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Rendering Algorithms
• Rendering

– Definition: Given a 3D scene description as input and a camera, 
generate a 2D image as a view from the camera of the 3D scene

• Algorithms
– Ray Tracing

• Declarative scene description

• Physically-based simulation of light transport

• Throughout the scene from light sources to the camera

– Rasterization

• Traditional procedural/imperative drawing of scene content

– One triangle at a time (conceptually)

• See later in the course!



Scene Description
• Surface Geometry

– 3D geometry of objects in a scene
– Geometric primitives – triangles, polygons, spheres, …

• Surface Appearance
– Color, texture, absorption, reflection, refraction, subsurface scattering
– Types of materials: Diffuse, glossy, mirror, glass, …

• Illumination
– Position and emission characteristics of light sources
– Note: Light also reflects off of surfaces!

• Secondary/indirect/global illumination

– Assumption: air/empty space is totally transparent
• Simplification that excludes scattering effects in participating media or 

volumes, e.g. smoke, solid object (CT scan), …

• See later in course

• Camera
– View point, viewing direction, field of view, resolution, …



OVERVIEW OF RAY-TRACING



Light Transport (1)



Light Transport (2)
• Light Distribution in a Scene

– Dynamic equilibrium: As much light is absorbed as is emitted

• Forward Light Transport 
– Shoot photons from the light sources into scene

– Scatter at surfaces and record when a detector is hit

• Photons that hit the camera produce the final image

• Most photons will not reach the camera!

– Particle or Light Tracing

• Backward Light Transport
– Start at the detector (camera)

– Trace only paths that might transport light towards camera

• May be hard to find and connect to light sources

– Ray Tracing



Ray Tracing Is…
• Fundamental rendering algorithm

• Automatic, simple and intuitive
– Easy to understand and implement

– Delivers “correct“ images by default

• Powerful and efficient
– Many optical global effects

• Shadows, reflections, refractions, …

– Efficient real-time implementation in SW and HW

– Can work in parallel and distributed environments

– Logarithmic scalability with scene size: O(log n) vs. O(n)

– Output sensitive and demand-driven approach

• Concept of light rays is not new
– Empedocles (492-432 BC), Renaissance (Dürer, 1525), …

– Used in lens design, geometric optics, neutron transport, …

Perspective Machine, Albrecht Dürer



Fundamental Ray Tracing Steps
• Generation of primary rays

– Rays from viewpoint along viewing directions into 3D scene

– (At least) one ray per picture element (pixel) in image plane

• Ray casting
– Traversal of spatial index structures

• To avoid unnecessary intersection computations

– Ray-primitive intersection → hit point

• Shading the hit point
– Compute light towards camera → pixel color

• Light power (really “radiance”) travelling along primary ray

– Needed for computation

• Local reflection/scattering properties: material color, texture, …

• Local illumination at intersection point

– Compute through recursive tracing of rays

– Can be hard to determine correctly
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Ray Tracing Pipeline (3)
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Ray Tracing Pipeline (4)
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Ray Tracing Pipeline (5)

Ray Generation

Ray Traversal

Intersection

Shading

Pixel Color

Ray Generation

Shading

Ray Traversal

Intersection

Ray Generation



Ray Tracing Pipeline (6)
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Ray Tracing Pipeline (7)

Ray Generation

Ray Traversal

Intersection

Shading

Pixel Color

Ray Generation

Shading

Ray Traversal

Intersection

Ray Generation



Ray Tracing Pipeline (8)
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Pixel Color

Ray Tracing Pipeline (9)
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Recursive Ray Tracing
• Searching recursively for 

paths to light sources
– Interaction of light & material 

at intersections

– Trace rays to light sources

– Recursively trace new ray 
paths in reflection & refraction
directions

image plane

pixel

lens/pupil

refracted ray

reflected ray

primary ray

shadow
rays

light source

Sphere Cylinder

Cube

Reflected

Eye

Refracted



Ray Tracing Algorithm
• Trace(ray)

