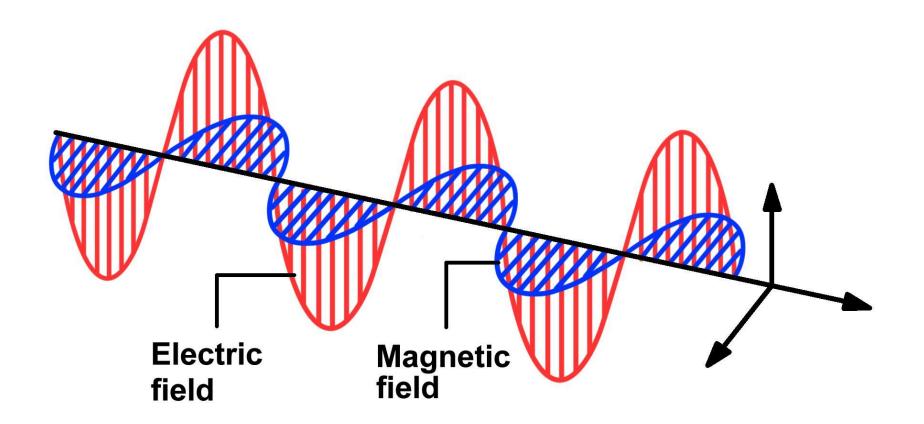
Computer Graphics

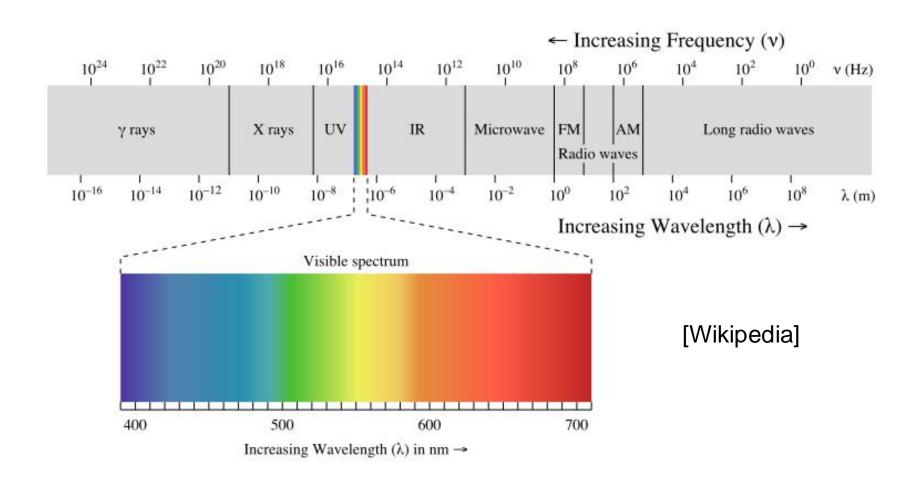
- Light Transport -

Philipp Slusallek

LIGHT

Electro-magnetic wave propagating at speed of light





Ray

- Linear propagation
- Geometrical optics / ray optics

Vector

- Polarization
- Jones Calculus: matrix representation,
- Has been used in graphics with extended ray model

Wave

- Diffraction, interference
- Maxwell equations: propagation of light
- Partial simulation possible using extended ray model, e.g. radar

Particle

- Light comes in discrete energy quanta: photons
- Quantum theory: interaction of light with matter

Field

- Electromagnetic force: exchange of virtual photons
- Quantum Electrodynamics (QED): interaction between particles

Ray

- Linear propagation
- Geometrical optics / ray optics

Vector

- Polarization
- Jones Calculus: matrix representation,
- Has been used in graphics with extended ray model

Wave

- Diffraction, interference
- Maxwell equations: propagation of light
- Partial simulation possible using extended ray model, e.g. radar

Particle

- Light comes in discrete energy quanta: photons
- Quantum theory: interaction of light with matter

Field

- Electromagnetic force: exchange of virtual photons
- Quantum Electrodynamics (QED): interaction between particles

Light in Computer Graphics

Based on human visual perception

- Focused on macroscopic geometry (→ Reflection Models)
- Only tristimulus color model (e.g. RGB, → Human Visual System)
- Psycho-physics: tone mapping, compression, ... (→ RIS course)

Ray optic assumptions

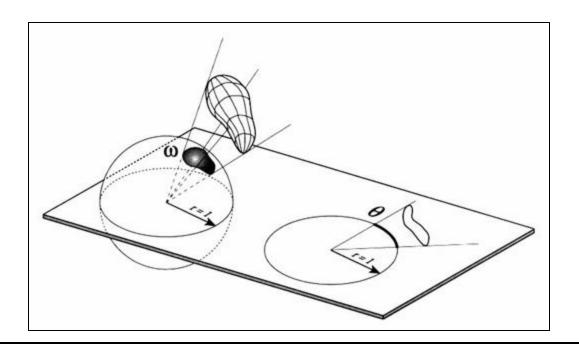
- Macroscopic objects
- Incoherent light
- Light: scalar, real-valued quantity
- Linear propagation
- Superposition principle: light contributions add up, do not interact
- No attenuation in free space

Limitations

- No microscopic structures (≈ λ), no volumetric effects (for now)
- No polarization, no coherent light (e.g. laser)
- No diffraction, interference, dispersion, etc. ...

