \text{disc radius } R\)
Parametric Surfaces

- **Cylindrical Coordinates**
 - \((x, y, z) = \text{Cylindrical2Cartesian}(r, \varphi, z)\)

- **Cylinder**
 - \(p(u, v) = \text{Cylindrical2Cartesian}(r, 2\pi u, H v)\) // cylinder height \(H\)
Parametric Surfaces

- **Spherical Coordinates**
 - \((x, y, z) = \text{Spherical2Cartesian}(r, \theta, \varphi)\)

- **Sphere**
 - \(p(u, v) = \text{Spherical2Cartesian}(r, \pi v, 2 \pi u)\)
Parametric Surfaces

- **Triangle**
 - Use barycentric coordinates directly
 - \(p(u, v) = (1 - u - v)p_0 + up_1 + vp_2 \)
Parametric Surfaces

- **Triangle Mesh**
 - Associate a predefined texture coordinate to each triangle vertex
 - Interpolate texture coordinates using barycentric coordinates
 - \[u = \lambda_0 p_{0u} + \lambda_1 p_{1u} + \lambda_2 p_{2u} \]
 - \[v = \lambda_0 p_{0v} + \lambda_1 p_{1v} + \lambda_2 p_{2v} \]
 - Texture mapped onto manifold
 - Single texture shared by many triangles
Surface Parameterization

- Other Surfaces
 - No intrinsic parameterization??
Intermediate Mapping

- **Coordinate System Transform**
 - Express Cartesian coordinates into a given coordinate system

- **3D to 2D Projection**
 - Drop one coordinate
 - Compute u and v from remaining 2 coordinates
Intermediate Mapping

• **Planar Mapping**
 - Map to different Cartesian coordinate system
 - \((x', y', z') = \text{AffineTransformation}(x, y, z)\)
 - Orthogonal basis: translation + row-vector rotation matrix
 - Non-orthogonal basis: translation + inverse column-vector matrix
 - Drop \(z'\), map \(u = x'\), map \(v = y'\)
 - E.g.: Issues when surface normal orthogonal to projection axis
Intermediate Mapping

- **Cylindrical Mapping**
 - Map to cylindrical coordinates (possibly after translation/rotation)
 - $(r, \varphi, z) = \text{Cartesian2Cylindrical}(x, y, z)$
 - Drop r, map $u = \varphi / 2 \pi$, map $v = z / H$
 - Extension: add scaling factors: $u = \alpha \varphi / 2 \pi$
 - E.g.: Similar topology gives reasonable mapping
Intermediate Mapping

- **Spherical Mapping**
 - Map to spherical coordinates (possibly after translation/rotation)
 - \((r, \theta, \varphi) = \text{Cartesian2Spherical}(x, y, z)\)
 - Drop \(r\), map \(u = \varphi / 2\pi\), map \(v = \theta / \pi\)
 - Extension: add scaling factors to both \(u\) and \(v\)
 - E.g.: Issues in concave regions
Two-Stage Mapping: Problems

• Problems
 – May introduce undesired texture distortions if the intermediate surface differs too much from the destination surface
 – Still often used in practice because of its simplicity
Projective Textures

- Project texture onto object surfaces
 - Slide projector

- Parallel or perspective projection

- Use photographs (or drawings) as textures
 - Used a lot in film industry!

- Multiple images
 - View-dependent texturing (advanced topic)

- Perspective Mapping
 - Re-project photo on its 3D environment
Projective Texturing: Examples
Slope-Based Mapping

• Definition
 – Depends on surface normal and predefined vector

• Example
 – $\alpha = n \cdot \omega$
 – return $\alpha \text{ flatColor} + (1 - \alpha) \text{ slopeColor}$;
Environment Map

- **Spherical Map**
 - Photo of a reflective sphere (gazing ball)
 - Photos with a fish-eye camera
 - Only gives hemi-sphere mapping
Environment Map

- **Latitude-Longitude Map**
 - Remapping 2 images of reflective sphere
 - Photo with an environment camera

- **Algorithm**
 - If no intersection found, use ray direction to find background color
 - Cartesian coords of ray dir. → spherical coords → uv tex coords
Environment Map

- **Cube Map**
 - Remapping 2 images of reflective sphere
 - Photos with a perspective camera

- **Algorithm**
 - Find main axis (-x, +x, -y, +y, -z, +z) of ray direction
 - Use other 2 coordinates to access corresponding face texture
 - Akin to a 90° projective light
Reflection Map Rendering

- Spherical parameterization
- O-mapping using reflected view ray intersection
Reflection Map Parameterization

- **Spherical mapping**
 - Single image
 - Bad utilization of the image area
 - Bad scanning on the edge
 - Artifacts, if map and image do not have the same viewpoint

- **Double parabolic mapping**
 - Yields spherical parameterization
 - Subdivide in 2 images (front-facing and back-facing sides)
 - Less bias near the periphery
 - Arbitrarily reusable
 - Supported by OpenGL extensions
Reflection Mapping Example

Terminator II motion picture
Reflection Mapping Example II

- **Reflection mapping with Phong reflection**
 - Two maps: diffuse & specular
 - Diffuse: index by surface normal
 - Specular: indexed by reflected view vector
Light Maps

- **Light maps (e.g., in Quake)**
 - Pre-calculated illumination (local irradiance)
 - Often very low resolution: smoothly varying
 - Multiplication of irradiance with base texture
 - Diffuse reflectance only
 - Provides surface radiosity
 - View-independent out-going radiance
 - Animated light maps
 - Animated shadows, moving light spots, etc…

\[
B(x) = \rho(x) E(x) = \pi L_o(x)
\]

Representing radiosity in a mesh or texture
Bump Mapping

• Modulation of the normal vector
 – Surface normals changed only
 • Influences shading only
 • No self-shadowing, contour is **not** altered
Bump Mapping

- **Original surface:** $O(u, v)$
 - Surface normals are known

- **Bump map:** $B(u, v) \in \mathbb{R}$
 - Surface is offset in normal direction according to bump map intensity
 - New normal directions $N'(u, v)$ are calculated based on virtually displaced surface $O'(u, v)$
 - Original surface is rendered with new normals $N'(u, v)$

Grey-valued texture used for bump height
Bump Mapping

- **Displaced surface:**
 \[O'(u, v) = O(u, v) + B(u, v) N(u, v) \]

- **Computing the normal:**
 - Normal is cross-product of derivatives:
 \[N'(u, v) = O'_u \times O'_v \]
 - Where:
 \[O'_u = O_u + B_u N + BN_u \]
 \[O'_v = O_v + B_v N + BN_v \]
 - If \(B \) is small the last term in each equation can be ignored, yielding:
 \[N'(u, v) = O_u \times O_v + B_u (N \times O_v) + B_v (O_u \times N) + B_u B_v (N \times N) \]
 - The first term is the normal to the surface and the last is zero, giving:
 \[D = B_u (N \times O_v) - B_v (N \times O_u) \]
 \[N' = N + D \]
Texture Examples

- **Complex optical effects**
 - Combination of multiple texture effects
Billboards

• **Single textured polygons**
 – Often with opacity texture
 – Rotates, always facing viewer
 – Used for rendering distant objects
 – Best results if approximately radially or spherically symmetric

• **Multiple textured polygons**
 – Azimuthal orientation: different view-points
 – Complex distribution: trunk, branches, …