– Search the next intersection point (hit, material)
– Return Shade(ray, hit, material)

• Shade(ray, hit, material)
– For each light source

• if ShadowTrace(ray to light source, distance to light)

– Calculate reflected radiance at hit 

– Adding radiance to the reflected radiance

– If mirroring material

• Calculate radiance in reflected direction: Trace(R(ray, hit))

• Adding mirroring part to the reflected radiance

– Same for transmission
– If emissive (i.e. light source), add emitted light
– Return reflected radiance

• ShadowTrace(ray, dist)
– Return false, if intersection with distance < dist has been found
– Can be changed to handle transparent objects as well

• But not with refraction – WHY?
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Shading (Material)
• Intersection point determines primary ray’s “color”

– Diffuse object: isotropic reflection at hit point of illumination

• No variation with viewing angle: diffuse (or Lambertian)

– Perfect reflection/refraction (mirror, glass)

• Only one outgoing direction each → Trace secondary ray path(s)

– Non-Lambertian Reflectance

• Appearance depends on illumination and viewing direction

• Local Bi-directional Reflectance Distribution Function (BRDF)

• Illumination
– Point/directional light sources

– Area light sources

• Approximate with multiple samples / shadow rays

– Indirect/global illumination

• See Realistic Image Synthesis (RIS) course in next semester

• More details later



Common Approximations
• Usually RGB color model

– Instead of full spectrum

• Light only from finite # of point lights 
– Instead of full indirect light

• Approximate material reflectance properties
– Ambient: constant, non-directional background light

– Diffuse: light reflected uniformly in all directions

– Specular: perfect reflection, refraction

• Reflection models are often empirical
– Often using Phong/Blinn shading model (or variation thereof)

– But physically-based models are available as well



Ray Tracing Features
• Incorporates into a single framework

– Hidden surface removal

• Front to back traversal

• Early termination once first hit point is found

– Shadow computation

• Shadow rays are traced between a point on a surface & light sources

– Exact simulation of some light paths

• Reflection (reflected rays at a mirror surface)

• Refraction (refracted rays at a transparent surface, Snell’s law)

• Limitations
– Many reflections or refractions

• Exponential increase in number of rays

– Indirect illumination requires many rays to sample all incoming 
directions

• Easily gets inefficient for full global illumination computations

– Solved with Path Tracing (→ later)



Ray Tracing Can…
• Produce Realistic Images

– By simulating light transport



What is Possible?
• Models Physics of Global Light Transport

– Dependable, physically-correct visualization



VW Visualization Center



Realistic Visualization: CAD



Realistic Visualization: VR/AR



Lighting Simulation



What is Possible?
• Huge Models

– Logarithmic scaling in scene size

12.5 Million
Triangles

~1 Billion
Triangles



Outdoor Environments
• 90 x 10^12 (trillion) triangles



Boeing 777

Boeing 777: ~350 million individual polygons, ~30 GB on disk



Volume Visualization
• Iso-surface rendering



Games? (in 2006)



Games!

Nvidia RTX (Turing)
(up to 10 Grays/s)



Ray Tracing in CG
• In the Past (until end of 90ies)

– Only used as an off-line technique
– Was computationally far too demanding (minutes to hours per frame)
– Believed to not be suitable for a HW implementation

• More Recently
– Interactive ray tracing on supercomputers [Parker, U. Utah‘98]
– Interactive ray tracing on PCs [Wald‘01]
– Distributed Real-time ray tracing on PC clusters [Wald’01]
– RPU: First full HW implementation [Siggraph 2005]

– Commercial tools: Embree (Intel/CPU), OptiX (Nvidia/GPU)
– Complete film industry has switched to ray tracing (Monte-Carlo)

• Own conference
– Symposium on Interactive RT, now High-Performance Graphics (HPG)

• Ray tracing systems
– Research: PBRT (offline, physically-based, based on book, OSS), 

Mitsuba-2 renderer (EPFL), Rodent (SB), …
– Products: Blender (OSS), V-Ray (Chaos Group), Arnold & VRED 