Angle and Solid Angle

- The angle θ (in radians) subtended by a curve in the plane is the length of the corresponding arc on the unit circle: $I = \theta r = 1$
- The solid angle Ω , $d\omega$ subtended by an object is the surface area of its projection onto the unit sphere
 - Units for solid angle: steradian [sr] (dimensionless, $\leq 4\pi$)



Solid Angle in Spherical Coords

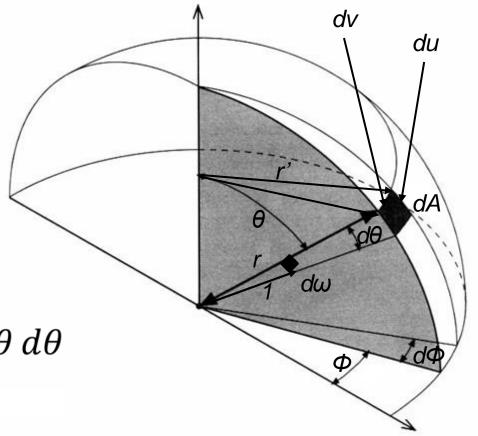
• Infinitesimally small solid angle $d\omega$

- $-du = r d\theta$
- $-dv = r' d\Phi = r \sin \theta d\Phi$
- $dA = du dv = r^2 \sin \theta d\theta d\Phi$
- $d\omega = dA/r^2 = \sin\theta \, d\theta d\Phi$

Finite solid angle

Integration of area, e.g.

$$\Omega = \int\limits_{\phi_0}^{\phi_1} d\phi \int\limits_{\theta_0(\phi)}^{\theta_1(\phi)} \sin\theta \, d\theta$$

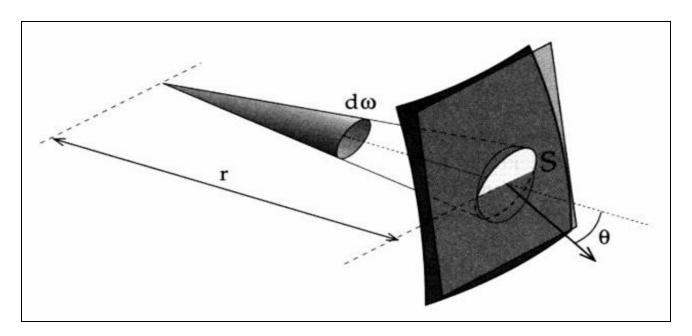


Solid Angle for a Surface

• The solid angle subtended by a small surface patch S with area dA is obtained (i) by projecting it orthogonal to the vector r from the origin: $dA\cos\theta$

and (ii) dividing by the squared distance to the origin: $d\omega = \frac{dA \cos \theta}{r^2}$

$$\Omega = \iint_{S} \frac{\vec{r} \cdot \vec{n}}{r^3} dA$$



Radiometry

Definition:

Radiometry is the science of measuring radiant energy transfer.
 Radiometric quantities have physical meaning and can be directly measured using proper equipment such as spectral photometers.

Radiometric Quantities

Energy	[J]	Q	(#Photons x Energy = $n \cdot h\nu$)
 Radiant power 	[watt = J/s]	Φ	(Total Flux)
Intensity	[watt/sr]	1	(Flux from a point per s.angle)
Irradiance	[watt/m ²]	E	(Incoming flux per area)
Radiosity	[watt/m ²]	В	(Outgoing flux per area)
Radiance	[watt/(m ² sr)]	L	(Flux per area & proj. s. angle)

Radiometric Quantities: Radiance

- Radiance is used to describe radiant energy transfer
- Radiance L is defined as
 - The power (flux) traveling through areas dA around some point x
 - In a specified direction $\omega = (\theta, \varphi)$
 - Per unit area perpendicular to the direction of travel
 - Per unit solid angle
- Thus, the differential power $d^2\Phi$ radiated through the differential solid angle $d\omega$, from the projected ω differential area $dA\cos\theta$ is:

$$d^2\Phi = L(x,\omega)dA(x)\cos\theta \,d\omega$$

Radiometric Quantities: Irradiance

• Irradiance E is defined as the total power per unit area (flux density) incident onto a surface. To obtain the total flux incident to dA, the incoming radiance L_i is integrated over the upper hemisphere Ω_+ above the surface:

$$E \equiv \frac{d\Phi}{dA}$$

$$d\Phi = \left[\int_{\Omega_{+}} L_{i}(x, \omega) \cos \theta \, d\omega \right] dA$$

$$E(x) = \int_{\Omega_{+}} L_{i}(x, \omega) \cos \theta \, d\omega = \iint_{00}^{2\pi \frac{\pi}{2}} L_{i}(x, \omega) \cos \theta \sin \theta \, d\theta d\phi$$

Radiometric Quantities: Radiosity

• Radiosity B is defined as the total power per unit area (flux density) exitant from a surface. To obtain the total flux incident to dA, the outgoing radiance L_o is integrated over the upper hemisphere Ω_+ above the surface:

$$B \equiv \frac{d\Phi}{dA}$$

$$d\Phi = \left[\int_{\Omega_{+}} L_{o}(x, \omega) \cos \theta \, d\omega \right] dA$$

$$B(x) = \int_{\Omega_{+}} L_{o}(x, \omega) \cos \theta \, d\omega = \iint_{00}^{2\pi \frac{\pi}{2}} L_{o}(x, \omega) \cos \theta \sin \theta \, d\theta d\phi$$

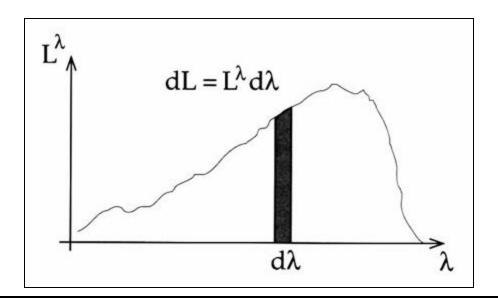
Spectral Properties

Wavelength

- Light is composed of electromagnetic waves
- These waves have different frequencies (and wavelengths)
- Most transfer quantities are continuous functions of wavelength

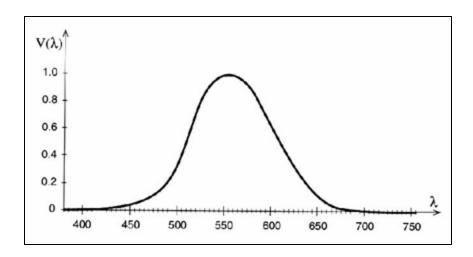
In graphics

- Each measurement $L(x,\omega)$ is for a discrete band of wavelength only
 - Often R(ed, long), G(reen, medium), B(lue, short) (but see later)



Photometry

- The human eye is sensitive to a limited range of wavelengths
 - Roughly from 380 nm to 780 nm
- Our visual system responds differently to different wavelengths
 - Can be characterized by the Luminous Efficiency Function V(λ)
 - Represents the average human spectral response
 - Separate curves exist for light and dark adaptation of the eye
- Photometric quantities are derived from radiometric quantities by integrating them against this function



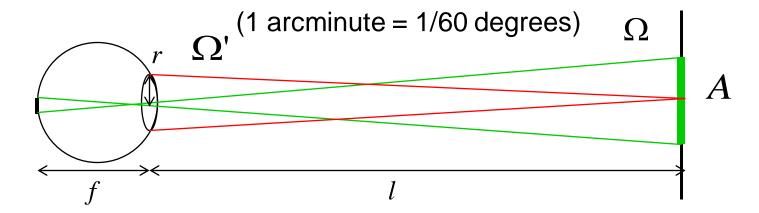
Radiometry vs. Photometry

Physics-based quantities

Perception-based quantities

Radiometry		\rightarrow	Photometry		
W	Radiant power	\rightarrow	Luminous power	Lumens (lm)	
W/m²	Radiosity	270. 1986-127	Luminosity		
	Irradiance	\rightarrow	Illuminance	Lux (lm/m ²)	
W/m ² /sr Radiance		\rightarrow	Luminance	cd/m ² (lm/m ² /sr)	

Perception of Light



photons / second = flux = energy / time = power (Φ)

Solid angle of a rod = **resolution** (≈ 1 arcminute²)

projected rod size = area A

angular extent of pupil aperture ($r \le 4 \text{ mm}$) = solid angle

flux proportional to area and solid angle

radiance = flux per unit area per unit solid angle

rod sensitive to flux

 Ω

$$A \approx l^2 \cdot \Omega$$

$$\Omega' \approx \pi \cdot r^2 / l^2$$

$$\Phi = L A \Omega'$$

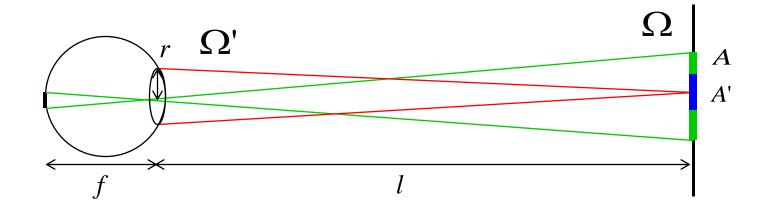
$$L = \frac{\Phi}{\Omega' \cdot A}$$

The eye detects radiance

As *l* increases:

$$\Phi_0 = L \cdot l^2 \cdot \Omega \cdot \pi \frac{r^2}{l^2} = L \cdot \text{const}$$

Brightness Perception

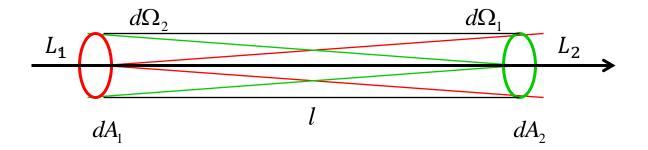


- A'> A: area of sun covers more than one rod: photon flux per rod stays constant
- A' < A: photon flux per rod decreases

Where does the Sun turn into a star?