(Autodesk), Corona (Render Legion), MentalRay/iRay (MI), … 



Ray Casting Outside CG
• Tracing/Casting a ray

– Special type of query

• “Is there a primitive along a ray”

• “How far is the closest primitive”

• Other uses than rendering
– Visibility computation

– Radar simulation

– Sound waves tracing

– Volume computation

– Collision detection

– …



RAY-PRIMITIVE 

INTERSECTIONS



Basic Math - Ray
• Ray parameterization

– 𝑟 𝑡 = Ԧ𝑜 + 𝑡 Ԧ𝑑 ,               t ∈ ℝ; Ԧ𝑜, Ԧ𝑑 ∈ ℝ3: origin and direction

• Ray
– All points on the graph of 𝑟 𝑡 , with t ∈ ℝ0+

o

d

t=1

t=3

t=2



Pinhole Camera Model
// For given image resolution {resx, resy}

// Loop over pixel raster coordinates [0, res-1]

for(prcx = 0; prcx < resx; prcx++)

for(prcy = 0; prcy < resy; prcy++)

{

// Normalized device coordinates [0, 1]

ndcx = (prcx + 0.5) / resx;

ndcy = (prcy + 0.5) / resy;

// Screen space coordinates [-1, 1]

sscx = ndcx * 2 - 1;

sscy = ndcy * 2 - 1;

// Generate direction through pixel center

d = f + sscx  x + sscy  y;
d = d / |d|; // May normalize here

// Trace ray and assign color to pixel

color = trace_ray(o, d);

write_pixel(prcx, prcy, color);

}

x

spanning

vectors
y

o 

origin, POV

u

up-vector f

focal vector

d 

Image plane



Basic Math - Sphere
• Sphere 𝑆

– Ԧ𝑐 ∈ ℝ3, 𝑟 ∈ ℝ: center and radius 

– ∀ Ԧ𝑝 ∈ ℝ3: Ԧ𝑝 ∈ 𝑆 ⇔ Ԧ𝑝 − Ԧ𝑐 ∙ Ԧ𝑝 − Ԧ𝑐 − 𝑟2 = 0

• The distance between points on the sphere and its center equals the 
radius

c

p1

p1 - c

p2 - c

p2



Ray-Sphere Intersection
• Given

– Ray: 𝑟 𝑡 = Ԧ𝑜 + 𝑡 Ԧ𝑑 , t ∈ ℝ; Ԧ𝑜, Ԧ𝑑 ∈ ℝ3

– Sphere: Ԧ𝑐 ∈ ℝ3, 𝑟 ∈ ℝ:

• ∀ Ԧ𝑝 ∈ ℝ3: Ԧ𝑝 ∈ 𝑆 ⇔ Ԧ𝑝− Ԧ𝑐 ∙ Ԧ𝑝 − Ԧ𝑐 − 𝑟2 = 0

• Find closest intersection point
– Algebraic approach: substitute ray equation

• Ԧ𝑝 − Ԧ𝑐 ∙ Ԧ𝑝 − Ԧ𝑐 − 𝑟2 = 0 with Ԧ𝑝 = Ԧ𝑜 + 𝑡 Ԧ𝑑

• 𝑡2 Ԧ𝑑 ∙ Ԧ𝑑 + 2𝑡 Ԧ𝑑 ∙ Ԧ𝑜 − Ԧ𝑐 + Ԧ𝑜 − Ԧ𝑐 ∙ ( Ԧ𝑜 − Ԧ𝑐) − 𝑟2 = 0

• Solve for t



Ray-Sphere Intersection (2)
• Given

– Ray: 𝑟 𝑡 = Ԧ𝑜 + 𝑡 Ԧ𝑑 , t ∈ ℝ; Ԧ𝑜, Ԧ𝑑 ∈ ℝ3

– Sphere: Ԧ𝑐 ∈ ℝ3, 𝑟 ∈ ℝ:

• ∀ Ԧ𝑝 ∈ ℝ3: Ԧ𝑝 ∈ 𝑆 ⇔ Ԧ𝑝 − Ԧ𝑐 ∙ Ԧ𝑝 − Ԧ𝑐 − 𝑟2 = 0

• Find closest intersection point
– Geometric approach

• Ray and center span a plane

• Solve in 2D

• Compute 𝑏 − Ԧ𝑜 , 𝑏 − Ԧ𝑐

– Such that ∡𝑜𝑏𝑐 = 90°

• Intersection(s) if 𝑏 − Ԧ𝑐 ≤ 𝑟

– Be aware of floating
point issues if o
is far from sphere

c

r

d

o
o - c

b



Basic Math - Plane
• Plane 𝑃

– 𝑛, Ԧ𝑎 ∈ ℝ3: normal and point in 𝑃 (Hesse normal form for plane)

– ∀ Ԧ𝑝 ∈ ℝ3: Ԧ𝑝 ∈ 𝑃 ⇔ Ԧ𝑝 − Ԧ𝑎 ∙ 𝑛 = 0

• The difference vector between any two points on the plane is either 0 
or orthogonal to the plane’s normal

n 

a

p1

p1 - a
n 

a

p2

p2 - a



Ray-Plane Intersection
• Given

– Ray: 𝑟 𝑡 = Ԧ𝑜 + 𝑡 Ԧ𝑑 ,                  t ∈ ℝ; Ԧ𝑜, Ԧ𝑑 ∈ ℝ3

– Plane: 𝑛, Ԧ𝑎 ∈ ℝ3: normal and point in 𝑃

• Compute intersection point
– Plane equation: Ԧ𝑝 ∈ 𝑃 ⇔ Ԧ𝑝 − Ԧ𝑎 ∙ 𝑛 = 0

⇔ Ԧ𝑝 ∙ 𝑛 − 𝐷 = 0, 𝑤𝑖𝑡ℎ 𝐷 = Ԧ𝑎 ∙ 𝑛

– Substitute ray parameterization: ( Ԧ𝑜 + 𝑡 Ԧ𝑑) ∙ 𝑛 − 𝐷 = 0

– Solve for t

• What are possible solutions?



Ray-Plane Intersection
• Given

– Ray: 𝑟 𝑡 = Ԧ𝑜 + 𝑡 Ԧ𝑑 ,                  t ∈ ℝ; Ԧ𝑜, Ԧ𝑑 ∈ ℝ3

– Plane: 𝑛, Ԧ𝑎 ∈ ℝ3: normal and point in 𝑃

• Compute intersection point
– Plane equation: Ԧ𝑝 ∈ 𝑃 ⇔ Ԧ𝑝 − Ԧ𝑎 ∙ 𝑛 = 0

⇔ Ԧ𝑝 ∙ 𝑛 − 𝐷 = 0, 𝑤𝑖𝑡ℎ 𝐷 = Ԧ𝑎 ∙ 𝑛

– Substitute ray parameterization: ( Ԧ𝑜 + 𝑡 Ԧ𝑑) ∙ 𝑛 − 𝐷 = 0

– Solve for t

• 0,1, or infinitely many solutions

• One intersection or parallel to/in plane



Ray-Disc Intersection
• Intersect ray with plane

• Discard intersection if ||p – a|| > r



Basic Math - Triangle
• Triangle 𝑇

– Ԧ𝑎,𝑏, Ԧ𝑐 ∈ ℝ3: vertices

– Affine combinations of Ԧ𝑎,𝑏, Ԧ𝑐 → points in the plane

• Non-negative coefficients that sum up to 1 → points in the triangle

– ∀ Ԧ𝑝 ∈ ℝ3: Ԧ𝑝 ∈ 𝑇 ⇔ ∃𝜆1,2,3∈ ℝ0+, 𝜆1 +𝜆2 + 𝜆3 = 1 𝑎𝑛𝑑

Ԧ𝑝 = 𝜆1 Ԧ𝑎 + 𝜆2𝑏 + 𝜆3 Ԧ𝑐

• Barycentric coordinates 𝜆1,2,3
– 𝜆1 = 𝑆𝑝𝑏𝑐/𝑆𝑎𝑏𝑐, etc.