- Depends on apparent Sun disc size on retina
- Photon flux per rod stays the same on Mercury, Earth or Neptune
- Photon flux per rod decreases when Ω' < 1 arcminute² (~ beyond Neptune)

Radiance in Space



Flux leaving surface 1 must be equal to flux arriving on surface 2 $L_1 d\Omega_1 dA_1 = L_2 d\Omega_2 dA_2$

From geometry follows
$$d\Omega_1 = \frac{dA_2}{l^2}$$
 $d\Omega_2 = \frac{dA_1}{l^2}$

Ray throughput
$$T$$
: $T = d\Omega_1 \cdot dA_1 = d\Omega_2 \cdot dA_2 = \frac{dA_1 \cdot dA_2}{l^2}$

$$L_1 = L_2$$

The **radiance** in the direction of a light ray **remains constant** as it propagates along the ray

Point Light Source

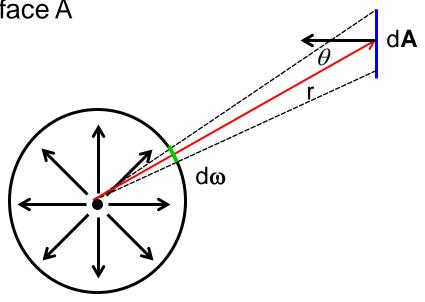
Point light with isotropic (same in all dir.) radiance

- Power (total flux) of a point light source
 - Φ_g = Power of the light source [watt]
- Intensity of a light source (radiance cannot be defined, no area)
 - $I = \Phi_q / 4\pi$ [watt/sr]
- Irradiance on a sphere with radius r around light source:
 - $E_r = \Phi_g / (4 \pi r^2) \text{ [watt/m}^2\text{]}$
- Irradiance on some other surface A

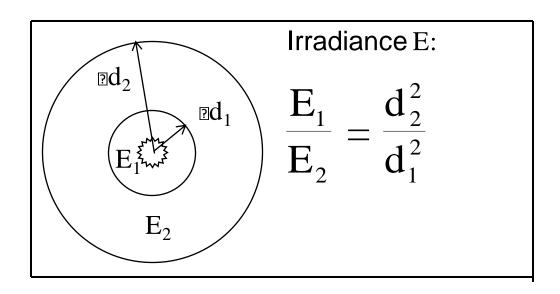
$$E(x) = \frac{d\Phi_g}{dA} = \frac{d\Phi_g}{d\omega} \frac{d\omega}{dA} = I \frac{d\omega}{dA}$$

$$= \frac{\Phi_g}{4\pi} \cdot \frac{dA\cos\theta}{r^2 dA}$$

$$= \frac{\Phi_g}{4\pi} \cdot \frac{\cos \theta}{r^2} = \frac{\Phi_g}{4\pi r^2} \cdot \cos \theta$$



Inverse Square Law

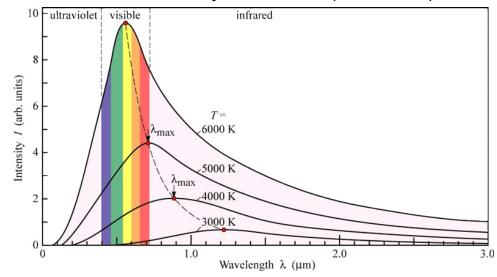


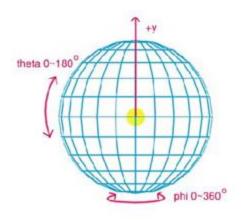
- Irradiance E: power per m²
 - Illuminating quantity
- Distance-dependent
 - Double distance from emitter: area of sphere is four times bigger
- Irradiance falls off with inverse of squared distance
 - Only for point light sources (!)

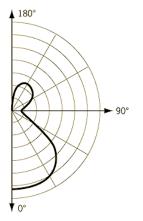
Light Source Specifications

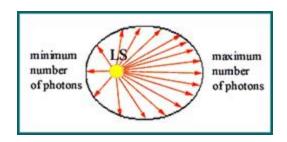
- Power (total flux)
 - Emitted energy / time
- Active emission size
 - Point, line, area, volume
- Spectral distribution
 - Thermal, line spectrum
- Directional distribution
 - Goniometric diagram

Black body radiation (see later)









Light Source Classification

Radiation characteristics

Directional light

- Spot-lights
- Projectors
- Distant sources

Diffuse emitters

- Torchieres
- Frosted glass lamps

Ambient light

- "Photons everywhere"

Emitting area

Volume

- Neon advertisements
- Sodium vapor lamps
- Fire

Area

- CRT/LCD display
- (Overcast) sky

Line

- Clear light bulb, filament
- "Point"
 - Xenon lamp
 - Arc lamp
 - Laser diode

Sky Light

Sun

- Point source (approx.)
- White light (by def.)

Sky

- Area source
- Scattering: blue

Horizon

- Brighter
- Haze: whitish

Overcast sky

- Multiple scattering in clouds
- Uniform grey
- Several sky models are available

Courtesy Lynch & Livingston

LIGHT TRANSPORT

Light Transport in a Scene

Scene

- Lights (emitters)
- Object surfaces (partially absorbing)
- Illuminated object surfaces become emitters, too!
 - Radiosity = Irradiance minus absorbed photons flux density
 - Radiosity: photons per second per m² leaving surface
 - Irradiance: photons per second per m² incident on surface
 - But also need to look at directional distribution
- Light bounces between all mutually visible surfaces
- Invariance of radiance in free space
 - No absorption in-between objects
- Dynamic energy equilibrium in a scene
 - Emitted photons = absorbed photons (+ escaping photons)
 - → Global Illumination, discussed in RIS lecture

Surface Radiance

$$L(x, \omega_o) = L_e(x, \omega_o) + \int_{\Omega_+} f_r(\omega_i, x, \omega_o) L_i(x, \omega_i) \cos \theta_i \, d\omega_i$$

- Visible surface radiance
 - Surface position
 - Outgoing direction
- Incoming illumination direction
- $L(x, \omega_0)$ x ω_0 ω_i Δu Δu

- Emission
- Reflected light
 - Incoming radiance from all directions
 - Direction-dependent reflectance (BRDF: bidirectional reflectance distribution function)

$$L_i(x,\omega_i)$$

$$f_r(\omega_i, x, \omega_o)$$

Rendering Equation

Typ. Exam
Question!

- Most important equation for graphics
 - Expresses energy equilibrium in scene

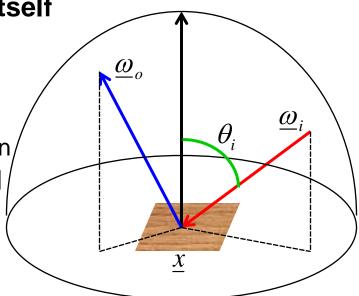
$$L(x, \omega_o) = L_e(x, \omega_o) + \int_{\Omega_+} f_r(\omega_i, x, \omega_o) L_i(x, \omega_i) \cos \theta_i d\omega_i$$

total radiance = emitted + reflected radiance

First term: Emission from the surface itself

Non-zero only for light sources

- Second term: reflected radiance
 - Integral over all possible incoming directions of radiance times angle-dependent surface reflection function/
- Fredholm integral equation of 2nd kind
 - Difficulty: Unknown radiance appears both on the left-hand side and inside the integral
 - Numerical methods necessary to compute approximate solution



RE: Integrating over Surfaces

Outgoing illumination at a point

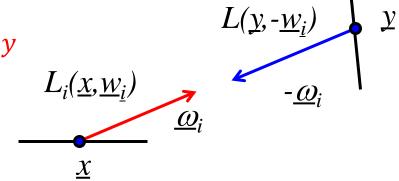
$$L(x, \omega_o) = L_e(x, \omega_o) + L_r(x, \omega_o)$$

$$L(x, \omega_o) = L_e(x, \omega_o) + \int_{\Omega_+} f_r(\omega_i, x, \omega_o) L_i(x, \omega_i) \cos \theta_i d\omega_i$$

- Linking with other surface points
 - Incoming radiance at x is outgoing radiance at y

$$L_i(x, \omega_i) = L(y, -\omega_i) = L(RT(x, \omega_i), -\omega_i)$$

- Ray-Tracing operator: $RT(x, \omega_i) = y$



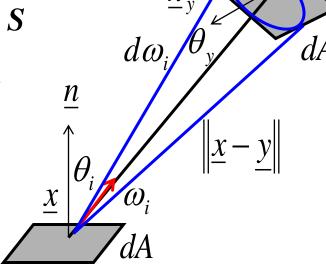
Integrating over Surfaces

Outgoing illumination at a point

$$L(x, \omega_o) = L_e(x, \omega_o) + \int_{\Omega_+} f_r(\omega_i, x, \omega_o) L_i(x, \omega_i) \cos \theta_i \, d\omega_i$$

Re-parameterization over surfaces S

$$d\omega_i = \frac{\cos \theta_y}{\|x - y\|^2} dA_y$$



$$L(x, \omega_o)$$

$$= L_e(x, \omega_o)$$

$$+ \int_{y \in S} f_r(\omega(x, y), x, \omega_o) L_i(x, \omega(x, y)) V(x, y) \frac{\cos \theta_i \cos \theta_y}{\|x - y\|^2} dA_y$$

Integrating over Surfaces

$$\begin{split} &L(x,\omega_o)\\ &=L_e(x,\omega_o)\\ &+\int_{v\in S}f_r(\omega(x,y),x,\omega_o)L_i(x,\omega(x,y))V(x,y)\frac{\cos\theta_i\cos\theta_y}{\|x-y\|^2}\,dA_y \end{split}$$

• Geometry term: $G(x,y) = V(x,y) \frac{\cos \theta_i \cos \theta_y}{\|x-y\|^2}$

- Visibility term: $V(x,y) = \begin{cases} 1, & if \ visible \\ 0, & otherwise \end{cases}$
- Integration over all surfaces: $\int_{y \in S} \cdots dA_y$ $L(x, \omega_o) = L_e(x, \omega_o) + \int_{y \in S} f_r(\omega(x, y), x, \omega_o) L_i(x, \omega(x, y)) G(x, y) dA_y$

Rendering Equation: Approximations

- Approximations based only on empirical foundations
 - An example: polygon rendering in OpenGL (→ later)
- Using RGB instead of full spectrum
 - Follows roughly the eye's sensitivity (L, f_r are 3D vectors for RGB)
- Sampling hemisphere only at discrete directions
 - Simplifies integration to a summation
- Reflection function model (BRDF, see later)
 - Approximation by parameterized functions
 - Diffuse: light reflected uniformly in all directions
 - Specular: perfect reflection/refraction direction
 - Glossy: mirror reflection, but from a rough surface
 - And mixture thereof