– S: signed area of triangles,
based on CLW/CCW orientation

c

a b

p

λ1

λ3

λ2



Barycentric Coordinates (BCs)
• Triangle 𝑇

– Ԧ𝑎,𝑏, Ԧ𝑐 ∈ ℝ3: vertices

– 𝜆1,2,3: Barycentric coordinates

– 𝜆1 + 𝜆2 + 𝜆3 = 1
– 𝜆1 = 𝑆𝑝𝑏𝑐/𝑆𝑎𝑏𝑐, etc.

• Easy geometric interpretation

(1,0,0) (0, 1, 0)

(0, 0, 1)

𝜆3 =
1

2

(0, 
1

2
, 
1

2
)

(
1

2
, 
1

2
, 0)

(
1

2
, 0, 

1

2
)

(
1

3
,
1

3
,
1

3
)

𝜆3 =
1

3

c

a b



Triangle Intersection: Plane-Based

• Compute intersection with triangle plane
– Plane equation easily computable from vertices

• Compute barycentric coordinates
– Signed areas of subtriangles

– Can be done in 2D, after 
“projection” onto major plane,
depending on largest
component of normal vector

• Test for positive BCs

• Issues:
– Edges of neighboring triangles 

might not be identical

– Due to inaccuracies of floats

– Need a better method!

n

o

d

x

y

z



Triangle Intersection: Edge-Based

• 3D linear function across triangle (3D edge functions)

– Ray: Ԧ𝑜 + 𝑡 Ԧ𝑑 ,                  t ∈ ℝ; Ԧ𝑜, Ԧ𝑑 ∈ ℝ3

– Triangle: Ԧ𝑎,𝑏, Ԧ𝑐 ∈ ℝ3

b

do

c

a



• 3D linear function across triangle (3D edge functions)

– Ray: Ԧ𝑜 + 𝑡 Ԧ𝑑 ,                  t ∈ ℝ; Ԧ𝑜, Ԧ𝑑 ∈ ℝ3

– Triangle: Ԧ𝑎,𝑏, Ԧ𝑐 ∈ ℝ3

– 𝑛𝑎𝑏 = 𝑏 − Ԧ𝑜 × (𝑎 − Ԧ𝑜)

– 𝑛𝑎𝑏 is the signed area of OAB (2x)

b

do

c

a

nab

Triangle Intersection: Edge-Based



Triangle Intersection: Edge-Based

• 3D linear function across triangle (3D edge functions)
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∗ (𝑡) = 𝑛𝑎𝑏 ∙ 𝑡 Ԧ𝑑

• Volume of OBAP (6x)

• For 𝑡 = 𝑡ℎ𝑖𝑡

b

do

c

a

nab p



Triangle Intersection: Edge-Based

• 3D linear function across triangle (3D edge functions)

– Ray: Ԧ𝑜 + 𝑡 Ԧ𝑑 ,                  t ∈ ℝ; Ԧ𝑜, Ԧ𝑑 ∈ ℝ3

– Triangle: Ԧ𝑎,𝑏, Ԧ𝑐 ∈ ℝ3

– 𝑛𝑎𝑏 = 𝑏 − Ԧ𝑜 × (𝑎 − Ԧ𝑜)

– 𝑛𝑎𝑏 is the signed area of OAB (2x)

– 𝜆3
∗ (𝑡) = 𝑛𝑎𝑏 ∙ 𝑡 Ԧ𝑑

• Volume of OBAP (6x)

• For 𝑡 = 𝑡ℎ𝑖𝑡

– 𝜆1,2
∗ (𝑡) = 𝑛𝑏𝑐,𝑎𝑐 ∙ 𝑡 Ԧ𝑑

– Normalize

• 𝜆𝑖 =
𝜆𝑖
∗(𝑡)