Ray Tracing

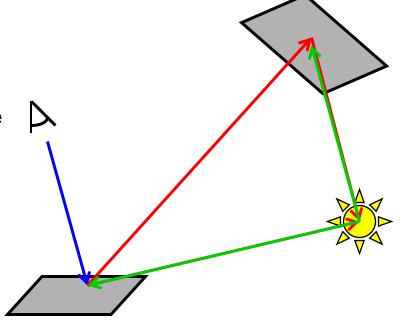
$$L(x, \omega_o) = L_e(x, \omega_o) + \int_{\Omega_+} f_r(\omega_i, x, \omega_o) L_i(x, \omega_i) \cos \theta_i d\omega_i$$

Simple ray tracing

- Illumination from discrete point light sources only – direct illumination only
 - Integral → sum of contributions from each light
 - No global illumination
- Evaluates angle-dependent reflectance function (BRDF) – shading process

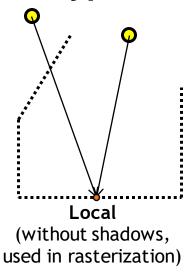
Advanced ray tracing techniques

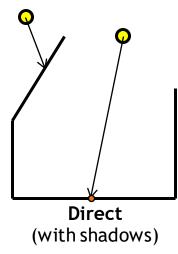
- Recursive ray tracing
 - Multiple reflections/refractions (e.g. for specular surfaces)
- Ray tracing for global illumination
 - Stochastic sampling (Monte Carlo methods) → RIS course

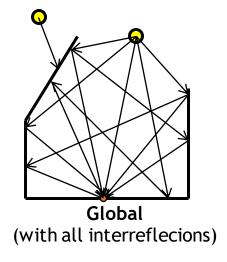


Different Types of Illumination

Three types of illumination computations in CG







Ambient Illumination

- Global illumination is costly to compute
- Indirect illumination (through interreflections) is typically smooth
 - \rightarrow Approximate via a constant term $L_{i,a}$ (incoming ambient illum.)
- Has no incoming direction, provide ambient reflection term k_a
 - Often chosen to be the same as the diffuse term $k_a = k_d$

$$L_o(x, \omega_o) = k_a L_{i,a}$$

Distribution Ray Tracing

- Formerly called Distributed Ray Tracing [Cook`84]
- Stochastic Sampling of

Pixel: Antialiasing

Lens: Depth-of-field

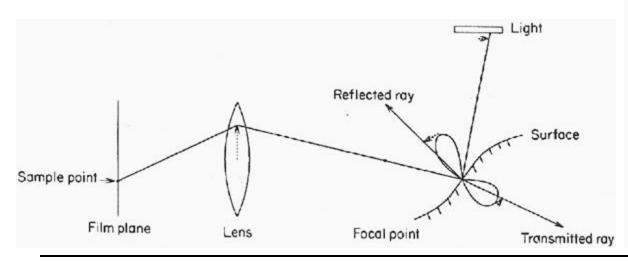
BRDF: Sampling of hemisphere & lobes

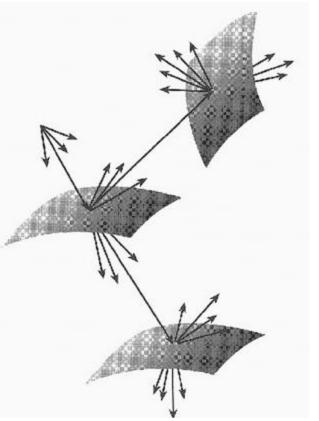
Lights: Smooth shadows from

area light sources

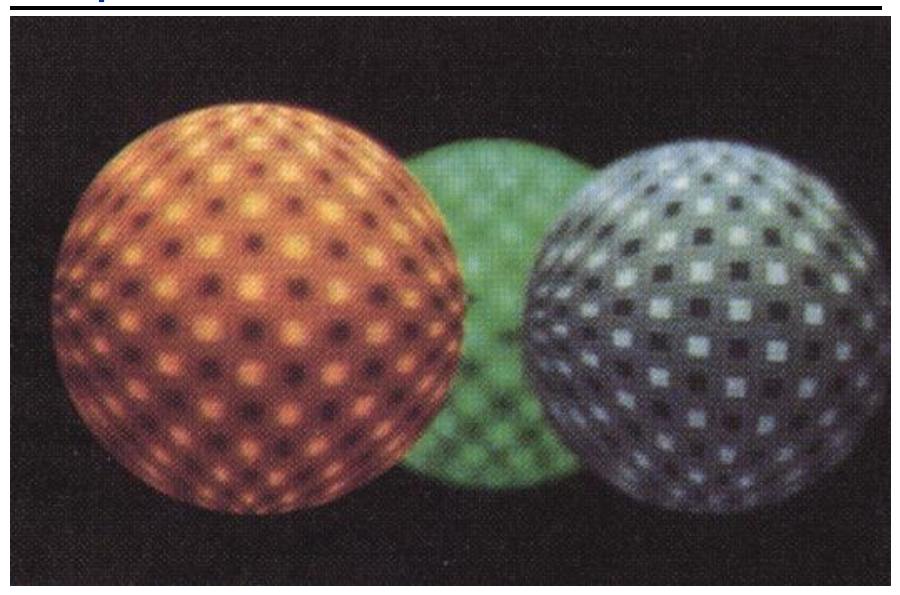
– Time: Motion blur

Covered in detail in RIS course

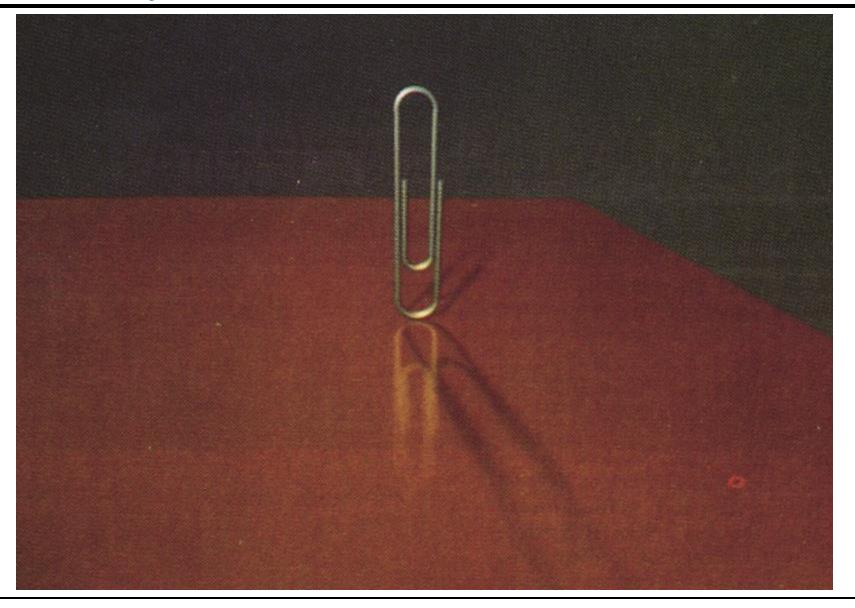




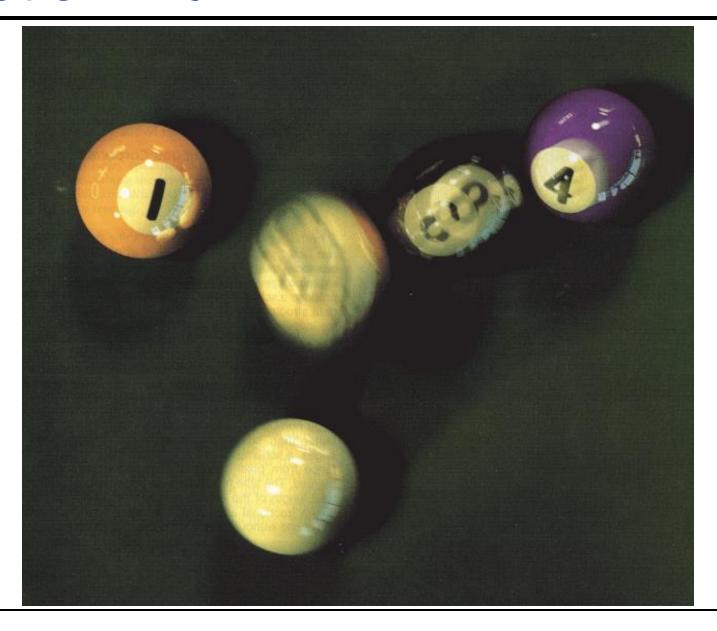
Depth of Field



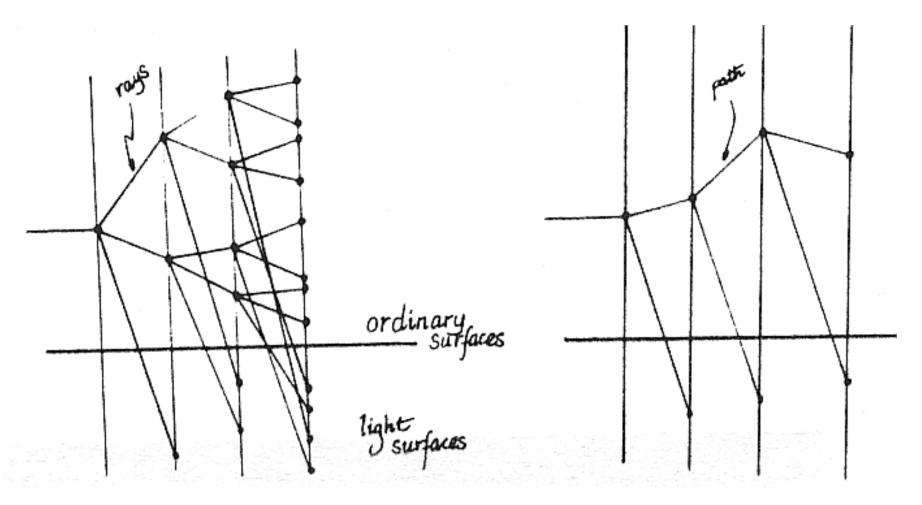
Glossy Reflection



Motion Blur



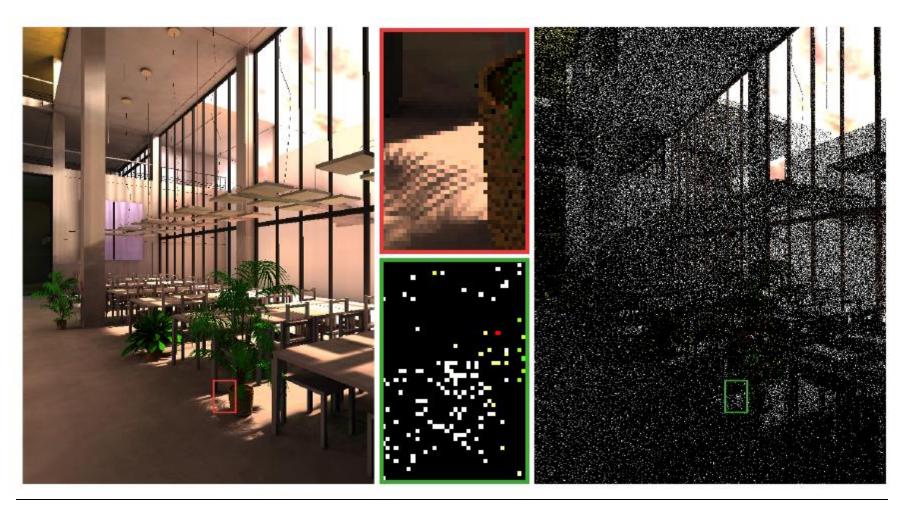
Comparison to Path Tracing



Distribution Ray Tracing

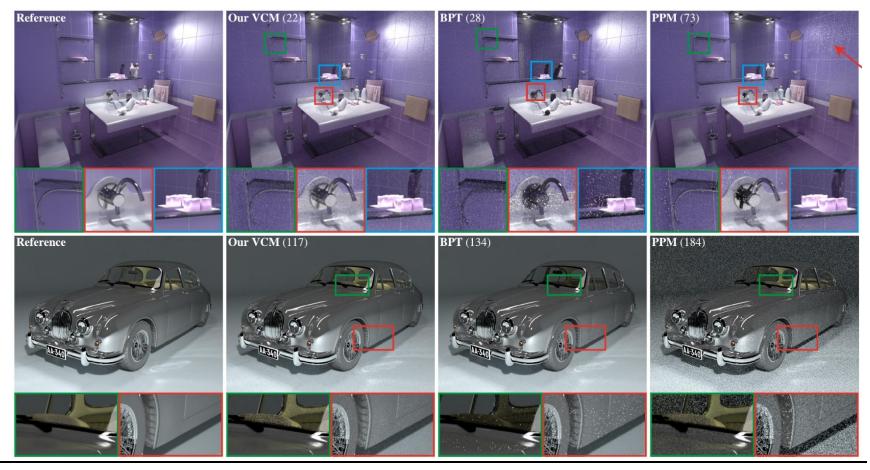
Path Tracing

- Importance Caching for Complex Illumination