𝜆1
∗(𝑡)+𝜆2

∗(𝑡)+𝜆3
∗(𝑡)

, 𝑖 = 1,2,3

• Length of 𝑡 Ԧ𝑑 cancels out

b

do

c

a

nab p



Triangle Intersection: Edge-Based

• 3D linear function across triangle (3D edge functions)

– Ray: Ԧ𝑜 + 𝑡 Ԧ𝑑 ,                  t ∈ ℝ; Ԧ𝑜, Ԧ𝑑 ∈ ℝ3

– Triangle: Ԧ𝑎,𝑏, Ԧ𝑐 ∈ ℝ3

– 𝑛𝑎𝑏 = 𝑏 − Ԧ𝑜 × (𝑎 − Ԧ𝑜)

– 𝑛𝑎𝑏 is the signed area of OAB (2x)

– 𝜆3
∗ (𝑡) = 𝑛𝑎𝑏 ∙ 𝑡 Ԧ𝑑

• Volume of OBAP (6x)

• For 𝑡 = 𝑡ℎ𝑖𝑡

– 𝜆1,2
∗ (𝑡) = 𝑛𝑏𝑐,𝑎𝑐 ∙ 𝑡 Ԧ𝑑

– Normalize

• 𝜆𝑖 =
𝜆𝑖
∗(𝑡)

𝜆1
∗(𝑡)+𝜆2

∗(𝑡)+𝜆3
∗(𝑡)

, 𝑖 = 1,2,3

• Hit if all BCs positive:

– Compute Ԧ𝑝 = 𝜆1 Ԧ𝑎 + 𝜆2𝑏 + 𝜆3 Ԧ𝑐

b

do

c

a

pnab



Quadrics
• Implicit

– f(x, y, z) = v

• Ray equation
– x = xo + t xd

– y = yo + t yd

– z = zo + t zd

• Solve for t



Axis Aligned Bounding Box
• Given

– Ray: Ԧ𝑜 + 𝑡 Ԧ𝑑 ,                  t ∈ ℝ; Ԧ𝑜, Ԧ𝑑 ∈ ℝ3

– Axis aligned bounding box (AABB): 𝑝𝑚𝑖𝑛, 𝑝𝑚𝑎𝑥 ∈ ℝ3

Bounded 

Volume

pmin

pmax



Ray-Box Intersection
• Given

– Ray: Ԧ𝑜 + 𝑡 Ԧ𝑑 ,                  t ∈ ℝ; Ԧ𝑜, Ԧ𝑑 ∈ ℝ3

– Axis aligned bounding box (AABB): 𝑝𝑚𝑖𝑛, 𝑝𝑚𝑎𝑥 ∈ ℝ3

• “Slabs test” for ray-box intersection
– Ray enters the box in all dimensions before exiting in any

– max({𝑡𝑖
𝑛𝑒𝑎𝑟|𝑖 = 𝑥, 𝑦, 𝑧}) < min({𝑡𝑖

𝑓𝑎𝑟
|𝑖 = 𝑥, 𝑦, 𝑧})

Bounded 

Volume

tx
near

ty
near (smaller)

ty
far

o

tx
far (larger) Bounded 

Volume

tx
near

tx
far (smaller)

ty
far

o

ty
near (larger)



History of Intersection Algorithms

• Ray-geometry intersection algorithms
– Polygons: [Appel ’68]

– Quadrics, CSG: [Goldstein & Nagel ’71]

– Recursive Ray Tracing: [Whitted ’79]

– Tori: [Roth ’82]

– Bicubic patches: [Whitted ’80, Kajiya ’82]

– Algebraic surfaces: [Hanrahan ’82]

– Swept surfaces: [Kajiya ’83, van Wijk ’84]

– Fractals: [Kajiya ’83]

– Deformations: [Barr ’86]

– NURBS: [Stürzlinger ’98]

– Subdivision surfaces: [Kobbelt et al ’98]



Precision Problems
• E.g., Cause of „surface acne“