 - By Iliyan Georgiev et al., Eurographics 2012

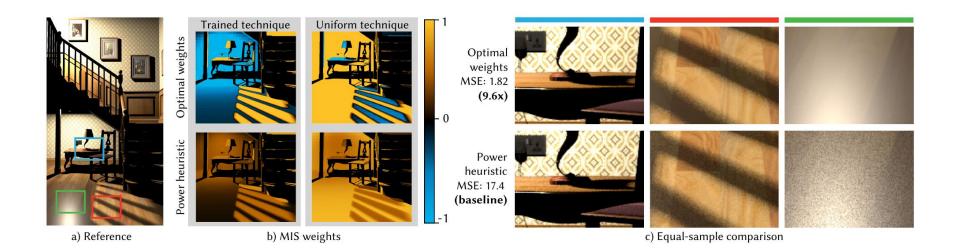


- Light Transport Simulation with Vertex Connection and Merging (VCM)
 - By Iliyan Georgiev et al., Siggraph 2012

- Light Transport Simulation with Vertex Connection and Merging (VCM)
 - By Iliyan Georgiev et al., Siggraph 2012

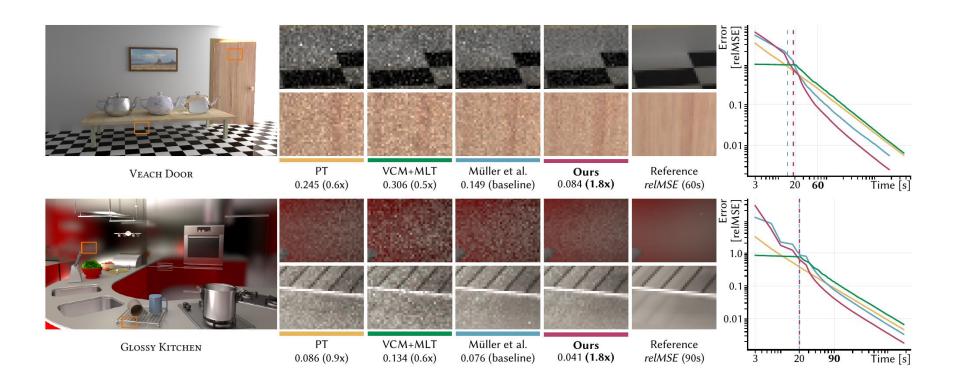


- Optimal Multiple Importance Sampling
 - By Pascal Grittmann, Jarozlav Krivanek, et al., Siggraph 2019



Variance-Aware Path Guiding

By Alexander Rath, Pascal Grittmann, et al., Siggraph 2020



Wrap Up

Physical Quantities in Rendering

- Radiance
- Radiosity
- Irradiance
- Intensity
- Light Perception
- Light Source Definition
- Rendering Equation
 - Key equation in graphics (!)
 - Integral equation
 - Describes global balance of radiance in a scene